Pub Date : 2023-06-13DOI: 10.3390/computation11060117
Alberto Quilez Robres, M. Acero-Ferrero, Diego Delgado-Bujedo, Raquel Lozano-Blasco, Montserrat Aiger-Valles
The outbreak of the COVID-19 pandemic shifted socialization and information seeking to social media platforms. The armed forces of the major military powers initiated civil support operations to combat the invisible and common enemy. The aim of this study is to analyze the existence of differential behavior in the corporate profiles of the major military powers on Twitter, Instagram, and Facebook during the COVID-19 pandemic. The principles of social network analysis were followed, along with sentiment analysis, to study web positioning and the emotional content of the posts (N = 25,328). The principles of data mining were applied to process the KPIs (Fanpage Karma), and an artificial intelligence (meaning cloud) sentiment analysis was applied to study the emotionality of the publications. The analysis was carried out using the IBM SPSS Statistics 25 statistical software. Subsequently, a qualitative content analysis was carried out using frequency graphs or word clouds (the application “nubedepalabras” used in English). Significant differences were found between the behavior on social media and the organizational and communicative culture of the nations. It is highlighted that some nations present different preferences from the main communicative strategy developed by their armed forces. Corporate communication of the major military powers should consider the emotional nature of their posts to align with the preferences of their population.
{"title":"Social Networks in Military Powers: Network and Sentiment Analysis during the COVID-19 Pandemic","authors":"Alberto Quilez Robres, M. Acero-Ferrero, Diego Delgado-Bujedo, Raquel Lozano-Blasco, Montserrat Aiger-Valles","doi":"10.3390/computation11060117","DOIUrl":"https://doi.org/10.3390/computation11060117","url":null,"abstract":"The outbreak of the COVID-19 pandemic shifted socialization and information seeking to social media platforms. The armed forces of the major military powers initiated civil support operations to combat the invisible and common enemy. The aim of this study is to analyze the existence of differential behavior in the corporate profiles of the major military powers on Twitter, Instagram, and Facebook during the COVID-19 pandemic. The principles of social network analysis were followed, along with sentiment analysis, to study web positioning and the emotional content of the posts (N = 25,328). The principles of data mining were applied to process the KPIs (Fanpage Karma), and an artificial intelligence (meaning cloud) sentiment analysis was applied to study the emotionality of the publications. The analysis was carried out using the IBM SPSS Statistics 25 statistical software. Subsequently, a qualitative content analysis was carried out using frequency graphs or word clouds (the application “nubedepalabras” used in English). Significant differences were found between the behavior on social media and the organizational and communicative culture of the nations. It is highlighted that some nations present different preferences from the main communicative strategy developed by their armed forces. Corporate communication of the major military powers should consider the emotional nature of their posts to align with the preferences of their population.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"43 1","pages":"117"},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75327410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-12DOI: 10.3390/computers12060120
Arun Kumar Rai, H. Om, S. Chand, Chia-Chen Lin
In today’s digital age, ensuring the secure transmission of confidential data through various means of communication is crucial. Protecting the data from malicious attacks during transmission poses a significant challenge. To achieve this, reversible data hiding (RDH) and encryption methods are often used in combination to safeguard confidential data from intruders. However, existing secure reversible hybrid hiding techniques are facing challenges related to low data embedding capacity. To address these challenges, the proposed research presents a solution that utilizes block-wise encryption and a two-layer embedding scheme to enhance the embedding capacity of the cover image. Additionally, this technique incorporates a blockchain-enabled RDH method to ensure traceability and integrity by storing confidential data alongside the hash value of the stego image. The proposed work is divided into three phases. First, the cover image is encrypted. Second, the data are embedded in the encrypted cover image using a two-layer embedding scheme. Finally, the stego image along with the hash value are deployed through blockchain technology. The proposed method reduces challenges associated with traceability and integrity while increasing the embedding capacity of images compared to traditional methods.
{"title":"High-Capacity Reversible Data Hiding Based on Two-Layer Embedding Scheme for Encrypted Image Using Blockchain","authors":"Arun Kumar Rai, H. Om, S. Chand, Chia-Chen Lin","doi":"10.3390/computers12060120","DOIUrl":"https://doi.org/10.3390/computers12060120","url":null,"abstract":"In today’s digital age, ensuring the secure transmission of confidential data through various means of communication is crucial. Protecting the data from malicious attacks during transmission poses a significant challenge. To achieve this, reversible data hiding (RDH) and encryption methods are often used in combination to safeguard confidential data from intruders. However, existing secure reversible hybrid hiding techniques are facing challenges related to low data embedding capacity. To address these challenges, the proposed research presents a solution that utilizes block-wise encryption and a two-layer embedding scheme to enhance the embedding capacity of the cover image. Additionally, this technique incorporates a blockchain-enabled RDH method to ensure traceability and integrity by storing confidential data alongside the hash value of the stego image. The proposed work is divided into three phases. First, the cover image is encrypted. Second, the data are embedded in the encrypted cover image using a two-layer embedding scheme. Finally, the stego image along with the hash value are deployed through blockchain technology. The proposed method reduces challenges associated with traceability and integrity while increasing the embedding capacity of images compared to traditional methods.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"1 1","pages":"120"},"PeriodicalIF":0.0,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78732708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-10DOI: 10.3390/computation11060115
Mónica V. Martins, Luís Baptista, Henrique Luís, V. Assunção, Mário-Rui Araújo, Valentim Realinho
The past few decades have witnessed remarkable progress in the application of artificial intelligence (AI) and machine learning (ML) in medicine, notably in medical imaging. The application of ML to dental and oral imaging has also been developed, powered by the availability of clinical dental images. The present work aims to investigate recent progress concerning the application of ML in the diagnosis of oral diseases using oral X-ray imaging, namely the quality and outcome of such methods. The specific research question was developed using the PICOT methodology. The review was conducted in the Web of Science, Science Direct, and IEEE Xplore databases, for articles reporting the use of ML and AI for diagnostic purposes in X-ray-based oral imaging. Imaging types included panoramic, periapical, bitewing X-ray images, and oral cone beam computed tomography (CBCT). The search was limited to papers published in the English language from 2018 to 2022. The initial search included 104 papers that were assessed for eligibility. Of these, 22 were included for a final appraisal. The full text of the articles was carefully analyzed and the relevant data such as the clinical application, the ML models, the metrics used to assess their performance, and the characteristics of the datasets, were registered for further analysis. The paper discusses the opportunities, challenges, and limitations found.
过去几十年,人工智能(AI)和机器学习(ML)在医学领域的应用取得了显著进展,尤其是在医学成像领域。由于临床牙科图像的可用性,机器学习在牙科和口腔成像方面的应用也得到了发展。本研究旨在探讨口腔x射线成像在口腔疾病诊断中应用ML的最新进展,即这种方法的质量和结果。具体的研究问题是使用PICOT方法开发的。该综述是在Web of Science、Science Direct和IEEE Xplore数据库中进行的,针对报告在基于x射线的口腔成像中使用ML和AI诊断目的的文章。影像类型包括全景、根尖周、咬翼x线影像和口腔锥束计算机断层(CBCT)。搜索仅限于2018年至2022年以英语发表的论文。最初的搜索包括104篇被评估为合格的论文。其中22个被列入最后评估。对文章全文进行仔细分析,并登记相关数据,如临床应用、ML模型、用于评估其性能的指标以及数据集的特征等,以供进一步分析。本文讨论了机遇、挑战和发现的局限性。
{"title":"Machine Learning in X-ray Diagnosis for Oral Health: A Review of Recent Progress","authors":"Mónica V. Martins, Luís Baptista, Henrique Luís, V. Assunção, Mário-Rui Araújo, Valentim Realinho","doi":"10.3390/computation11060115","DOIUrl":"https://doi.org/10.3390/computation11060115","url":null,"abstract":"The past few decades have witnessed remarkable progress in the application of artificial intelligence (AI) and machine learning (ML) in medicine, notably in medical imaging. The application of ML to dental and oral imaging has also been developed, powered by the availability of clinical dental images. The present work aims to investigate recent progress concerning the application of ML in the diagnosis of oral diseases using oral X-ray imaging, namely the quality and outcome of such methods. The specific research question was developed using the PICOT methodology. The review was conducted in the Web of Science, Science Direct, and IEEE Xplore databases, for articles reporting the use of ML and AI for diagnostic purposes in X-ray-based oral imaging. Imaging types included panoramic, periapical, bitewing X-ray images, and oral cone beam computed tomography (CBCT). The search was limited to papers published in the English language from 2018 to 2022. The initial search included 104 papers that were assessed for eligibility. Of these, 22 were included for a final appraisal. The full text of the articles was carefully analyzed and the relevant data such as the clinical application, the ML models, the metrics used to assess their performance, and the characteristics of the datasets, were registered for further analysis. The paper discusses the opportunities, challenges, and limitations found.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"11 1","pages":"115"},"PeriodicalIF":0.0,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81969398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-10DOI: 10.3390/computers12060119
E. Stathopoulos, Anastasios I. Karageorgiadis, Alexandros Kokkalas, S. Diplaris, S. Vrochidis, Y. Kompatsiaris
This paper presents a benchmarking survey on query expansion techniques for social media information retrieval, with a focus on comparing the performance of methods using semantic web technologies. The study evaluated query expansion techniques such as generative AI models and semantic matching algorithms and how they are integrated in a semantic framework. The evaluation was based on cosine similarity metrics, including the Discounted Cumulative Gain (DCG), Ideal Discounted Cumulative Gain (IDCG), and normalized Discounted Cumulative Gain (nDCG), as well as the Mean Average Precision (MAP). Additionally, the paper discusses the use of semantic web technologies as a component in a pipeline for building thematic knowledge graphs from retrieved social media data with extended ontologies integrated for the refugee crisis. The paper begins by introducing the importance of query expansion in information retrieval and the potential benefits of incorporating semantic web technologies. The study then presents the methodologies and outlines the specific procedures for each query expansion technique. The results of the evaluation are presented, as well as the rest semantic framework, and the best-performing technique was identified, which was the curie-001 generative AI model. Finally, the paper summarizes the main findings and suggests future research directions.
{"title":"A Query Expansion Benchmark on Social Media Information Retrieval: Which Methodology Performs Best and Aligns with Semantics?","authors":"E. Stathopoulos, Anastasios I. Karageorgiadis, Alexandros Kokkalas, S. Diplaris, S. Vrochidis, Y. Kompatsiaris","doi":"10.3390/computers12060119","DOIUrl":"https://doi.org/10.3390/computers12060119","url":null,"abstract":"This paper presents a benchmarking survey on query expansion techniques for social media information retrieval, with a focus on comparing the performance of methods using semantic web technologies. The study evaluated query expansion techniques such as generative AI models and semantic matching algorithms and how they are integrated in a semantic framework. The evaluation was based on cosine similarity metrics, including the Discounted Cumulative Gain (DCG), Ideal Discounted Cumulative Gain (IDCG), and normalized Discounted Cumulative Gain (nDCG), as well as the Mean Average Precision (MAP). Additionally, the paper discusses the use of semantic web technologies as a component in a pipeline for building thematic knowledge graphs from retrieved social media data with extended ontologies integrated for the refugee crisis. The paper begins by introducing the importance of query expansion in information retrieval and the potential benefits of incorporating semantic web technologies. The study then presents the methodologies and outlines the specific procedures for each query expansion technique. The results of the evaluation are presented, as well as the rest semantic framework, and the best-performing technique was identified, which was the curie-001 generative AI model. Finally, the paper summarizes the main findings and suggests future research directions.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"9 1","pages":"119"},"PeriodicalIF":0.0,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81540087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-09DOI: 10.3390/computation11060114
G. Nedzhibov
We present novel methods for computing the online dynamic mode decomposition (online DMD) for streaming datasets. We propose a framework that allows incremental updates to the DMD operator as data become available. Due to its ability to work on datasets with lower ranks, the proposed method is more advantageous than existing ones. A noteworthy feature of the method is that it is entirely data-driven and does not require knowledge of any underlying governing equations. Additionally, we present a modified version of our proposed approach that utilizes a weighted alternative to online DMD. The suggested techniques are demonstrated using several numerical examples.
{"title":"Extended Online DMD and Weighted Modifications for Streaming Data Analysis","authors":"G. Nedzhibov","doi":"10.3390/computation11060114","DOIUrl":"https://doi.org/10.3390/computation11060114","url":null,"abstract":"We present novel methods for computing the online dynamic mode decomposition (online DMD) for streaming datasets. We propose a framework that allows incremental updates to the DMD operator as data become available. Due to its ability to work on datasets with lower ranks, the proposed method is more advantageous than existing ones. A noteworthy feature of the method is that it is entirely data-driven and does not require knowledge of any underlying governing equations. Additionally, we present a modified version of our proposed approach that utilizes a weighted alternative to online DMD. The suggested techniques are demonstrated using several numerical examples.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"21 1","pages":"114"},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76609939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-09DOI: 10.3390/computers12060118
Antonio Maci, Alessandro Santorsola, Anthony J. Coscia, Andrea Iannacone
Web phishing is a form of cybercrime aimed at tricking people into visiting malicious URLs to exfiltrate sensitive data. Since the structure of a malicious URL evolves over time, phishing detection mechanisms that can adapt to such variations are paramount. Furthermore, web phishing detection is an unbalanced classification task, as legitimate URLs outnumber malicious ones in real-life cases. Deep learning (DL) has emerged as a promising technique to minimize concept drift to enhance web phishing detection. Deep reinforcement learning (DRL) combines DL with reinforcement learning (RL); that is, a sequential decision-making paradigm in which the problem to be addressed is expressed as a Markov decision process (MDP). Recent studies have proposed an ad hoc MDP formulation to tackle unbalanced classification tasks called the imbalanced classification Markov decision process (ICMDP). In this paper, we exploit the ICMDP to present a double deep Q-Network (DDQN)-based classifier to address the unbalanced web phishing classification problem. The proposed algorithm is evaluated on a Mendeley web phishing dataset, from which three different data imbalance scenarios are generated. Despite a significant training time, it results in better geometric mean, index of balanced accuracy, F1 score, and area under the ROC curve than other DL-based classifiers combined with data-level sampling techniques in all test cases.
{"title":"Unbalanced Web Phishing Classification through Deep Reinforcement Learning","authors":"Antonio Maci, Alessandro Santorsola, Anthony J. Coscia, Andrea Iannacone","doi":"10.3390/computers12060118","DOIUrl":"https://doi.org/10.3390/computers12060118","url":null,"abstract":"Web phishing is a form of cybercrime aimed at tricking people into visiting malicious URLs to exfiltrate sensitive data. Since the structure of a malicious URL evolves over time, phishing detection mechanisms that can adapt to such variations are paramount. Furthermore, web phishing detection is an unbalanced classification task, as legitimate URLs outnumber malicious ones in real-life cases. Deep learning (DL) has emerged as a promising technique to minimize concept drift to enhance web phishing detection. Deep reinforcement learning (DRL) combines DL with reinforcement learning (RL); that is, a sequential decision-making paradigm in which the problem to be addressed is expressed as a Markov decision process (MDP). Recent studies have proposed an ad hoc MDP formulation to tackle unbalanced classification tasks called the imbalanced classification Markov decision process (ICMDP). In this paper, we exploit the ICMDP to present a double deep Q-Network (DDQN)-based classifier to address the unbalanced web phishing classification problem. The proposed algorithm is evaluated on a Mendeley web phishing dataset, from which three different data imbalance scenarios are generated. Despite a significant training time, it results in better geometric mean, index of balanced accuracy, F1 score, and area under the ROC curve than other DL-based classifiers combined with data-level sampling techniques in all test cases.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"99 1","pages":"118"},"PeriodicalIF":0.0,"publicationDate":"2023-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89520804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-08DOI: 10.3390/computation11060113
Juan Carlos Aguirre-Arango, A. Álvarez-Meza, G. Castellanos-Domínguez
Regional neuraxial analgesia for pain relief during labor is a universally accepted, safe, and effective procedure involving administering medication into the epidural. Still, an adequate assessment requires continuous patient monitoring after catheter placement. This research introduces a cutting-edge semantic thermal image segmentation method emphasizing superior interpretability for regional neuraxial analgesia monitoring. Namely, we propose a novel Convolutional Random Fourier Features-based approach, termed CRFFg, and custom-designed layer-wise weighted class-activation maps created explicitly for foot segmentation. Our method aims to enhance three well-known semantic segmentation (FCN, UNet, and ResUNet). We have rigorously evaluated our methodology on a challenging dataset of foot thermal images from pregnant women who underwent epidural anesthesia. Its limited size and significant variability distinguish this dataset. Furthermore, our validation results indicate that our proposed methodology not only delivers competitive results in foot segmentation but also significantly improves the explainability of the process.
{"title":"Feet Segmentation for Regional Analgesia Monitoring Using Convolutional RFF and Layer-Wise Weighted CAM Interpretability","authors":"Juan Carlos Aguirre-Arango, A. Álvarez-Meza, G. Castellanos-Domínguez","doi":"10.3390/computation11060113","DOIUrl":"https://doi.org/10.3390/computation11060113","url":null,"abstract":"Regional neuraxial analgesia for pain relief during labor is a universally accepted, safe, and effective procedure involving administering medication into the epidural. Still, an adequate assessment requires continuous patient monitoring after catheter placement. This research introduces a cutting-edge semantic thermal image segmentation method emphasizing superior interpretability for regional neuraxial analgesia monitoring. Namely, we propose a novel Convolutional Random Fourier Features-based approach, termed CRFFg, and custom-designed layer-wise weighted class-activation maps created explicitly for foot segmentation. Our method aims to enhance three well-known semantic segmentation (FCN, UNet, and ResUNet). We have rigorously evaluated our methodology on a challenging dataset of foot thermal images from pregnant women who underwent epidural anesthesia. Its limited size and significant variability distinguish this dataset. Furthermore, our validation results indicate that our proposed methodology not only delivers competitive results in foot segmentation but also significantly improves the explainability of the process.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"6 1","pages":"113"},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79645115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-08DOI: 10.3390/computation11060112
V. Burnashev, K. Viswanathan, Z. D. Kaytarov
In this paper, a mathematical model of multiphase filtration in a deformable porous medium is presented. Based on the proposed model, the influence of the deformation of a porous medium on the filtration processes is studied. Numerical calculations are performed and the characteristics of the process are determined. This paper shows that an increase in the compressibility coefficient leads to a sharp decrease in porosity, absolute permeability and internal pressure of the medium near the well, and a decrease in the distance between wells leads to a sharp decrease in hydrodynamic parameters in the inter-well zone.
{"title":"Mathematical Modeling of Multi-Phase Filtration in a Deformable Porous Medium","authors":"V. Burnashev, K. Viswanathan, Z. D. Kaytarov","doi":"10.3390/computation11060112","DOIUrl":"https://doi.org/10.3390/computation11060112","url":null,"abstract":"In this paper, a mathematical model of multiphase filtration in a deformable porous medium is presented. Based on the proposed model, the influence of the deformation of a porous medium on the filtration processes is studied. Numerical calculations are performed and the characteristics of the process are determined. This paper shows that an increase in the compressibility coefficient leads to a sharp decrease in porosity, absolute permeability and internal pressure of the medium near the well, and a decrease in the distance between wells leads to a sharp decrease in hydrodynamic parameters in the inter-well zone.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"14 1","pages":"112"},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85669470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-06DOI: 10.3390/computation11060111
B. Yesmagambetov, Akhmetbek Mussabekov, N. Alymov, A. Apsemetov, M. Balabekova, K.G. Kayumov, Kuttybek Arystanbayev, A. Imanbayeva
In the radio telemetry systems of spacecraft, various data compression methods are used for data processing. When using any compression methods, the data obtained as a result of compression is formed randomly, and transmission over radio communication channels should be carried out evenly over time. This leads to the need to use special buffer storage devices. In addition, existing spacecraft radio telemetry systems require grouping of compressed data streams by certain characteristics. This leads to the need to sort compressed data by streams. Therefore, it is advisable to use associative buffer storage devices in such systems. This article is devoted to the analysis of the processes of formation of output streams of compressed data generated at the output of an associative storage device (ASD). Since the output stream of compressed data is random, queue theory and probability theory are used for analysis. At the same time, associative memory is represented as a queue system. Writing and reading in an ASD can be interpreted as servicing orders in a queue system. The purpose of the analysis is to determine the characteristics of an associative storage device (ASD). Such characteristics are the queue length M{N} in the ASD, the deviation of the queue length D{N} in the ASD and the probability pn of a given volume n of compressed data in the ASD (including the probability of emptying and the probability of memory overflow). The results obtained are of great practical importance, since they can be used to select the amount of memory of an associative storage device (ASD) when designing compression devices for telemetry systems of spacecraft.
{"title":"Determination of Characteristics of Associative Storage Devices in Radio Telemetry Systems with Data Compression","authors":"B. Yesmagambetov, Akhmetbek Mussabekov, N. Alymov, A. Apsemetov, M. Balabekova, K.G. Kayumov, Kuttybek Arystanbayev, A. Imanbayeva","doi":"10.3390/computation11060111","DOIUrl":"https://doi.org/10.3390/computation11060111","url":null,"abstract":"In the radio telemetry systems of spacecraft, various data compression methods are used for data processing. When using any compression methods, the data obtained as a result of compression is formed randomly, and transmission over radio communication channels should be carried out evenly over time. This leads to the need to use special buffer storage devices. In addition, existing spacecraft radio telemetry systems require grouping of compressed data streams by certain characteristics. This leads to the need to sort compressed data by streams. Therefore, it is advisable to use associative buffer storage devices in such systems. This article is devoted to the analysis of the processes of formation of output streams of compressed data generated at the output of an associative storage device (ASD). Since the output stream of compressed data is random, queue theory and probability theory are used for analysis. At the same time, associative memory is represented as a queue system. Writing and reading in an ASD can be interpreted as servicing orders in a queue system. The purpose of the analysis is to determine the characteristics of an associative storage device (ASD). Such characteristics are the queue length M{N} in the ASD, the deviation of the queue length D{N} in the ASD and the probability pn of a given volume n of compressed data in the ASD (including the probability of emptying and the probability of memory overflow). The results obtained are of great practical importance, since they can be used to select the amount of memory of an associative storage device (ASD) when designing compression devices for telemetry systems of spacecraft.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"21 1","pages":"111"},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76023623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-02DOI: 10.3390/computers12060116
V. Gezha, I. Kozitsin
The opinion dynamics literature argues that the way people perceive social influence depends not only on the opinions of interacting individuals, but also on the individuals’ non-opinion characteristics, such as age, education, gender, or place of residence. The current paper advances this line of research by studying longitudinal data that describe the opinion dynamics of a large sample (~30,000) of online social network users, all citizens of one city. Using these data, we systematically investigate the effects of users’ demographic (age, gender) and structural (degree centrality, the number of common friends) properties on opinion formation processes. We revealed that females are less easily influenced than males. Next, we found that individuals that are characterized by similar ages have more chances to reach a consensus. Additionally, we report that individuals who have many common peers find an agreement more often. We also demonstrated that the impacts of these effects are virtually the same, and despite being statistically significant, are far less strong than that of opinion-related features: knowing the current opinion of an individual and, what is even more important, the distance in opinions between this individual and the person that attempts to influence the individual is much more valuable. Next, after conducting a series of simulations with an agent-based model, we revealed that accounting for non-opinion characteristics may lead to not very sound but statistically significant changes in the macroscopic predictions of the populations of opinion camps, primarily among the agents with radical opinions (≈3% of all votes). In turn, predictions for the populations of neutral individuals are virtually the same. In addition, we demonstrated that the accumulative effect of non-opinion features on opinion dynamics is seriously moderated by whether the underlying social network correlates with the agents’ characteristics. After applying the procedure of random shuffling (in which the agents and their characteristics were randomly scattered over the network), the macroscopic predictions have changed by ≈9% of all votes. What is interesting is that the population of neutral agents was again not affected by this intervention.
{"title":"The Effects of Individuals' Opinion and Non-Opinion Characteristics on the Organization of Influence Networks in the Online Domain","authors":"V. Gezha, I. Kozitsin","doi":"10.3390/computers12060116","DOIUrl":"https://doi.org/10.3390/computers12060116","url":null,"abstract":"The opinion dynamics literature argues that the way people perceive social influence depends not only on the opinions of interacting individuals, but also on the individuals’ non-opinion characteristics, such as age, education, gender, or place of residence. The current paper advances this line of research by studying longitudinal data that describe the opinion dynamics of a large sample (~30,000) of online social network users, all citizens of one city. Using these data, we systematically investigate the effects of users’ demographic (age, gender) and structural (degree centrality, the number of common friends) properties on opinion formation processes. We revealed that females are less easily influenced than males. Next, we found that individuals that are characterized by similar ages have more chances to reach a consensus. Additionally, we report that individuals who have many common peers find an agreement more often. We also demonstrated that the impacts of these effects are virtually the same, and despite being statistically significant, are far less strong than that of opinion-related features: knowing the current opinion of an individual and, what is even more important, the distance in opinions between this individual and the person that attempts to influence the individual is much more valuable. Next, after conducting a series of simulations with an agent-based model, we revealed that accounting for non-opinion characteristics may lead to not very sound but statistically significant changes in the macroscopic predictions of the populations of opinion camps, primarily among the agents with radical opinions (≈3% of all votes). In turn, predictions for the populations of neutral individuals are virtually the same. In addition, we demonstrated that the accumulative effect of non-opinion features on opinion dynamics is seriously moderated by whether the underlying social network correlates with the agents’ characteristics. After applying the procedure of random shuffling (in which the agents and their characteristics were randomly scattered over the network), the macroscopic predictions have changed by ≈9% of all votes. What is interesting is that the population of neutral agents was again not affected by this intervention.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"30 1","pages":"116"},"PeriodicalIF":0.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83326854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}