首页 > 最新文献

Computer Graphics Forum最新文献

英文 中文
Herds From Video: Learning a Microscopic Herd Model From Macroscopic Motion Data 视频中的畜群:从宏观运动数据中学习微观畜群模型
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-09-05 DOI: 10.1111/cgf.70225
Xianjin Gong, James Gain, Damien Rohmer, Sixtine Lyonnet, Julien Pettré, Marie-Paule Cani

We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.

To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.

我们提出了一种基于真实动物的短视频剪辑自动调整微观牛群模型的畜群动画方法。我们的方法处理密集兽群的视频,其中单个动物的运动无法分离。我们的贡献是从这些视频片段中提取宏观群体行为的新框架,然后推导出最符合这种行为的微观主体参数。为了支持这一学习过程,我们扩展了标准的智能体模型,以提供领导者和追随者之间的分离,更好地匹配真实动物的遮挡和视野限制,支持可微参数优化并改进创作控制。我们通过表明,一旦优化,所得到的群体模型的社会力量和感知参数足够准确,可以预测视频中的后续帧,甚至对于未直接纳入优化过程的宏观属性也是如此。此外,通过调色板和区域绘制方法,提取的羊群特征可以应用于任何地形,从而概括出不同的羊群规模和领导者轨迹。这使得在新环境中创作群体动画,同时保留学习行为。
{"title":"Herds From Video: Learning a Microscopic Herd Model From Macroscopic Motion Data","authors":"Xianjin Gong,&nbsp;James Gain,&nbsp;Damien Rohmer,&nbsp;Sixtine Lyonnet,&nbsp;Julien Pettré,&nbsp;Marie-Paule Cani","doi":"10.1111/cgf.70225","DOIUrl":"https://doi.org/10.1111/cgf.70225","url":null,"abstract":"<p>We present a method for animating herds that automatically tunes a microscopic herd model based on a short video clip of real animals. Our method handles videos with dense herds, where individual animal motion cannot be separated out. Our contribution is a novel framework for extracting macroscopic herd behaviour from such video clips, and then deriving the microscopic agent parameters that best match this behaviour.</p><p>To support this learning process, we extend standard agent models to provide a separation between leaders and followers, better match the occlusion and field-of-view limitations of real animals, support differentiable parameter optimization and improve authoring control. We validate the method by showing that once optimized, the social force and perception parameters of the resulting herd model are accurate enough to predict subsequent frames in the video, even for macroscopic properties not directly incorporated in the optimization process. Furthermore, the extracted herding characteristics can be applied to any terrain with a palette and region-painting approach that generalizes to different herd sizes and leader trajectories. This enables the authoring of herd animations in new environments while preserving learned behaviour.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 6","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145135265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FRIDU: Functional Map Refinement with Guided Image Diffusion FRIDU:功能地图细化与引导图像扩散
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70203
Avigail Cohen Rimon, Mirela Ben-Chen, Or Litany

We propose a novel approach for refining a given correspondence map between two shapes. A correspondence map represented as a functional map, namely a change of basis matrix, can be additionally treated as a 2D image. With this perspective, we train an image diffusion model directly in the space of functional maps, enabling it to generate accurate maps conditioned on an inaccurate initial map. The training is done purely in the functional space, and thus is highly efficient. At inference time, we use the pointwise map corresponding to the current functional map as guidance during the diffusion process. The guidance can additionally encourage different functional map objectives, such as orthogonality and commutativity with the Laplace-Beltrami operator. We show that our approach is competitive with state-of-the-art methods of map refinement and that guided diffusion models provide a promising pathway to functional map processing.

我们提出了一种新的方法来精炼两个形状之间给定的对应映射。表示为函数映射的对应映射,即基的变换矩阵,可以另外作为二维图像处理。从这个角度来看,我们直接在功能地图的空间中训练图像扩散模型,使其能够在不准确的初始地图的条件下生成准确的地图。训练完全在函数空间中完成,因此效率很高。在推理时,我们在扩散过程中使用与当前功能图对应的点向图作为指导。该指南还可以鼓励不同的功能映射目标,例如与Laplace-Beltrami算子的正交性和交换性。我们表明,我们的方法与最先进的地图细化方法具有竞争力,并且引导扩散模型为功能地图处理提供了有希望的途径。
{"title":"FRIDU: Functional Map Refinement with Guided Image Diffusion","authors":"Avigail Cohen Rimon,&nbsp;Mirela Ben-Chen,&nbsp;Or Litany","doi":"10.1111/cgf.70203","DOIUrl":"https://doi.org/10.1111/cgf.70203","url":null,"abstract":"<p>We propose a novel approach for refining a given correspondence map between two shapes. A correspondence map represented as a <i>functional map</i>, namely a change of basis matrix, can be additionally treated as a 2D image. With this perspective, we train an <i>image diffusion model</i> directly in the space of functional maps, enabling it to generate accurate maps conditioned on an inaccurate initial map. The training is done purely in the functional space, and thus is highly efficient. At inference time, we use the pointwise map corresponding to the current functional map as <i>guidance</i> during the diffusion process. The guidance can additionally encourage different functional map objectives, such as orthogonality and commutativity with the Laplace-Beltrami operator. We show that our approach is competitive with state-of-the-art methods of map refinement and that guided diffusion models provide a promising pathway to functional map processing.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70203","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomizer: Beyond Non-Planar Slicing for Fused Filament Fabrication 雾化器:超越非平面切片用于熔丝制造
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70189
X. Chermain, G. Cocco, C. Zanni, E. Garner, P. A. Hugron, S. Lefebvre

Fused filament fabrication (FFF) enables users to quickly design and fabricate parts with unprecedented geometric complexity, fine-tuning both the structural and aesthetic properties of each object. Nevertheless, the full potential of this technology has yet to be realized, as current slicing methods fail to fully exploit the deposition freedom offered by modern 3D printers. In this work, we introduce a novel approach to toolpath generation that moves beyond the traditional layer-based concept. We use frames, referred to as atoms, as solid elements instead of slices. We optimize the distribution of atoms within the part volume to ensure even spacing and smooth orientation while accurately capturing the part's geometry. Although these atoms collectively represent the complete object, they do not inherently define a fabrication plan. To address this, we compute an extrusion toolpath as an ordered sequence of atoms that, when followed, provides a collision-free fabrication strategy. This general approach is robust, requires minimal user intervention compared to existing techniques, and integrates many of the best features into a unified framework: precise deposition conforming to non-planar surfaces, effective filling of narrow features – down to a single path – and the capability to locally print vertical structures before transitioning elsewhere. Additionally, it enables entirely new capabilities, such as anisotropic appearance fabrication on curved surfaces.

熔丝制造(FFF)使用户能够快速设计和制造具有前所未有的几何复杂性的零件,微调每个物体的结构和美学特性。然而,这项技术的全部潜力尚未实现,因为目前的切片方法未能充分利用现代3D打印机提供的沉积自由。在这项工作中,我们介绍了一种新的工具路径生成方法,它超越了传统的基于层的概念。我们使用被称为原子的框架作为实体元素,而不是切片。我们优化了零件体积内原子的分布,以确保均匀的间距和平滑的方向,同时准确地捕捉零件的几何形状。虽然这些原子共同代表了完整的物体,但它们本身并不能定义一个制造计划。为了解决这个问题,我们将挤出刀具路径计算为有序的原子序列,当遵循该序列时,将提供无碰撞的制造策略。与现有技术相比,这种通用方法是强大的,需要最少的用户干预,并将许多最佳特征集成到一个统一的框架中:符合非平面表面的精确沉积,有效填充狭窄的特征-直到单一路径-以及在过渡到其他地方之前本地打印垂直结构的能力。此外,它还实现了全新的功能,例如曲面上的各向异性外观制造。
{"title":"Atomizer: Beyond Non-Planar Slicing for Fused Filament Fabrication","authors":"X. Chermain,&nbsp;G. Cocco,&nbsp;C. Zanni,&nbsp;E. Garner,&nbsp;P. A. Hugron,&nbsp;S. Lefebvre","doi":"10.1111/cgf.70189","DOIUrl":"https://doi.org/10.1111/cgf.70189","url":null,"abstract":"<p>Fused filament fabrication (FFF) enables users to quickly design and fabricate parts with unprecedented geometric complexity, fine-tuning both the structural and aesthetic properties of each object. Nevertheless, the full potential of this technology has yet to be realized, as current slicing methods fail to fully exploit the deposition freedom offered by modern 3D printers. In this work, we introduce a novel approach to toolpath generation that moves beyond the traditional layer-based concept. We use frames, referred to as <i>atoms</i>, as solid elements instead of slices. We optimize the distribution of atoms within the part volume to ensure even spacing and smooth orientation while accurately capturing the part's geometry. Although these atoms collectively represent the complete object, they do not inherently define a fabrication plan. To address this, we compute an extrusion toolpath as an ordered sequence of atoms that, when followed, provides a collision-free fabrication strategy. This general approach is robust, requires minimal user intervention compared to existing techniques, and integrates many of the best features into a unified framework: precise deposition conforming to non-planar surfaces, effective filling of narrow features – down to a single path – and the capability to locally print vertical structures before transitioning elsewhere. Additionally, it enables entirely new capabilities, such as anisotropic appearance fabrication on curved surfaces.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144915218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling Quadric Error Simplification with Line Quadrics 用线二次曲线控制二次误差简化
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70184
Hsueh-Ti Derek Liu, Mehdi Rahimzadeh, Victor Zordan

This work presents a method to control the output of mesh simplification algorithms based on iterative edge collapses. Traditional mesh simplification focuses on preserving the visual appearance. Despite still being an important criterion, other geometric properties also play critical roles in different applications, such as triangle quality for computations. This motivates our work to stay under the umbrella of the popular quadric error mesh simplification, while proposing different ways to control the simplified mesh to possess other geometric properties. The key ingredient of our work is another quadric error, called line quadrics, which can be seamlessly added to the vanilla quadric error metric. We show that, theoretically and empirically, adding our line quadrics can improve the numerics and encourage the simplified mesh to have uniformly distributed vertices. If we spread the line quadric adaptively to different regions, it can easily lead to soft preservation of feature vertices and edges. Our method is simple to implement, requiring only a few lines of code change on top of the original quadric error simplification, and can lead to a variety of user controls.

本文提出了一种基于迭代边缘折叠的网格简化算法输出控制方法。传统的网格简化侧重于保留视觉外观。尽管仍然是一个重要的标准,但其他几何性质在不同的应用中也起着关键作用,例如计算的三角形质量。这促使我们的工作留在流行的二次误差网格简化的保护伞下,同时提出不同的方法来控制简化的网格具有其他几何属性。我们工作的关键成分是另一种二次误差,称为线二次误差,它可以无缝地添加到普通的二次误差度量中。我们从理论上和经验上证明,添加我们的线二次曲面可以提高数值,并鼓励简化的网格具有均匀分布的顶点。如果将线二次曲线自适应地扩展到不同的区域,很容易导致特征顶点和边缘的软保存。我们的方法很容易实现,只需要在原始的二次误差简化的基础上修改几行代码,并且可以导致各种用户控件。
{"title":"Controlling Quadric Error Simplification with Line Quadrics","authors":"Hsueh-Ti Derek Liu,&nbsp;Mehdi Rahimzadeh,&nbsp;Victor Zordan","doi":"10.1111/cgf.70184","DOIUrl":"https://doi.org/10.1111/cgf.70184","url":null,"abstract":"<p>This work presents a method to control the output of mesh simplification algorithms based on iterative edge collapses. Traditional mesh simplification focuses on preserving the visual appearance. Despite still being an important criterion, other geometric properties also play critical roles in different applications, such as triangle quality for computations. This motivates our work to stay under the umbrella of the popular quadric error mesh simplification, while proposing different ways to control the simplified mesh to possess other geometric properties. The key ingredient of our work is another quadric error, called <i>line quadrics</i>, which can be seamlessly added to the vanilla quadric error metric. We show that, theoretically and empirically, adding our line quadrics can improve the numerics and encourage the simplified mesh to have uniformly distributed vertices. If we spread the line quadric adaptively to different regions, it can easily lead to soft preservation of feature vertices and edges. Our method is simple to implement, requiring only a few lines of code change on top of the original quadric error simplification, and can lead to a variety of user controls.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144915222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform Sampling of Surfaces by Casting Rays 通过投射射线对表面进行均匀取样
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70202
Selena Ling, Abhishek Madan, Nicholas Sharp, Alec Jacobson

Randomly sampling points on surfaces is an essential operation in geometry processing. This sampling is computationally straightforward on explicit meshes, but it is much more difficult on other shape representations, such as widely-used implicit surfaces. This work studies a simple and general scheme for sampling points on a surface, which is derived from a connection to the intersections of random rays with the surface. Concretely, given a subroutine to cast a ray against a surface and find all intersections, we can use that subroutine to uniformly sample white noise points on the surface. This approach is particularly effective in the context of implicit signed distance functions, where sphere marching allows us to efficiently cast rays and sample points, without needing to extract an intermediate mesh. We analyze the basic method to show that it guarantees uniformity, and find experimentally that it is significantly more efficient than alternative strategies on a variety of representations. Furthermore, we show extensions to blue noise sampling and stratified sampling, and applications to deform neural implicit surfaces as well as moment estimation.

曲面上的随机点采样是几何处理中的一项重要操作。这种采样在显式网格上计算简单,但在其他形状表示(如广泛使用的隐式表面)上则困难得多。本文研究了一种简单而通用的曲面采样点方案,该方案由随机射线与曲面的交点连接而来。具体地说,给定一个子程序将光线投射到一个表面上并找到所有的交点,我们可以使用该子程序对表面上的白噪声点进行均匀采样。这种方法在隐式符号距离函数中特别有效,其中球体移动允许我们有效地投射光线和采样点,而无需提取中间网格。我们分析了基本方法,表明它保证了一致性,并通过实验发现,在各种表示上,它明显比备选策略更有效。此外,我们展示了蓝噪声采样和分层采样的扩展,以及变形神经隐式曲面和矩估计的应用。
{"title":"Uniform Sampling of Surfaces by Casting Rays","authors":"Selena Ling,&nbsp;Abhishek Madan,&nbsp;Nicholas Sharp,&nbsp;Alec Jacobson","doi":"10.1111/cgf.70202","DOIUrl":"https://doi.org/10.1111/cgf.70202","url":null,"abstract":"<p>Randomly sampling points on surfaces is an essential operation in geometry processing. This sampling is computationally straightforward on explicit meshes, but it is much more difficult on other shape representations, such as widely-used implicit surfaces. This work studies a simple and general scheme for sampling points on a surface, which is derived from a connection to the intersections of random rays with the surface. Concretely, given a subroutine to cast a ray against a surface and find all intersections, we can use that subroutine to uniformly sample white noise points on the surface. This approach is particularly effective in the context of implicit signed distance functions, where sphere marching allows us to efficiently cast rays and sample points, without needing to extract an intermediate mesh. We analyze the basic method to show that it guarantees uniformity, and find experimentally that it is significantly more efficient than alternative strategies on a variety of representations. Furthermore, we show extensions to blue noise sampling and stratified sampling, and applications to deform neural implicit surfaces as well as moment estimation.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70202","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GreenCloud: Volumetric Gradient Filtering via Regularized Green's Functions GreenCloud:基于正则化格林函数的体积梯度滤波
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70207
Kenji Tojo, Nobuyuki Umetani

Gradient-based optimization is a fundamental tool in geometry processing, but it is often hampered by geometric distortion arising from noisy or sparse gradients. Existing methods mitigate these issues by filtering (i.e., diffusing) gradients over a surface mesh, but they require explicit mesh connectivity and solving large linear systems, making them unsuitable for point-based representation. In this work, we introduce a gradient filtering method tailored for point-based geometry. Our method bypasses explicit connectivity by leveraging regularized Green's functions to directly compute the filtered gradient field from discrete spatial points. Additionally, our approach incorporates elastic deformation based on Green's function of linear elasticity (known as Kelvinlets), reproducing various elastic behaviors such as smoothness and volume preservation while improving robustness in affine transformations. We further accelerate computation using a hierarchical Barnes–Hut style approximation, enabling scalable optimization of one million points. Our method significantly improves convergence across a wide range of applications, including reconstruction, editing, stylization, and simplified optimization experiments with Gaussian splatting.

基于梯度的优化是几何处理中的一种基本工具,但由于梯度噪声或稀疏导致的几何畸变往往阻碍了算法的优化。现有的方法通过过滤(即扩散)表面网格上的梯度来缓解这些问题,但它们需要明确的网格连接和求解大型线性系统,这使得它们不适合基于点的表示。在这项工作中,我们引入了一种适合点几何的梯度滤波方法。我们的方法通过利用正则化格林函数直接从离散空间点计算过滤后的梯度场,从而绕过显式连通性。此外,我们的方法结合了基于格林线性弹性函数(称为Kelvinlets)的弹性变形,再现了各种弹性行为,如平滑和体积保存,同时提高了仿射变换的鲁棒性。我们使用分级Barnes-Hut风格的近似进一步加速计算,实现一百万点的可扩展优化。我们的方法显著提高了广泛应用的收敛性,包括高斯飞溅的重建、编辑、风格化和简化的优化实验。
{"title":"GreenCloud: Volumetric Gradient Filtering via Regularized Green's Functions","authors":"Kenji Tojo,&nbsp;Nobuyuki Umetani","doi":"10.1111/cgf.70207","DOIUrl":"https://doi.org/10.1111/cgf.70207","url":null,"abstract":"<p>Gradient-based optimization is a fundamental tool in geometry processing, but it is often hampered by geometric distortion arising from noisy or sparse gradients. Existing methods mitigate these issues by filtering (i.e., diffusing) gradients over a surface mesh, but they require explicit mesh connectivity and solving large linear systems, making them unsuitable for point-based representation. In this work, we introduce a gradient filtering method tailored for point-based geometry. Our method bypasses explicit connectivity by leveraging regularized Green's functions to directly compute the filtered gradient field from discrete spatial points. Additionally, our approach incorporates elastic deformation based on Green's function of linear elasticity (known as Kelvinlets), reproducing various elastic behaviors such as smoothness and volume preservation while improving robustness in affine transformations. We further accelerate computation using a hierarchical Barnes–Hut style approximation, enabling scalable optimization of one million points. Our method significantly improves convergence across a wide range of applications, including reconstruction, editing, stylization, and simplified optimization experiments with Gaussian splatting.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Matter 前页
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70200
<p>Bilbao, Spain</p><p>July 2 – 4, 2025</p><p><b>Conference Co-Chairs</b></p><p>Michael Barton, BCAM</p><p>Leif Kobbelt, RWTH Aachen University</p><p><b>Technical Program Co-Chairs</b></p><p>Marco Attene, CNR</p><p>Silvia Sellán, Columbia University</p><p><b>Graduate School Co-Chairs</b></p><p>Michal Bizzarri, University of West Bohemia Jing Ren, ETH Zurich</p><p><b>Steering Committee</b></p><p>Leif Kobbelt, RWTH Aachen University, DE</p><p>Marc Alexa, Technische Universität Berlin, DE</p><p>Pierre Alliez, INRIA, FR</p><p>Mirela Ben-Chen, Technion-IIT, IL</p><p>Hui Huang, Shenzhen University, CN</p><p>Niloy Mitra, University College London, GB</p><p>Daniele Panozzo, New York University, US</p><p><b>Alexa, Marc</b></p><p>TU Berlin, DE</p><p><b>Alliez, Pierre</b></p><p>Inria, FR</p><p><b>Babaei, Vahid</b></p><p>MPI, DE</p><p><b>Barton, Michael</b></p><p>BCAM, ES</p><p><b>Bo, Pengbo</b></p><p>Harbin Institute of Technology, CN</p><p><b>Bærentzen, Jakob Andreas</b></p><p>TU Denmark, DK</p><p><b>Belyaev, Alexander</b></p><p>Heriot-Watt University, GB</p><p><b>Ben-Chen, Mirela</b></p><p>Technion - IIT, IL</p><p><b>Benes, Bedrich</b></p><p>Purdue University, US</p><p><b>Bommes, David</b></p><p>University of Bern, CH</p><p><b>Bonnel, Nicolas</b></p><p>CNRS / University Lyon, FR</p><p><b>Botsch, Mario</b></p><p>TU Dortmund, DE</p><p><b>Boubekeur, Tamy</b></p><p>Adobe Research, FR</p><p><b>Campen, Marcel</b></p><p>Universität Osnabrück, DE</p><p><b>Castellani, Umberto</b></p><p>University of Verona, IT</p><p><b>Chaine, Raphaelle</b></p><p>LIRIS - CNRS, FR</p><p><b>Cignoni, Paolo</b></p><p>ISTI - CNR, IT</p><p><b>Cordonnier, Guillaume</b></p><p>INRIA, FR</p><p><b>Chen, Zhonggui</b></p><p>Xiamen University, CN</p><p><b>Chen, Renjie</b></p><p>University of Science and Technology, CN</p><p><b>Chenxi, Liu</b></p><p>University of Toronto, CA</p><p><b>Chien, Edward</b></p><p>Boston University, US</p><p><b>Digne, Julie</b></p><p>LIRIS - CNRS, FR</p><p><b>Faraj, Noura</b></p><p>Université de Montpellier - LIRMM, FR</p><p><b>Ferguson, Zachary</b></p><p>CLO Virtual Fashion, US</p><p><b>Fu, Xiao-Ming</b></p><p>USTC, CN</p><p><b>Gao, Xifeng</b></p><p>Tencent America, US</p><p><b>Gingold, Yotam</b></p><p>George Mason University, US</p><p><b>Gillespie, Mark</b></p><p>Inria, FR</p><p><b>Giorgi, Daniela</b></p><p>National Research Council of Italy, IT</p><p><b>Guerrero, Paul</b></p><p>Adobe, GB</p><p><b>Hildebrandt, Klaus</b></p><p>TU Delft, NL</p><p><b>Hanocka, Rana</b></p><p>University of Chicago, US</p><p><b>Herholz, Philipp</b></p><p>ETH Zurich, CH</p><p><b>Hormann, Kai</b></p><p>Università della Svizzera italiana, CH</p><p><b>Huang, Jin</b></p><p>Zhejiang University, CN</p><p><b>Huang, Qixing</b></p><p>University of Texas, US</p><p><b>Jacobson, Alec</b></p><p>University of Toronto, CA</p><p><b>Ju, Tao</b></p><p>Washington University in St. Louis, US</p><p><b>Kazhdan, Misha</b></p><p>Johns Hopkins University, US</p><p><b>Keyser, John</b></p><p>Texas A&M University,
2025年7月2日至4日,西班牙毕尔巴巴会议联合主席michael Barton, BCAMLeif Kobbelt,亚琛工业大学技术项目联合主席marco Attene, CNRSilvia Sellán,哥伦比亚大学研究生院联合主席smichal Bizzarri,西波西米亚大学任静,苏黎世联邦理工学院指导委员会eleif Kobbelt,亚琛工业大学,DEMarc Alexa, Technische Universität柏林,DEPierre Alliez, INRIA, FRMirela Ben-Chen, Technion-IIT, ILHui Huang,深圳大学,CNNiloy Mitra,伦敦大学学院,GBDaniele Panozzo,纽约大学,USAlexa, MarcTU柏林,DEAlliez, PierreInria, FRBabaei, VahidMPI, DEBarton, MichaelBCAM, ESBo, pengbo哈尔滨工业大学,cnb rentzen, Jakob andreu丹麦,DKBelyaev,亚历山大赫瑞-瓦特大学,GBBen-Chen, MirelaTechnion - IIT, ILBenes, BedrichPurdue大学,USBommes, DavidUniversity of Bern, CHBonnel, NicolasCNRS /里昂大学,FRBotsch, MarioTU多特蒙德,DEBoubekeur, TamyAdobe Research, FRCampen,MarcelUniversität osnabr ck, DECastellani, umbertuniversity of Verona, ITChaine, RaphaelleLIRIS - CNRS, FRCignoni, PaoloISTI - CNR, ITCordonnier, GuillaumeINRIA, FRChen,中贵厦门大学,CNChen,任杰科技大学,CNChenxi,多伦多刘大学,CAChien, EdwardBoston University, USDigne, JulieLIRIS - CNRS, FRFaraj, nourauniversitde Montpellier - limrm, FRFerguson, ZacharyCLO Virtual Fashion, USFu, xiamingingustc, CNGao, xiongtencent America, USGingold,乔治·梅森大学、USGillespie、MarkInria、FRGiorgi、danieli意大利国家研究委员会、ITGuerrero、PaulAdobe、GBHildebrandt、KlausTU Delft、NLHanocka、rana芝加哥大学、USHerholz、PhilippETH苏黎世、CHHormann、kaiuniversitdella Svizzera italiana、CHHuang、JinZhejiang University、CNHuang、QixingUniversity of Texas、美国jacobson、alectoronto大学、CAJu、taowington University in St. Louis、USKazhdan、MishaJohns Hopkins University、USKeyser、约翰德州农工大学,USKim, VladimirAdobe, USKobbelt, LeifRWTH亚琛大学,DEKosinka,格罗宁根大学,NLLai,于昆卡迪夫大学,GBLang,意大利芝加哥大学,USLefebvre, SylvainINRIA, FRLi,慕尼黑工业大学,DELim, IsaakRWTH亚琛大学,DELiu,杨微软亚洲研究院,CNLivesu, MarcoIMATI - CNR, ITMa,瑞金大学,CNMahmoud, ahmeducasdavis, USMalomo, LuigiISTI - CNR, ITMellado, NicolasCNRS - IRIT,FRMelzi, simone米兰-比可卡大学,ITPan,清华大学,CNPanetta, julian加州大学戴维斯分校,USPatane, GiuseppeCNR-IMATI, ITPreiner, reinholtu Graz, ATPoranne, roihaifa大学,ILPuppo, enrici热那亚大学,ITRen,苏黎世JingETH, CHYingying, RenIST Austria, ATRumpf, MartinBonn大学,DESacht, LeonardoUniv。联邦圣卡塔琳娜、BRSawhney、RohanNvidia、USSchaefer、ScottTexas a&m大学、USSchneider、tesevictoria大学、CASchröder、PeterCaltech、USSharp、NicholasNvidia、USShiqing、新山东大学、CNSkouras、MelinaINRIA、FRSmirnov、DmitriyNetflix、USSolomon、JustinMIT、ussorkin - hornung、OlgaETH Zurich、CHStein、OdedMIT、USTakayama、KenshiCyberAgent、JPThiery、Jean-MarcAdobe research、FRVaxman、amiredinburgh大学、GBWang、pengshuaitu Graz、ATWang、charles University of Manchester, GBWeber, ofirbar - lan University, ILWiersma, RubenETH Zurich, CHWu, kuillightspeed Studios, USXu,国防科技大学,CNYang, yongliang巴斯大学,GBZhang, EugeneOregon State University, USZhao, haissen山东大学,CNZhou, qingnanadobresearch, USZint, DanielNew York University,美国
{"title":"Front Matter","authors":"","doi":"10.1111/cgf.70200","DOIUrl":"https://doi.org/10.1111/cgf.70200","url":null,"abstract":"&lt;p&gt;Bilbao, Spain&lt;/p&gt;&lt;p&gt;July 2 – 4, 2025&lt;/p&gt;&lt;p&gt;&lt;b&gt;Conference Co-Chairs&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Michael Barton, BCAM&lt;/p&gt;&lt;p&gt;Leif Kobbelt, RWTH Aachen University&lt;/p&gt;&lt;p&gt;&lt;b&gt;Technical Program Co-Chairs&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Marco Attene, CNR&lt;/p&gt;&lt;p&gt;Silvia Sellán, Columbia University&lt;/p&gt;&lt;p&gt;&lt;b&gt;Graduate School Co-Chairs&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Michal Bizzarri, University of West Bohemia Jing Ren, ETH Zurich&lt;/p&gt;&lt;p&gt;&lt;b&gt;Steering Committee&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Leif Kobbelt, RWTH Aachen University, DE&lt;/p&gt;&lt;p&gt;Marc Alexa, Technische Universität Berlin, DE&lt;/p&gt;&lt;p&gt;Pierre Alliez, INRIA, FR&lt;/p&gt;&lt;p&gt;Mirela Ben-Chen, Technion-IIT, IL&lt;/p&gt;&lt;p&gt;Hui Huang, Shenzhen University, CN&lt;/p&gt;&lt;p&gt;Niloy Mitra, University College London, GB&lt;/p&gt;&lt;p&gt;Daniele Panozzo, New York University, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Alexa, Marc&lt;/b&gt;&lt;/p&gt;&lt;p&gt;TU Berlin, DE&lt;/p&gt;&lt;p&gt;&lt;b&gt;Alliez, Pierre&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Inria, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Babaei, Vahid&lt;/b&gt;&lt;/p&gt;&lt;p&gt;MPI, DE&lt;/p&gt;&lt;p&gt;&lt;b&gt;Barton, Michael&lt;/b&gt;&lt;/p&gt;&lt;p&gt;BCAM, ES&lt;/p&gt;&lt;p&gt;&lt;b&gt;Bo, Pengbo&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Harbin Institute of Technology, CN&lt;/p&gt;&lt;p&gt;&lt;b&gt;Bærentzen, Jakob Andreas&lt;/b&gt;&lt;/p&gt;&lt;p&gt;TU Denmark, DK&lt;/p&gt;&lt;p&gt;&lt;b&gt;Belyaev, Alexander&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Heriot-Watt University, GB&lt;/p&gt;&lt;p&gt;&lt;b&gt;Ben-Chen, Mirela&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Technion - IIT, IL&lt;/p&gt;&lt;p&gt;&lt;b&gt;Benes, Bedrich&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Purdue University, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Bommes, David&lt;/b&gt;&lt;/p&gt;&lt;p&gt;University of Bern, CH&lt;/p&gt;&lt;p&gt;&lt;b&gt;Bonnel, Nicolas&lt;/b&gt;&lt;/p&gt;&lt;p&gt;CNRS / University Lyon, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Botsch, Mario&lt;/b&gt;&lt;/p&gt;&lt;p&gt;TU Dortmund, DE&lt;/p&gt;&lt;p&gt;&lt;b&gt;Boubekeur, Tamy&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Adobe Research, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Campen, Marcel&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Universität Osnabrück, DE&lt;/p&gt;&lt;p&gt;&lt;b&gt;Castellani, Umberto&lt;/b&gt;&lt;/p&gt;&lt;p&gt;University of Verona, IT&lt;/p&gt;&lt;p&gt;&lt;b&gt;Chaine, Raphaelle&lt;/b&gt;&lt;/p&gt;&lt;p&gt;LIRIS - CNRS, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Cignoni, Paolo&lt;/b&gt;&lt;/p&gt;&lt;p&gt;ISTI - CNR, IT&lt;/p&gt;&lt;p&gt;&lt;b&gt;Cordonnier, Guillaume&lt;/b&gt;&lt;/p&gt;&lt;p&gt;INRIA, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Chen, Zhonggui&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Xiamen University, CN&lt;/p&gt;&lt;p&gt;&lt;b&gt;Chen, Renjie&lt;/b&gt;&lt;/p&gt;&lt;p&gt;University of Science and Technology, CN&lt;/p&gt;&lt;p&gt;&lt;b&gt;Chenxi, Liu&lt;/b&gt;&lt;/p&gt;&lt;p&gt;University of Toronto, CA&lt;/p&gt;&lt;p&gt;&lt;b&gt;Chien, Edward&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Boston University, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Digne, Julie&lt;/b&gt;&lt;/p&gt;&lt;p&gt;LIRIS - CNRS, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Faraj, Noura&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Université de Montpellier - LIRMM, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Ferguson, Zachary&lt;/b&gt;&lt;/p&gt;&lt;p&gt;CLO Virtual Fashion, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Fu, Xiao-Ming&lt;/b&gt;&lt;/p&gt;&lt;p&gt;USTC, CN&lt;/p&gt;&lt;p&gt;&lt;b&gt;Gao, Xifeng&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Tencent America, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Gingold, Yotam&lt;/b&gt;&lt;/p&gt;&lt;p&gt;George Mason University, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Gillespie, Mark&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Inria, FR&lt;/p&gt;&lt;p&gt;&lt;b&gt;Giorgi, Daniela&lt;/b&gt;&lt;/p&gt;&lt;p&gt;National Research Council of Italy, IT&lt;/p&gt;&lt;p&gt;&lt;b&gt;Guerrero, Paul&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Adobe, GB&lt;/p&gt;&lt;p&gt;&lt;b&gt;Hildebrandt, Klaus&lt;/b&gt;&lt;/p&gt;&lt;p&gt;TU Delft, NL&lt;/p&gt;&lt;p&gt;&lt;b&gt;Hanocka, Rana&lt;/b&gt;&lt;/p&gt;&lt;p&gt;University of Chicago, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Herholz, Philipp&lt;/b&gt;&lt;/p&gt;&lt;p&gt;ETH Zurich, CH&lt;/p&gt;&lt;p&gt;&lt;b&gt;Hormann, Kai&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Università della Svizzera italiana, CH&lt;/p&gt;&lt;p&gt;&lt;b&gt;Huang, Jin&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Zhejiang University, CN&lt;/p&gt;&lt;p&gt;&lt;b&gt;Huang, Qixing&lt;/b&gt;&lt;/p&gt;&lt;p&gt;University of Texas, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Jacobson, Alec&lt;/b&gt;&lt;/p&gt;&lt;p&gt;University of Toronto, CA&lt;/p&gt;&lt;p&gt;&lt;b&gt;Ju, Tao&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Washington University in St. Louis, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Kazhdan, Misha&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Johns Hopkins University, US&lt;/p&gt;&lt;p&gt;&lt;b&gt;Keyser, John&lt;/b&gt;&lt;/p&gt;&lt;p&gt;Texas A&amp;M University,","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":"i-xii"},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70200","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144915122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MatAIRials: Isotropic Inflatable Metamaterials for Freeform Surface Design 材料:用于自由曲面设计的各向同性充气超材料
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70190
Siyuan He, Meng-Jan Wu, Arthur Lebée, Mélina Skouras

Inflatable pads, such as those used as mattresses or protective equipment, are structures made of two planar membranes sealed according to periodic patterns, typically parallel lines or dots. In this work, we propose to treat these inflatables as metamaterials.

By considering novel sealing patterns with 6-fold symmetry, we are able to generate a family of inflatable materials whose macroscale contraction is isotropic and can be modulated by controlling the parameters of the seals. We leverage this property of our inflatable materials family to propose a simple and effective algorithm based on conformal mapping that allows us to design the layout of inflatable structures that can be fabricated flat and whose inflated shapes approximate those of given target freeform surfaces.

充气垫,比如那些用作床垫或防护设备的,是由两个平面膜组成的结构,按照周期性的模式密封,通常是平行线或点。在这项工作中,我们建议将这些可膨胀物视为超材料。通过考虑具有6重对称的新型密封模式,我们能够生成一系列可膨胀材料,其宏观尺度收缩是各向同性的,并且可以通过控制密封参数来调节。我们利用充气材料家族的这一特性,提出了一种基于保角映射的简单有效的算法,该算法允许我们设计可平面制造的充气结构的布局,其充气形状近似于给定目标自由曲面的形状。
{"title":"MatAIRials: Isotropic Inflatable Metamaterials for Freeform Surface Design","authors":"Siyuan He,&nbsp;Meng-Jan Wu,&nbsp;Arthur Lebée,&nbsp;Mélina Skouras","doi":"10.1111/cgf.70190","DOIUrl":"https://doi.org/10.1111/cgf.70190","url":null,"abstract":"<p>Inflatable pads, such as those used as mattresses or protective equipment, are structures made of two planar membranes sealed according to periodic patterns, typically parallel lines or dots. In this work, we propose to treat these inflatables as <i>metamaterials</i>.</p><p>By considering novel sealing patterns with 6-fold symmetry, we are able to generate a family of inflatable materials whose macroscale contraction is <i>isotropic</i> and can be modulated by controlling the parameters of the seals. We leverage this property of our inflatable materials family to propose a simple and effective algorithm based on conformal mapping that allows us to design the layout of inflatable structures that can be fabricated flat and whose inflated shapes approximate those of given target freeform surfaces.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144915176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shape Approximation by Surface Reuse 曲面重用的形状逼近
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70204
Berend Baas, David Bommes, Adrien Bousseau

The manufacturing industry faces an urgent need to transition from the linear “make-take-use-dispose” production model towards more sustainable circular models that retain resources in the production chain. Motivated by this need, we introduce the new problem of approximating 3D surfaces by reusing panels from other surfaces. We present an algorithm that takes as input one or several existing shapes and relies on partial shape registration to identify a small set of simple panels that, once cut from the existing shapes and transformed rigidly, approximate a target shape within a user-defined distance threshold. As a proof of concept, we demonstrate our algorithm in the context of rapid prototyping, where we harvest curved panels from plastic bottles and assemble them with custom connectors to fabricate medium-size freeform structures.

制造业迫切需要从线性的“制造-使用-处理”生产模式过渡到更可持续的循环模式,将资源保留在生产链中。在这种需求的激励下,我们引入了通过重用其他表面的面板来近似3D表面的新问题。我们提出了一种算法,该算法将一个或多个现有形状作为输入,并依赖于部分形状配准来识别一小组简单面板,这些面板一旦从现有形状中切割并严格转换,就可以在用户定义的距离阈值内近似目标形状。作为概念验证,我们在快速原型的背景下展示了我们的算法,我们从塑料瓶中收集弯曲的面板,并将它们与定制连接器组装在一起,以制造中等尺寸的自由形状结构。
{"title":"Shape Approximation by Surface Reuse","authors":"Berend Baas,&nbsp;David Bommes,&nbsp;Adrien Bousseau","doi":"10.1111/cgf.70204","DOIUrl":"https://doi.org/10.1111/cgf.70204","url":null,"abstract":"<p>The manufacturing industry faces an urgent need to transition from the linear “make-take-use-dispose” production model towards more sustainable circular models that retain resources in the production chain. Motivated by this need, we introduce the new problem of approximating 3D surfaces by reusing panels from other surfaces. We present an algorithm that takes as input one or several existing shapes and relies on partial shape registration to identify a small set of simple panels that, once cut from the existing shapes and transformed rigidly, approximate a target shape within a user-defined distance threshold. As a proof of concept, we demonstrate our algorithm in the context of rapid prototyping, where we harvest curved panels from plastic bottles and assemble them with custom connectors to fabricate medium-size freeform structures.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144915219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Im2SurfTex: Surface Texture Generation via Neural Backprojection of Multi-View Images Im2SurfTex:通过多视图图像的神经反向投影生成表面纹理
IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2025-08-28 DOI: 10.1111/cgf.70191
Yiangos Georgiou, Marios Loizou, Melinos Averkiou, Evangelos Kalogerakis

We present Im2SurfTex, a method that generates textures for input 3D shapes by learning to aggregate multi-view image outputs produced by 2D image diffusion models onto the shapes' texture space. Unlike existing texture generation techniques that use ad hoc backprojection and averaging schemes to blend multiview images into textures, often resulting in texture seams and artifacts, our approach employs a trained neural module to boost texture coherency. The key ingredient of our module is to leverage neural attention and appropriate positional encodings of image pixels based on their corresponding 3D point positions, normals, and surface-aware coordinates as encoded in geodesic distances within surface patches. These encodings capture texture correlations between neighboring surface points, ensuring better texture continuity. Experimental results show that our module improves texture quality, achieving superior performance in high-resolution texture generation.

我们提出了Im2SurfTex,一种通过学习将2D图像扩散模型产生的多视图图像输出聚合到形状的纹理空间上,为输入的3D形状生成纹理的方法。与现有的纹理生成技术不同,这些技术使用特别的反向投影和平均方案将多视图图像混合到纹理中,通常会导致纹理接缝和伪影,我们的方法采用训练有素的神经模块来提高纹理一致性。我们模块的关键成分是利用神经注意力和图像像素的适当位置编码,基于它们对应的3D点位置、法线和表面感知坐标,编码在表面补丁内的测地线距离中。这些编码捕获相邻表面点之间的纹理相关性,确保更好的纹理连续性。实验结果表明,该模块提高了纹理质量,在高分辨率纹理生成中取得了优异的性能。
{"title":"Im2SurfTex: Surface Texture Generation via Neural Backprojection of Multi-View Images","authors":"Yiangos Georgiou,&nbsp;Marios Loizou,&nbsp;Melinos Averkiou,&nbsp;Evangelos Kalogerakis","doi":"10.1111/cgf.70191","DOIUrl":"https://doi.org/10.1111/cgf.70191","url":null,"abstract":"<p>We present Im2SurfTex, a method that generates textures for input 3D shapes by learning to aggregate multi-view image outputs produced by 2D image diffusion models onto the shapes' texture space. Unlike existing texture generation techniques that use ad hoc backprojection and averaging schemes to blend multiview images into textures, often resulting in texture seams and artifacts, our approach employs a trained neural module to boost texture coherency. The key ingredient of our module is to leverage neural attention and appropriate positional encodings of image pixels based on their corresponding 3D point positions, normals, and surface-aware coordinates as encoded in geodesic distances within surface patches. These encodings capture texture correlations between neighboring surface points, ensuring better texture continuity. Experimental results show that our module improves texture quality, achieving superior performance in high-resolution texture generation.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144914964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computer Graphics Forum
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1