首页 > 最新文献

Acta Physiologica最新文献

英文 中文
Lack of Synaptic Adhesion Proteins Makes Zebrafish More Anxious and Less Aggressive 缺乏突触粘附蛋白会使斑马鱼更焦虑,攻击性更低
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-30 DOI: 10.1111/apha.70065
Maja R. Adel, Florian Freudenberg
<p>In this issue of <i>Acta Physiologica</i>, Tatzl et al. [<span>1</span>] investigate the relevance of the <i>leucine-rich repeat transmembrane protein 4 like 1</i> (<i>lrrtm4l1</i>) gene, a zebrafish orthologue of the human <i>LRRTM4</i>, on behavioral, transcriptomic, and metabolomic readouts in mixed sex adult zebrafish (summarized in Figure 1). <i>LRRTM4</i> is one of four members of the <i>LRRTM</i> gene family, which code for synaptic cell adhesion molecules that promote excitatory synapse development, including synaptic insertion and stabilization of AMPA receptors. <i>LRRTM4</i> is associated with neurodevelopmental disorders, including autism spectrum disorder (ASD) and attempted suicide [<span>2</span>].</p><p>Using RNASeq, the authors identified 126 differentially expressed genes in the telencephalon of <i>lrrtm4l1</i> knockout (<i>lrrtm4l1</i><sup><i>−/−</i></sup>) fish. Among these, they highlight the upregulation of <i>rimkla</i> and <i>arhgap12</i>. The <i>rimkla</i> gene is linked to cognition and memory consolidation [<span>3</span>]. The mammalian orthologue of the <i>arhgap12b</i> gene (i.e., <i>ARHGAP12</i>) promotes endocytosis of postsynaptic AMPA receptors, opposing the effect of <i>LRRTM4</i> [<span>4</span>]. Notable downregulated genes include <i>tyrosine hydroxylase</i>, essential for catecholamine synthesis, and <i>plasmolipin</i>, encoding a major component of myelin sheaths; both genes have previously been linked to various disorders. Pathway analyses implicated semaphorin-plexin signaling, as well as fatty acid metabolism and degradation, as well as valine, leucine, and isoleucine degradation. Semaphorin-plexin signaling is involved in axon guidance and neuronal morphogenesis during neurodevelopment and might stabilize synaptic transmission both during development and adulthood [<span>5</span>].</p><p>Consistent with the differentially expressed genes, metabolomic changes in <i>lrrtm4l1</i><sup><i>−/−</i></sup> zebrafish revealed elevated levels of homovanillic acid, the end product of dopamine metabolism, and lower levels of adenosine. Additionally, <i>lrrtm4l1</i><sup><i>−/−</i></sup> zebrafish showed a trend toward higher serotonin and lower melatonin levels. Unbiased metabolite feature analysis revealed six significant features, including two upregulated features with fragmentation profiles similar to phospholipids and one downregulated feature that was similar to methyl vanillate.</p><p>To investigate the consequences of the observed transcriptomic and metabolic alterations, the authors performed several behavioral experiments in <i>lrrtm4l1</i><sup><i>−/−</i></sup> and wild-type zebrafish. In the open field test, <i>lrrtm4l1</i><sup><i>−/−</i></sup> fish displayed a lower total distance traveled and nominally increased immobile time. Additionally, their swimming movements appeared more erratic, and they displayed increased thigmotaxis, a potential indicator of increased anxiety-like behavior. The increased a
在这一期的《生理学报》中,Tatzl等人研究了富含亮氨酸的重复跨膜蛋白4 like 1 (lrrtm4l1)基因与人类LRRTM4的斑马鱼同源基因,与雌雄同体成年斑马鱼的行为、转录组学和代谢组学数据的相关性(总结见图1)。LRRTM4是LRRTM基因家族的四个成员之一,其编码突触细胞粘附分子,促进兴奋性突触的发育,包括突触插入和AMPA受体的稳定。LRRTM4与神经发育障碍有关,包括自闭症谱系障碍(ASD)和自杀未遂。使用RNASeq,作者在lrrtm4l1敲除(lrrtm4l1−/−)鱼的端脑中鉴定了126个差异表达基因。其中,他们强调了rimkla和arhgap12的上调。rimkla基因与认知和记忆巩固有关。arhgap12b基因的哺乳动物同源基因(即ARHGAP12)促进突触后AMPA受体的内吞作用,与LRRTM4[4]的作用相反。显著下调的基因包括酪氨酸羟化酶(儿茶酚胺合成所必需的)和浆磷脂(髓鞘的主要成分);这两种基因之前都与各种疾病有关。通路分析涉及信号通路,以及脂肪酸代谢和降解,以及缬氨酸,亮氨酸和异亮氨酸降解。信号通路参与神经发育过程中轴突的引导和神经元的形态发生,并可能在发育和成年期稳定突触传递。与差异表达基因一致的是,lrrtm4l1−/−斑马鱼的代谢组学变化表明,多巴胺代谢的最终产物同质香草酸水平升高,腺苷水平降低。此外,lrrtm4l1−/−斑马鱼表现出更高的血清素和更低的褪黑素水平的趋势。无偏代谢物特征分析揭示了6个显著特征,包括两个与磷脂相似的片段化上调特征和一个与香草酸甲酯相似的下调特征。为了研究观察到的转录组学和代谢改变的后果,作者在lrrtm4l1−/−和野生型斑马鱼中进行了几项行为实验。在野外测试中,lrrtm4l1−/−鱼显示出较低的总移动距离,名义上增加了静止时间。此外,他们的游泳动作似乎更不稳定,他们表现出更大的移动性,这是焦虑样行为增加的潜在指标。在新型的水箱潜水测试中,增加的底部居住进一步支持了焦虑的增加,以及进入浅色/深色水箱的浅色区(浅色区反映出更容易焦虑的隔间)的频率减少,尽管在浅色和黑暗隔间中花费的时间在基因型之间没有差异。为了测试社会(新奇)偏好,作者使用了走廊社会互动测试,他们发现两种基因型之间没有差异。值得注意的是,尽管lrrtm4l1 - / -鱼的整体社交能力完好无损,但在镜像测试中,lrrtm4l1 - / -鱼比野生型鱼表现出更少的攻击性行为。与攻击减少一致,作者可以在斑马鱼社会决策网络(SDMN)中涉及的远端脑区发现高水平的lrrtm4l1表达。SDMN被包括攻击性在内的社会遭遇激活,可能以性别特定的方式激活。总之,转录组学和代谢测量将lrrtm4l1与脂肪酸代谢和某些氨基酸的降解以及神经发育和突触传递联系起来。观察到的行为表型表明lrrtm4l1在常见精神表型中的作用。未来的研究测量其他大脑区域的神经递质和基因表达,可以揭示其他区域儿茶酚胺能系统的潜在改变,例如间脑,多巴胺能神经元突出,酪氨酸羟化酶被发现下调,同型香草酸水平升高。此外,正如作者所建议的那样,考虑到相关的精神表型,即ASD和图雷特综合征,在男性中比在女性中更常见,性别差异测试可能会为lrrtm4l1的工作机制提供进一步的见解。此外,LRRTM4在女性中显示出比男性更高的自杀企图相关性[b],并且攻击行为也可能在性别之间表现出差异[b]。在更广泛的背景下,本研究的发现进一步支持了兴奋性突触调节紊乱与lrrtm,特别是LRRTM4在精神疾病病理中的潜在关键作用的相关性。 事实上,兴奋性(谷氨酸能)信号对包括抑郁症、精神分裂症和包括ASD在内的神经发育障碍在内的几种精神疾病的病理生理起着至关重要的作用,并与这些疾病的治疗有关[7-9]。lrrtm通过与突触前伙伴、神经素和硫酸肝素蛋白聚糖结合,促进兴奋性突触的发育和可塑性。此外,它们有助于突触后AMPA受体的稳定和维持(见图1中的示意图)。一致地,缺乏LRRTM4已被证明可降低突触兴奋性和整体突触数量[10]。这可能解释了lrrtm与几种精神障碍的关联。此外,研究结果显示磷脂的上调和脂肪酸代谢的变化突出了脂质信号在精神疾病中的重要作用。据我们所知,这是第一个将lrrtm与脂质信号/代谢联系起来的研究。脂质、脂质信号传导和脂质代谢越来越被认为是脑内和细胞间信号传导的重要介质。在一系列精神障碍患者和临床前模型中发现了不同脂质种类和参与脂质代谢和信号传导的基因的变化。重要的是,脂质信号与炎症有关,而炎症本身又与精神疾病有关。事实上,炎症对心理健康的影响被认为是通过脂质代谢介导的,可能是通过损害兴奋性突触的信号传导和可塑性[7,11]。因此,LRRTM4可能是炎症和脂质信号传导对突触病理影响的重要介质。总之,这项研究为进一步探索LRRTM4作为神经精神干预的候选靶点提供了一个有说服力的论据,特别是在以改变攻击和焦虑为特征的疾病中,但也可能不止于此。Maja R. Adel:概念化,写作-原稿,写作-审查和编辑。弗洛里安·弗罗伊登伯格:概念化,写作-原稿,写作-审查和编辑,可视化。作者声明无利益冲突。
{"title":"Lack of Synaptic Adhesion Proteins Makes Zebrafish More Anxious and Less Aggressive","authors":"Maja R. Adel,&nbsp;Florian Freudenberg","doi":"10.1111/apha.70065","DOIUrl":"https://doi.org/10.1111/apha.70065","url":null,"abstract":"&lt;p&gt;In this issue of &lt;i&gt;Acta Physiologica&lt;/i&gt;, Tatzl et al. [&lt;span&gt;1&lt;/span&gt;] investigate the relevance of the &lt;i&gt;leucine-rich repeat transmembrane protein 4 like 1&lt;/i&gt; (&lt;i&gt;lrrtm4l1&lt;/i&gt;) gene, a zebrafish orthologue of the human &lt;i&gt;LRRTM4&lt;/i&gt;, on behavioral, transcriptomic, and metabolomic readouts in mixed sex adult zebrafish (summarized in Figure 1). &lt;i&gt;LRRTM4&lt;/i&gt; is one of four members of the &lt;i&gt;LRRTM&lt;/i&gt; gene family, which code for synaptic cell adhesion molecules that promote excitatory synapse development, including synaptic insertion and stabilization of AMPA receptors. &lt;i&gt;LRRTM4&lt;/i&gt; is associated with neurodevelopmental disorders, including autism spectrum disorder (ASD) and attempted suicide [&lt;span&gt;2&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Using RNASeq, the authors identified 126 differentially expressed genes in the telencephalon of &lt;i&gt;lrrtm4l1&lt;/i&gt; knockout (&lt;i&gt;lrrtm4l1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;−/−&lt;/i&gt;&lt;/sup&gt;) fish. Among these, they highlight the upregulation of &lt;i&gt;rimkla&lt;/i&gt; and &lt;i&gt;arhgap12&lt;/i&gt;. The &lt;i&gt;rimkla&lt;/i&gt; gene is linked to cognition and memory consolidation [&lt;span&gt;3&lt;/span&gt;]. The mammalian orthologue of the &lt;i&gt;arhgap12b&lt;/i&gt; gene (i.e., &lt;i&gt;ARHGAP12&lt;/i&gt;) promotes endocytosis of postsynaptic AMPA receptors, opposing the effect of &lt;i&gt;LRRTM4&lt;/i&gt; [&lt;span&gt;4&lt;/span&gt;]. Notable downregulated genes include &lt;i&gt;tyrosine hydroxylase&lt;/i&gt;, essential for catecholamine synthesis, and &lt;i&gt;plasmolipin&lt;/i&gt;, encoding a major component of myelin sheaths; both genes have previously been linked to various disorders. Pathway analyses implicated semaphorin-plexin signaling, as well as fatty acid metabolism and degradation, as well as valine, leucine, and isoleucine degradation. Semaphorin-plexin signaling is involved in axon guidance and neuronal morphogenesis during neurodevelopment and might stabilize synaptic transmission both during development and adulthood [&lt;span&gt;5&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Consistent with the differentially expressed genes, metabolomic changes in &lt;i&gt;lrrtm4l1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;−/−&lt;/i&gt;&lt;/sup&gt; zebrafish revealed elevated levels of homovanillic acid, the end product of dopamine metabolism, and lower levels of adenosine. Additionally, &lt;i&gt;lrrtm4l1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;−/−&lt;/i&gt;&lt;/sup&gt; zebrafish showed a trend toward higher serotonin and lower melatonin levels. Unbiased metabolite feature analysis revealed six significant features, including two upregulated features with fragmentation profiles similar to phospholipids and one downregulated feature that was similar to methyl vanillate.&lt;/p&gt;&lt;p&gt;To investigate the consequences of the observed transcriptomic and metabolic alterations, the authors performed several behavioral experiments in &lt;i&gt;lrrtm4l1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;−/−&lt;/i&gt;&lt;/sup&gt; and wild-type zebrafish. In the open field test, &lt;i&gt;lrrtm4l1&lt;/i&gt;&lt;sup&gt;&lt;i&gt;−/−&lt;/i&gt;&lt;/sup&gt; fish displayed a lower total distance traveled and nominally increased immobile time. Additionally, their swimming movements appeared more erratic, and they displayed increased thigmotaxis, a potential indicator of increased anxiety-like behavior. The increased a","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 7","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70065","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secretagogin, Driven by Neuronal Activity, Transiently Regulates Exocytosis During Development 由神经元活动驱动的分泌素,在发育过程中短暂调节胞吐
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-29 DOI: 10.1111/apha.70066
Robert Zorec, Alexei Verkhratsky
<p>Fluctuations of intracellular ionic concentrations are powerful signaling tools in living cells [<span>1</span>]. Among these ions, Ca<sup>2+</sup> plays a well-documented and ubiquitous role in the regulation of cellular events, ranging from development and growth to intercellular signaling and information processing, and, ultimately, Ca<sup>2+</sup> regulates cell survival or cell death. All these effects are mediated through the extended family of Ca<sup>2+</sup>-sensors.</p><p>A recent paper published by Alpar, Harkany, and their coworkers in Acta Physiologica [<span>2</span>] revealed a complex and developmentally regulated signaling network centered on dynamic changes of expression of the archetypal Ca<sup>2+</sup> sensor, secretagogin. They show that changes in secretagogin expression are affected by neuronal activity, and therefore establish a novel link between excitation and intracellular signaling processing. The study of Hanics et al. critically challenges the notion of secretagogin, used widely as a neuronal marker, as a static marker by demonstrating its dynamic expression in response to neuronal activity during mammalian brain development. Using a combination of human foetal brain mapping, genetically modified mice (Scgn-iCre::Ai9), single-cell RNA sequencing, and both in vitro and in vivo activity manipulation models, the authors provide compelling evidence that secretagogin expression is both developmentally regulated and sensitive to neuronal activity.</p><p>One of the main functions of Ca<sup>2+</sup> sensors in the information processing loops of the central nervous system is the regulation of vesicular neurotransmitter release. Fusion of the vesicle membrane with the plasma membrane, known as exocytosis, leads to the formation of a water-filled channel, the fusion pore, a conduit for molecules in the vesicle lumen to exit into the extracellular space. This evolutionary invention emerged in primordial eukaryotic cells [<span>3-5</span>] and mediates a myriad of processes, including the release of neurotransmitters, hormones, and other signaling molecules, all essential for maintaining cell-to-cell communication in multicellular organisms. The release of vesicle content may occur only if the fusion pore widens sufficiently. Over seven decades ago, Bernard Katz proposed that the fusion pore opens completely upon exocytosis. Therefore, since those days, the fusion mechanism has been intensively studied, mainly focusing on how the merger of the two membranes occurs. This led to the discovery of SNARE proteins, targets of proteolytic botulinum neurotoxins, and the concept that a rather complex array of events, including vesicle priming and docking at the active zone to fusion pore formation upon an increase in cytosolic Ca<sup>2+</sup>, mediates stimulus-secretion coupling to within milliseconds [<span>6</span>]. Secretagogin is linked to regulated exocytosis through an extended interactome which includes SNAP-23, DOC2α, ARFGAP2
细胞内离子浓度的波动是活细胞中强有力的信号工具。在这些离子中,Ca2+在细胞事件的调节中起着充分记录和普遍存在的作用,从发育和生长到细胞间信号传导和信息处理,最终,Ca2+调节细胞存活或细胞死亡。所有这些影响都是通过Ca2+传感器家族介导的。Alpar、Harkany和他们的同事最近在《生理学报》上发表的一篇论文揭示了一个复杂的、受发育调节的信号网络,其中心是典型的Ca2+传感器分泌素表达的动态变化。他们表明分泌素表达的变化受到神经元活动的影响,因此在兴奋和细胞内信号处理之间建立了一种新的联系。Hanics等人的研究通过展示其在哺乳动物大脑发育过程中对神经元活动的动态表达,批判性地挑战了分泌素作为一种静态标记物被广泛用作神经元标记物的概念。利用人类胎儿脑图谱、转基因小鼠(Scgn-iCre::Ai9)、单细胞RNA测序以及体外和体内活性操纵模型的结合,作者提供了令人信服的证据,证明分泌素的表达既受发育调节,又对神经元活动敏感。Ca2+传感器在中枢神经系统信息处理回路中的主要功能之一是调节水疱性神经递质释放。囊泡膜与质膜的融合,称为胞外作用,导致形成一个充满水的通道,即融合孔,这是囊泡腔中的分子进入细胞外空间的通道。这一进化发明出现在原始真核细胞中[3-5],并介导了无数的过程,包括神经递质、激素和其他信号分子的释放,这些都是维持多细胞生物细胞间通信所必需的。只有当融合孔足够宽时,囊泡内容物才会释放。70多年前,Bernard Katz提出融合孔在胞吐过程中完全打开。因此,从那时起,人们就对融合机制进行了深入的研究,主要集中在两种膜是如何融合的。这导致了SNARE蛋白的发现,这是蛋白水解肉毒杆菌神经毒素的靶标,以及一系列相当复杂的事件的概念,包括囊泡启动和在活性区对接,在胞质Ca2+增加时融合孔形成,介导刺激-分泌偶联到毫秒[6]。分泌素通过一个扩展的相互作用组与受调节的胞吐有关,该相互作用组包括SNAP-23、DOC2α、ARFGAP2、根蛋白、KIF5B、β-微管蛋白、DDAH-2、atp合成酶等。因此,分泌素对囊泡释放具有刺激和抑制作用。胞吐抑制(即融合孔狭窄)的分子机制仍有待充分表征。实验证据表明,融合孔可以可逆地打开和关闭,这表明融合孔的关闭也是通过SNARE复合物的调节来调节的[7,8]。此外,可逆开放的融合孔在静止状态下可能达到亚纳米直径,太窄以至于无法通过谷氨酸或乙酰胆碱,称为非生产性胞吐,并可以随着融合孔直径的扩大而迅速变为生产性。这表明导致胞吐的一系列复杂事件可能被归为非生产性胞吐阶段,此时融合孔已经预先形成,只需要刺激就可以使[4]变宽。胞吐和融合孔狭窄的许多抑制过程之一,仍未得到充分研究,可能与膜中胆固醇的含量有关。结果表明,升高的胆固醇降低了融合孔直径(以融合孔电导来衡量),并降低了融合孔打开的概率。此外,在溶酶体贮积病中,观察到胆固醇在溶酶体中积聚。在这种情况下,融合孔几何形状也减少,可能导致神经系统症状[9]。高囊泡胆固醇阻止融合孔直径扩大的机制如图1所示。除胆固醇外,一些蛋白质也可能抑制胞外融合孔。其中一个候选物是amyysin,它通过其c端SNARE基序与syntaxin-1和SNAP-25形成稳定的SNARE复合物,并与synaptobrevin-2/VAMP2竞争SNARE复合物的组装。此外,淀粉酶含有一个n端pleckstrin同源结构域,通过与磷脂酰肌醇4,5-二磷酸(通常称为PIP2)结合,介导其与神经分泌细胞质膜的短暂结合。 pleckstrin同源结构域和SNARE基序都是其抑制功能[10]所必需的。分泌素对分泌有多种调节作用,如与syntaxin- 4[11]结合。然而,分泌素也与SNAP-25相互作用,阻止SNARE复合物的形成,从而介导胞吐的抑制,如体外[12]所确定的那样。如前所述,Hanics等人发现神经元分泌素在发育过程中表达的动态调节。分泌素表达的变化可能在前脑发育过程中短暂地抑制胞外融合孔。一个特别引人注目的发现是,在患有唐氏综合症的胎儿中,分泌素的表达延迟,这提示了与神经发育障碍的临床相关性。此外,暗饲养和kainate管理等实验操作表明,感觉输入和兴奋可以分别抑制或提高分泌素水平,支持活动依赖的调节机制。这些结果完善了我们对分泌激素的理解,它不仅是一个静态的身份标记,而且在神经发育中是一个动态的参与者。这项工作对基础神经科学和临床研究都具有重要意义。它警告不要不加鉴别地使用促分泌素作为细胞身份的唯一标记,强调需要考虑环境和活动驱动的可变性。此外,它为探索钙传感器蛋白如何促进神经元可塑性和疾病状态开辟了新的途径。总的来说,这项研究是一个彻底的和有影响力的贡献,重塑了我们如何看待分泌素在发育和成熟的大脑。它还揭示了发育在调控胞外融合孔中的作用。作者对本文负全部责任。作者声明无利益冲突。
{"title":"Secretagogin, Driven by Neuronal Activity, Transiently Regulates Exocytosis During Development","authors":"Robert Zorec,&nbsp;Alexei Verkhratsky","doi":"10.1111/apha.70066","DOIUrl":"https://doi.org/10.1111/apha.70066","url":null,"abstract":"&lt;p&gt;Fluctuations of intracellular ionic concentrations are powerful signaling tools in living cells [&lt;span&gt;1&lt;/span&gt;]. Among these ions, Ca&lt;sup&gt;2+&lt;/sup&gt; plays a well-documented and ubiquitous role in the regulation of cellular events, ranging from development and growth to intercellular signaling and information processing, and, ultimately, Ca&lt;sup&gt;2+&lt;/sup&gt; regulates cell survival or cell death. All these effects are mediated through the extended family of Ca&lt;sup&gt;2+&lt;/sup&gt;-sensors.&lt;/p&gt;&lt;p&gt;A recent paper published by Alpar, Harkany, and their coworkers in Acta Physiologica [&lt;span&gt;2&lt;/span&gt;] revealed a complex and developmentally regulated signaling network centered on dynamic changes of expression of the archetypal Ca&lt;sup&gt;2+&lt;/sup&gt; sensor, secretagogin. They show that changes in secretagogin expression are affected by neuronal activity, and therefore establish a novel link between excitation and intracellular signaling processing. The study of Hanics et al. critically challenges the notion of secretagogin, used widely as a neuronal marker, as a static marker by demonstrating its dynamic expression in response to neuronal activity during mammalian brain development. Using a combination of human foetal brain mapping, genetically modified mice (Scgn-iCre::Ai9), single-cell RNA sequencing, and both in vitro and in vivo activity manipulation models, the authors provide compelling evidence that secretagogin expression is both developmentally regulated and sensitive to neuronal activity.&lt;/p&gt;&lt;p&gt;One of the main functions of Ca&lt;sup&gt;2+&lt;/sup&gt; sensors in the information processing loops of the central nervous system is the regulation of vesicular neurotransmitter release. Fusion of the vesicle membrane with the plasma membrane, known as exocytosis, leads to the formation of a water-filled channel, the fusion pore, a conduit for molecules in the vesicle lumen to exit into the extracellular space. This evolutionary invention emerged in primordial eukaryotic cells [&lt;span&gt;3-5&lt;/span&gt;] and mediates a myriad of processes, including the release of neurotransmitters, hormones, and other signaling molecules, all essential for maintaining cell-to-cell communication in multicellular organisms. The release of vesicle content may occur only if the fusion pore widens sufficiently. Over seven decades ago, Bernard Katz proposed that the fusion pore opens completely upon exocytosis. Therefore, since those days, the fusion mechanism has been intensively studied, mainly focusing on how the merger of the two membranes occurs. This led to the discovery of SNARE proteins, targets of proteolytic botulinum neurotoxins, and the concept that a rather complex array of events, including vesicle priming and docking at the active zone to fusion pore formation upon an increase in cytosolic Ca&lt;sup&gt;2+&lt;/sup&gt;, mediates stimulus-secretion coupling to within milliseconds [&lt;span&gt;6&lt;/span&gt;]. Secretagogin is linked to regulated exocytosis through an extended interactome which includes SNAP-23, DOC2α, ARFGAP2","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 7","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specialized Pro-Resolving Mediators as Emerging Players in Cardioprotection: From Inflammation Resolution to Therapeutic Potential 专门的促溶解介质作为心脏保护的新兴参与者:从炎症消退到治疗潜力
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-28 DOI: 10.1111/apha.70062
Anna De Bartolo, Naomi Romeo, Tommaso Angelone, Carmine Rocca

Aim

Timely myocardial reperfusion is essential for restoring blood flow to post-ischemic tissue, thereby reducing cardiac injury and limiting infarct size. However, this process can paradoxically result in additional, irreversible myocardial damage, known as myocardial ischemia–reperfusion injury (MIRI). The goal of this review is to explore the role of specialized pro-resolving mediators (SPMs) in atherosclerosis and MIRI, and to assess the therapeutic potential of targeting inflammation resolution in these cardiovascular conditions.

Methods

This review summarizes current preclinical and clinical evidence on the involvement of SPMs in the pathogenesis of atherosclerosis and MIRI, acknowledging that several cellular and molecular aspects of their mechanisms of action remain to be fully elucidated.

Results

MIRI is a complex phenomenon in which inflammation, initially triggered during ischemia and further amplified upon reperfusion, plays a central role in its pathogenesis. Various cellular and molecular players mediate the initial pro-inflammatory response and the subsequent anti-inflammatory reparative phase following acute myocardial infarction (AMI), contributing both to ischemia- and reperfusion-induced damage as well as to the healing process. SPMs have emerged as key endogenous immunoresolvents with potent anti-inflammatory, antioxidant, and pro-resolving properties that contribute to limit excessive acute inflammation and promote tissue repair. While dysregulated SPM-related signaling has been linked to various cardiovascular diseases (CVD), their precise role in AMI and MIRI remains incompletely understood.

Conclusion

Targeting inflammation resolution may represent a promising therapeutic strategy for mitigating atheroprogression and addressing a complex condition such as MIRI.

目的及时心肌再灌注是恢复缺血后组织血流量的必要条件,从而减轻心脏损伤,限制梗死面积。然而,这一过程可能导致额外的、不可逆的心肌损伤,即心肌缺血-再灌注损伤(MIRI)。本综述的目的是探讨特殊促溶解介质(SPMs)在动脉粥样硬化和MIRI中的作用,并评估靶向炎症溶解在这些心血管疾病中的治疗潜力。方法本文综述了目前关于SPMs参与动脉粥样硬化和MIRI发病机制的临床前和临床证据,承认其作用机制的几个细胞和分子方面仍有待充分阐明。结果MIRI是一种复杂的炎症现象,炎症最初在缺血时触发,在再灌注时进一步放大,在其发病机制中起核心作用。多种细胞和分子参与者介导急性心肌梗死(AMI)后最初的促炎反应和随后的抗炎修复阶段,既有助于缺血和再灌注诱导的损伤,也有助于愈合过程。SPMs已成为关键的内源性免疫解决剂,具有有效的抗炎、抗氧化和促溶解特性,有助于限制过度急性炎症和促进组织修复。虽然spm相关信号失调与多种心血管疾病(CVD)有关,但它们在AMI和MIRI中的确切作用仍不完全清楚。结论:靶向炎症消退可能是缓解动脉粥样硬化进展和解决复杂疾病(如MIRI)的一种有希望的治疗策略。
{"title":"Specialized Pro-Resolving Mediators as Emerging Players in Cardioprotection: From Inflammation Resolution to Therapeutic Potential","authors":"Anna De Bartolo,&nbsp;Naomi Romeo,&nbsp;Tommaso Angelone,&nbsp;Carmine Rocca","doi":"10.1111/apha.70062","DOIUrl":"https://doi.org/10.1111/apha.70062","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Timely myocardial reperfusion is essential for restoring blood flow to post-ischemic tissue, thereby reducing cardiac injury and limiting infarct size. However, this process can paradoxically result in additional, irreversible myocardial damage, known as myocardial ischemia–reperfusion injury (MIRI). The goal of this review is to explore the role of specialized pro-resolving mediators (SPMs) in atherosclerosis and MIRI, and to assess the therapeutic potential of targeting inflammation resolution in these cardiovascular conditions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>This review summarizes current preclinical and clinical evidence on the involvement of SPMs in the pathogenesis of atherosclerosis and MIRI, acknowledging that several cellular and molecular aspects of their mechanisms of action remain to be fully elucidated.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>MIRI is a complex phenomenon in which inflammation, initially triggered during ischemia and further amplified upon reperfusion, plays a central role in its pathogenesis. Various cellular and molecular players mediate the initial pro-inflammatory response and the subsequent anti-inflammatory reparative phase following acute myocardial infarction (AMI), contributing both to ischemia- and reperfusion-induced damage as well as to the healing process. SPMs have emerged as key endogenous immunoresolvents with potent anti-inflammatory, antioxidant, and pro-resolving properties that contribute to limit excessive acute inflammation and promote tissue repair. While dysregulated SPM-related signaling has been linked to various cardiovascular diseases (CVD), their precise role in AMI and MIRI remains incompletely understood.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Targeting inflammation resolution may represent a promising therapeutic strategy for mitigating atheroprogression and addressing a complex condition such as MIRI.</p>\u0000 </section>\u0000 </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 7","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70062","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144148311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lactate Refurbished: Cardiovascular Support During Metabolic Stress and Fuel Rather Than Waste 乳酸翻新:心血管支持代谢应激和燃料而不是废物
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-28 DOI: 10.1111/apha.70064
Cor de Wit
<p>For decades, lactate was considered a metabolic waste product that is produced and released from cells during (relative) lack of oxygen. In the glycolytic pathway, glucose is metabolized to pyruvate that fuels the Krebs cycle in mitochondria where oxygen is required for complete pyruvate oxidation. It was thought that pyruvate accumulates during oxygen lack and is subsequently reduced to lactate with concomitant NADH consumption and regeneration of NAD<sup>+</sup>. The equilibrium of the reaction is determined by the lactate/pyruvate ratio and the cytosolic redox potential (NADH/NAD<sup>+</sup> ratio) leading to 10-fold higher concentrations of lactate than pyruvate in resting skeletal muscle. This generated the idea that lactate is the final product of the glycolytic pathway and, in fact, links glycolysis to oxidative metabolism [<span>1</span>]. Interestingly, lactate is also produced under aerobic conditions, that is at pO<sub>2</sub> values well above the critical mitochondrial pO<sub>2</sub>. Lactate production is even enhanced in exercising skeletal muscle because glycolysis is stimulated more intensely than oxidative phosphorylation [<span>2</span>]. Therefore, lactate is also released into the bloodstream from working muscle providing a dynamic fuel source that may be taken up and metabolized by other organs including brain and heart, which are known to eagerly combust lactate from blood [<span>3</span>].</p><p>This concept turns the spotlight on lactate as an important player in metabolism during exercise. It may not only be shuttled from the cytosol to mitochondria but also from cell to cell and tissue to tissue via the bloodstream [<span>1</span>] providing a valuable energy source for tissues that do not exhibit large energy stores. In this context, the work of Homilius and colleagues published in this issue [<span>4</span>] provides interesting new insight by characterizing the impact of lactate on cardiovascular homeostasis. They demonstrate that adjustments required in the cardiovascular system with enhanced cellular metabolism during exercise are uniquely induced by this valuable metabolite (Figure 1).</p><p>Homilius and colleagues [<span>4</span>] studied the vascular effects of different conjugate bases that are produced during cellular metabolism or by the microbiome. Effects of protons were eliminated by keeping pH constant. Precontracted arteries isolated from different vascular beds from rats relaxed largely or even fully in response to bases of possible microbial origin (acetate, propionate, butyrate) at seemingly high concentrations (10 mmol/L). Endogenously produced bases were less efficacious (lactate, hydroxybutyrate), but still achieved considerable relaxations of 25%–50% in different arteries, with pronounced relaxations in femoral and coronary arteries, after 5 min at concentrations found during exercise (EC50: ~10 mmol/L). Other bases were without substantial effect (pyruvate, malonate, succinate). In marked cont
几十年来,乳酸被认为是一种代谢废物,在(相对)缺氧的情况下从细胞中产生和释放。在糖酵解途径中,葡萄糖被代谢成丙酮酸,为线粒体中的Krebs循环提供燃料,而丙酮酸的完全氧化需要氧气。人们认为丙酮酸在缺氧时积累,随后随着NADH的消耗和NAD+的再生而减少为乳酸。反应的平衡由乳酸/丙酮酸比值和细胞质氧化还原电位(NADH/NAD+比值)决定,导致静息骨骼肌中乳酸浓度比丙酮酸浓度高10倍。这产生了乳酸是糖酵解途径的最终产物的想法,事实上,将糖酵解与氧化代谢联系起来。有趣的是,乳酸也在有氧条件下产生,即pO2值远高于临界线粒体pO2。乳酸生成甚至在锻炼骨骼肌时得到增强,因为糖酵解比氧化磷酸化受到更强烈的刺激。因此,乳酸也从工作的肌肉中释放到血液中,提供一种动态的燃料来源,可以被其他器官吸收和代谢,包括大脑和心脏,这些器官急切地燃烧血液中的乳酸。这一概念使人们注意到乳酸在运动过程中代谢的重要作用。它不仅可以从细胞质输送到线粒体,还可以通过血流从一个细胞输送到另一个细胞,从一个组织输送到另一个组织,为那些没有大量能量储存的组织提供宝贵的能量来源。在此背景下,Homilius及其同事在本期[4]上发表的研究通过描述乳酸对心血管稳态的影响提供了有趣的新见解。他们证明,在运动过程中,这种有价值的代谢物独特地诱导了心血管系统中细胞代谢增强所需的调整(图1)。Homilius和他的同事研究了细胞代谢或微生物组产生的不同共轭碱对血管的影响。通过保持pH恒定来消除质子的影响。从大鼠不同血管床分离的预收缩动脉在看似高浓度(10 mmol/L)的可能微生物来源的碱(醋酸酯、丙酸酯、丁酸酯)作用下大量甚至完全放松。内源性产生的碱(乳酸盐、羟丁酸盐)效果较差,但在运动时的浓度(EC50: ~10 mmol/L)下,在5分钟后,仍能在不同动脉中实现25%-50%的明显松弛,其中股动脉和冠状动脉松弛明显。其他碱基(丙酮酸盐、丙二酸盐、琥珀酸盐)没有明显的影响。与大多数碱(使动脉和静脉松弛)形成鲜明对比的是,乳酸在不同的大鼠静脉中主要产生收缩。在人体血管中也证实了类似的发散效应,即动脉松弛而静脉收缩。最后,对大鼠进行超声心动图等血流动力学测量。乳酸输注适度提高血浆水平(至3.7 mmol/L),并通过增加搏量增加心输出量(约20%)。舒张末期体积的增加使作者得出结论,心脏功能的提高主要是由于乳酸引起的静脉收缩。它从静脉排出血液,促进心脏充盈,从而调节长度依赖性心肌激活(弗兰克-斯塔林)。这可能是在恒定预负荷的离体大鼠心脏中显示的单独的正性肌力效应所支持的。值得注意的是,计算出的全身血管阻力在乳酸输注期间下降,这反映在心输出量增加时动脉压不变。综上所述,霍米利厄斯和他的同事们精心而优雅的实验表明,正如他们在标题中正确表述的那样,乳酸在运动等代谢挑战中“协调心血管适应”。对于生理学家来说,如果考虑到乳酸不是废物而是燃料,那么这个作用就变得更加有趣了。它是从细胞中释放出来的,这些细胞产生的乳酸量比线粒体中实际燃烧的乳酸量要大。在这种情况下,乳酸不仅提供燃料,还支持心血管系统应对运动带来的挑战。乳酸是否也参与相应组织本身对运动(活动性充血)的扩张反应?目前的数据并没有给出这个问题的答案。Homilius和他的同事证明,乳酸降低了血管阻力,这表明它确实放松了阻力血管,而不仅仅是那些体外研究的大动脉。通过锻炼骨骼肌释放的乳酸似乎不太可能到达上游小动脉。
{"title":"Lactate Refurbished: Cardiovascular Support During Metabolic Stress and Fuel Rather Than Waste","authors":"Cor de Wit","doi":"10.1111/apha.70064","DOIUrl":"https://doi.org/10.1111/apha.70064","url":null,"abstract":"&lt;p&gt;For decades, lactate was considered a metabolic waste product that is produced and released from cells during (relative) lack of oxygen. In the glycolytic pathway, glucose is metabolized to pyruvate that fuels the Krebs cycle in mitochondria where oxygen is required for complete pyruvate oxidation. It was thought that pyruvate accumulates during oxygen lack and is subsequently reduced to lactate with concomitant NADH consumption and regeneration of NAD&lt;sup&gt;+&lt;/sup&gt;. The equilibrium of the reaction is determined by the lactate/pyruvate ratio and the cytosolic redox potential (NADH/NAD&lt;sup&gt;+&lt;/sup&gt; ratio) leading to 10-fold higher concentrations of lactate than pyruvate in resting skeletal muscle. This generated the idea that lactate is the final product of the glycolytic pathway and, in fact, links glycolysis to oxidative metabolism [&lt;span&gt;1&lt;/span&gt;]. Interestingly, lactate is also produced under aerobic conditions, that is at pO&lt;sub&gt;2&lt;/sub&gt; values well above the critical mitochondrial pO&lt;sub&gt;2&lt;/sub&gt;. Lactate production is even enhanced in exercising skeletal muscle because glycolysis is stimulated more intensely than oxidative phosphorylation [&lt;span&gt;2&lt;/span&gt;]. Therefore, lactate is also released into the bloodstream from working muscle providing a dynamic fuel source that may be taken up and metabolized by other organs including brain and heart, which are known to eagerly combust lactate from blood [&lt;span&gt;3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;This concept turns the spotlight on lactate as an important player in metabolism during exercise. It may not only be shuttled from the cytosol to mitochondria but also from cell to cell and tissue to tissue via the bloodstream [&lt;span&gt;1&lt;/span&gt;] providing a valuable energy source for tissues that do not exhibit large energy stores. In this context, the work of Homilius and colleagues published in this issue [&lt;span&gt;4&lt;/span&gt;] provides interesting new insight by characterizing the impact of lactate on cardiovascular homeostasis. They demonstrate that adjustments required in the cardiovascular system with enhanced cellular metabolism during exercise are uniquely induced by this valuable metabolite (Figure 1).&lt;/p&gt;&lt;p&gt;Homilius and colleagues [&lt;span&gt;4&lt;/span&gt;] studied the vascular effects of different conjugate bases that are produced during cellular metabolism or by the microbiome. Effects of protons were eliminated by keeping pH constant. Precontracted arteries isolated from different vascular beds from rats relaxed largely or even fully in response to bases of possible microbial origin (acetate, propionate, butyrate) at seemingly high concentrations (10 mmol/L). Endogenously produced bases were less efficacious (lactate, hydroxybutyrate), but still achieved considerable relaxations of 25%–50% in different arteries, with pronounced relaxations in femoral and coronary arteries, after 5 min at concentrations found during exercise (EC50: ~10 mmol/L). Other bases were without substantial effect (pyruvate, malonate, succinate). In marked cont","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 7","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144148593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophil Function in Patients With Chronic Kidney Disease: A Systematic Review and Meta-Analysis 慢性肾病患者中性粒细胞功能:系统回顾和荟萃分析
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-24 DOI: 10.1111/apha.70057
Jane Sophie Lauxen, Sonja Vondenhoff, Carolina Victoria Cruz Junho, Philipp Martin, Susanne Fleig, Katharina Schütt, Ulrike Schulze-Späte, Oliver Soehnlein, Leticia Prates-Roma, Yvonne Döring, Constance C. F. M. J. Baaten, Heidi Noels

Background

Patients with chronic kidney disease (CKD) are at increased cardiovascular risk. Since neutrophils play a central role in atherosclerosis and cardiovascular disease, this study analyzed neutrophil function in CKD patients.

Methods

A systematic review of neutrophil function in CKD patients compared to controls was performed according to PRISMA guidelines by searching PubMed and the Web of Science. A meta-analysis summarized the production of reactive oxygen species (ROS) in CKD patients on dialysis in Forest plots. Influencer outlier analyses evaluated risk of bias.

Results

Overall, 92 studies were included, of which 18 in the meta-analysis. Although study heterogeneity was high, the systematic review identified primarily reduced phagocytosis capacity but increased neutrophil degranulation and basal ROS production in neutrophils from CKD patients on hemodialysis compared to controls. Phagocytosis and basal ROS production were mainly unaltered in non-dialysis dependent CKD patients and CKD patients on peritoneal dialysis. The meta-analysis confirmed increased ROS generation in basal conditions predominantly in CKD patients on hemodialysis (Hedges g = 1.20, 95% CI: [0.32; 2.09]), with an insufficient study number for a clear comparison to CKD patients on peritoneal dialysis. However, upon neutrophil stimulation with sterile inflammatory triggers, ROS production was also increased in neutrophils from patients on peritoneal dialysis (Hedges g = 0.89, 95% CI: [0.34; 1.43]).

Conclusion

Increased degranulation and basal ROS formation were observed in neutrophils of CKD patients on hemodialysis, which could contribute to their increased cardiovascular risk. Future studies should compare neutrophil activity in patients of different CKD stages and comorbidities also in relation to cardiovascular outcomes.

背景:慢性肾脏疾病(CKD)患者心血管风险增加。由于中性粒细胞在动脉粥样硬化和心血管疾病中起核心作用,本研究分析了CKD患者的中性粒细胞功能。方法根据PRISMA指南,检索PubMed和Web of Science,对CKD患者与对照组的中性粒细胞功能进行系统评价。一项荟萃分析总结了森林地区透析的CKD患者活性氧(ROS)的产生。影响者异常值分析评估偏倚风险。结果共纳入92项研究,其中18项纳入meta分析。尽管研究异质性很高,但系统评价发现,与对照组相比,接受血液透析的CKD患者的吞噬能力降低,但中性粒细胞脱粒和基础ROS生成增加。在非透析依赖的CKD患者和腹膜透析的CKD患者中,吞噬和基础ROS生成基本没有改变。荟萃分析证实,基础条件下ROS生成增加主要发生在血液透析的CKD患者中(Hedges g = 1.20, 95% CI: [0.32;[2.09]),与腹膜透析的CKD患者进行明确比较的研究数量不足。然而,在无菌炎症触发的中性粒细胞刺激下,腹膜透析患者的中性粒细胞中ROS的产生也增加(Hedges g = 0.89, 95% CI: [0.34;1.43])。结论CKD血液透析患者中性粒细胞脱颗粒增多,基础ROS形成增多,可能是CKD患者心血管风险增加的原因之一。未来的研究应该比较不同CKD分期和合并症患者的中性粒细胞活性以及与心血管预后的关系。
{"title":"Neutrophil Function in Patients With Chronic Kidney Disease: A Systematic Review and Meta-Analysis","authors":"Jane Sophie Lauxen,&nbsp;Sonja Vondenhoff,&nbsp;Carolina Victoria Cruz Junho,&nbsp;Philipp Martin,&nbsp;Susanne Fleig,&nbsp;Katharina Schütt,&nbsp;Ulrike Schulze-Späte,&nbsp;Oliver Soehnlein,&nbsp;Leticia Prates-Roma,&nbsp;Yvonne Döring,&nbsp;Constance C. F. M. J. Baaten,&nbsp;Heidi Noels","doi":"10.1111/apha.70057","DOIUrl":"https://doi.org/10.1111/apha.70057","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Patients with chronic kidney disease (CKD) are at increased cardiovascular risk. Since neutrophils play a central role in atherosclerosis and cardiovascular disease, this study analyzed neutrophil function in CKD patients.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>A systematic review of neutrophil function in CKD patients compared to controls was performed according to PRISMA guidelines by searching PubMed and the Web of Science. A meta-analysis summarized the production of reactive oxygen species (ROS) in CKD patients on dialysis in Forest plots. Influencer outlier analyses evaluated risk of bias.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Overall, 92 studies were included, of which 18 in the meta-analysis. Although study heterogeneity was high, the systematic review identified primarily reduced phagocytosis capacity but increased neutrophil degranulation and basal ROS production in neutrophils from CKD patients on hemodialysis compared to controls. Phagocytosis and basal ROS production were mainly unaltered in non-dialysis dependent CKD patients and CKD patients on peritoneal dialysis. The meta-analysis confirmed increased ROS generation in basal conditions predominantly in CKD patients on hemodialysis (Hedges <i>g</i> = 1.20, 95% CI: [0.32; 2.09]), with an insufficient study number for a clear comparison to CKD patients on peritoneal dialysis. However, upon neutrophil stimulation with sterile inflammatory triggers, ROS production was also increased in neutrophils from patients on peritoneal dialysis (Hedges <i>g</i> = 0.89, 95% CI: [0.34; 1.43]).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Increased degranulation and basal ROS formation were observed in neutrophils of CKD patients on hemodialysis, which could contribute to their increased cardiovascular risk. Future studies should compare neutrophil activity in patients of different CKD stages and comorbidities also in relation to cardiovascular outcomes.</p>\u0000 </section>\u0000 </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144125858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Adipocyte endothelin B receptor activation inhibits adiponectin production and causes insulin resistance in obese mice” 更正“肥胖小鼠脂肪细胞内皮素B受体激活抑制脂联素产生并引起胰岛素抵抗”
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-24 DOI: 10.1111/apha.70061

Rivera-Gonzalez O, Mills MF, Konadu BD, Wilson NA, Murphy HA, Newberry MK, Hyndman KA, Garrett MR, Webb DJ, Speed JS. Adipocyte endothelin B receptor activation inhibits adiponectin production and causes insulin resistance in obese mice. Acta Physiol (Oxf). 2024 Oct;240(10):e14214. doi: 10.1111/apha.14214. Epub 2024 Aug 3. PMID: 39096077; PMCID: PMC11421981.

In the section “Funding Information,” the incorrect award number was inserted attributing credit to P20GM104357. We would like to correct this by replacing “P20GM104357” with “P30GM149404.”

We apologize for this error.

Rivera-Gonzalez O, Mills MF, Konadu BD, Wilson NA, Murphy HA, Newberry MK, Hyndman KA, Garrett MR, Webb DJ, Speed JS。肥胖小鼠脂肪细胞内皮素B受体激活抑制脂联素产生并引起胰岛素抵抗。物理学报(英文版)。2024年10月,240 (10):e14214。doi: 10.1111 / apha.14214。2024年8月3日。PMID: 39096077;PMCID: PMC11421981。在“资助信息”部分,插入了错误的奖励编号,将荣誉归于P20GM104357。我们想通过将“P20GM104357”替换为“P30GM149404”来纠正这个错误。我们为这个错误道歉。
{"title":"Correction to “Adipocyte endothelin B receptor activation inhibits adiponectin production and causes insulin resistance in obese mice”","authors":"","doi":"10.1111/apha.70061","DOIUrl":"https://doi.org/10.1111/apha.70061","url":null,"abstract":"<p>Rivera-Gonzalez O, Mills MF, Konadu BD, Wilson NA, Murphy HA, Newberry MK, Hyndman KA, Garrett MR, Webb DJ, Speed JS. Adipocyte endothelin B receptor activation inhibits adiponectin production and causes insulin resistance in obese mice. Acta Physiol (Oxf). 2024 Oct;240(10):e14214. doi: 10.1111/apha.14214. Epub 2024 Aug 3. PMID: 39096077; PMCID: PMC11421981.</p><p>In the section “Funding Information,” the incorrect award number was inserted attributing credit to P20GM104357. We would like to correct this by replacing “P20GM104357” with “P30GM149404.”</p><p>We apologize for this error.</p>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144126008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Ancient Drug Salicylate Indirectly Targets Fructose-1,6-Bisphosphatase to Suppress Liver Glucose Production in Diet-Induced Obese Mice 古药水杨酸间接作用于果糖-1,6-双磷酸酶抑制饮食诱导的肥胖小鼠肝糖生成
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-22 DOI: 10.1111/apha.70058
Raid B. Nisr, Abdelmadjid Atrih, Erika J. Gutierrez Lara, Douglas Lamont, Katarzyna M. Luda, Rory J. McCrimmon, Kei Sakamoto, Graham Rena, Alison D. McNeilly

Aims

The benefit of salicylate in the treatment of diabetes has been recognized for over a century; however, challenging side effects have prevented widespread use. A better understanding of the relevant enzyme targets mediating its anti-hyperglycaemic effect may lead to the development of novel therapies for diabetes. Here, we investigated the contribution of 5′-adenosine monophosphate (AMP)-dependent inhibition of fructose-1,6-bisphosphatase 1 (FBP1) to the anti-hyperglycaemic action of salicylate.

Methods

We studied AMP-insensitive FBP1 G27P knockin (KI) mice through a variety of cellular approaches, including proteomics, Seahorse metabolic analysis, glucose production, and other assays, in addition to a detailed assessment of metabolic responses in vivo.

Results

Compared with wild-type littermates, AMP-insensitive FBP1 KI mice were resistant to the effects of the drug on body weight, glucose tolerance, pyruvate disposal, liver lipid content and hepatic glucose production. Compared with wild-type, KI hepatocytes exhibited baseline differences in glycolytic, TCA cycle and fatty acid oxidation enzyme levels, potentially linking gluconeogenic dysregulation and its reversal to non-carbohydrate fuel management.

Conclusion

Collectively, our data highlight a novel mechanism of action for the effects of salicylate on glycaemia and weight gain, which depends on AMP-mediated allosteric inhibition of FBP1.

一个多世纪以来,人们已经认识到水杨酸盐治疗糖尿病的益处;然而,具有挑战性的副作用阻碍了它的广泛使用。更好地了解介导其抗高血糖作用的相关酶靶点可能会导致糖尿病新疗法的发展。在这里,我们研究了5 ' -腺苷单磷酸(AMP)依赖性抑制果糖-1,6-二磷酸酶1 (FBP1)对水杨酸的抗高血糖作用的贡献。我们通过多种细胞方法研究amp不敏感的FBP1 G27P敲入(KI)小鼠,包括蛋白质组学、海马代谢分析、葡萄糖产生和其他分析,以及体内代谢反应的详细评估。结果与野生型小鼠相比,amp不敏感的FBP1 KI小鼠对药物对体重、葡萄糖耐量、丙酮酸处理、肝脏脂质含量和肝脏葡萄糖生成的影响具有抗性。与野生型肝细胞相比,KI肝细胞在糖酵解、TCA循环和脂肪酸氧化酶水平上表现出基线差异,可能将糖异生失调及其逆转与非碳水化合物燃料管理联系起来。总之,我们的数据强调了水杨酸对血糖和体重增加的影响的一种新的作用机制,这取决于amp介导的FBP1的变抗抑制。
{"title":"The Ancient Drug Salicylate Indirectly Targets Fructose-1,6-Bisphosphatase to Suppress Liver Glucose Production in Diet-Induced Obese Mice","authors":"Raid B. Nisr,&nbsp;Abdelmadjid Atrih,&nbsp;Erika J. Gutierrez Lara,&nbsp;Douglas Lamont,&nbsp;Katarzyna M. Luda,&nbsp;Rory J. McCrimmon,&nbsp;Kei Sakamoto,&nbsp;Graham Rena,&nbsp;Alison D. McNeilly","doi":"10.1111/apha.70058","DOIUrl":"https://doi.org/10.1111/apha.70058","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aims</h3>\u0000 \u0000 <p>The benefit of salicylate in the treatment of diabetes has been recognized for over a century; however, challenging side effects have prevented widespread use. A better understanding of the relevant enzyme targets mediating its anti-hyperglycaemic effect may lead to the development of novel therapies for diabetes. Here, we investigated the contribution of 5′-adenosine monophosphate (AMP)-dependent inhibition of fructose-1,6-bisphosphatase 1 (FBP1) to the anti-hyperglycaemic action of salicylate.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We studied AMP-insensitive FBP1 G27P knockin (KI) mice through a variety of cellular approaches, including proteomics, Seahorse metabolic analysis, glucose production, and other assays, in addition to a detailed assessment of metabolic responses in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Compared with wild-type littermates, AMP-insensitive FBP1 KI mice were resistant to the effects of the drug on body weight, glucose tolerance, pyruvate disposal, liver lipid content and hepatic glucose production. Compared with wild-type, KI hepatocytes exhibited baseline differences in glycolytic, TCA cycle and fatty acid oxidation enzyme levels, potentially linking gluconeogenic dysregulation and its reversal to non-carbohydrate fuel management.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Collectively, our data highlight a novel mechanism of action for the effects of salicylate on glycaemia and weight gain, which depends on AMP-mediated allosteric inhibition of FBP1.</p>\u0000 </section>\u0000 </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144108820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial Bioenergetics in Physiology 生理学中的线粒体生物能量学
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-19 DOI: 10.1111/apha.70056
Martin Jastroch, Michaela Keuper
<p>Physiology aims to understand the mechanisms that enable organisms to live in and adapt to their environment. These mechanisms range from the whole organism to the molecular level, but in all cases, energy has to be funneled into specific cellular functions. The central interfaces converting nutrients to cellular energy are small intracellular organelles, the mitochondria. Given the pivotal role of mitochondrial bioenergetics for powering physiology, a very active research field currently seeks to decipher how mitochondrial functions are integrated into cellular and organismic physiology, and how mitochondria contribute to ecological adaptation and human diseases.</p><p><i>Acta Physiologica</i> recently collated a special issue titled ‘Mitochondrial Bioenergetics in Physiology’, covering various aspects of mitochondrial adaptations in ectotherms, heat production in endotherms, the role of mitochondria in metabolic signaling during physiological challenges, and the function of mitochondrial transporters (Figure 1). The special issue reports on various aspects of mitochondrial involvement in health and disease, such as sarcopenia, pulmonary hypertension and cardioprotection, and factors regulating mitochondrial function, including microRNA and mitophagy, expanding our current understanding on mitochondrial physiology.</p><p>Despite their many cellular functions, mitochondria are best known for the oxidation of substrates to transport electrons along the respiratory chain, using the liberated energy to pump protons from the matrix over the mitochondrial inner membrane into the intermembrane space, thereby storing potential energy in a proton gradient that produces ATP. Although this mechanism is universal to all mitochondria, the efficiency and regulation differ tremendously between organisms, organs, and cell types, as they have to deal with different environmental and physiological challenges, requiring molecular integration into specific cellular functions to match energetic supply and demand.</p><p>The thermal environment of mitochondria can vary greatly in ectothermic organisms, where body temperature tracks the ambient temperature. Ectotherms represent beautiful model organisms to understand the effects of temperature on mitochondrial function and its relation to adaptation and physiological performance [<span>1</span>]. The Crucian carp, for example, lives in Scandinavian lakes and experiences frequent fluctuations in temperature and oxygenation that require different handling of mitochondrial oxidative stress as compared to mitochondria of the mouse [<span>2</span>]. Exposing fish to different temperatures over multiple generations uncovers that mitochondrial efficiency can adapt [<span>3</span>].</p><p>Mitochondria of endothermic birds and mammals are surrounded by a mostly warm environment, created by heat production of mitochondria themselves. We are still not sure how sufficient mitochondrial capacity evolved to sustain endothermy, bu
生理学的目的是了解有机体在环境中生存和适应环境的机制。这些机制的范围从整个生物体到分子水平,但在所有情况下,能量必须汇集到特定的细胞功能。将营养物质转化为细胞能量的中心界面是细胞内的小细胞器,即线粒体。鉴于线粒体生物能量学在生理动力中的关键作用,目前一个非常活跃的研究领域正在寻求破译线粒体功能如何整合到细胞和生物体生理中,以及线粒体如何促进生态适应和人类疾病。《生理学学报》最近整理了一期题为“生理学中的线粒体生物能量学”的特刊,涵盖了变温动物线粒体适应的各个方面,恒温动物的产热,生理挑战时线粒体在代谢信号中的作用,以及线粒体转运体的功能(图1)。特刊报道了线粒体参与健康和疾病的各个方面,如肌肉减少症、肺动脉高压和心脏保护,以及调节线粒体功能的因素,包括microRNA和线粒体自噬,扩大了我们目前对线粒体生理学的理解。尽管线粒体具有许多细胞功能,但其最著名的功能是氧化底物,沿呼吸链传输电子,利用释放的能量将质子从基质中泵出,穿过线粒体内膜进入膜间空间,从而以质子梯度储存势能,产生ATP。尽管这一机制对所有线粒体都是通用的,但由于它们必须应对不同的环境和生理挑战,需要分子整合到特定的细胞功能中以匹配能量供应和需求,因此在生物体、器官和细胞类型之间,线粒体的效率和调节存在巨大差异。在变温生物中,线粒体的热环境变化很大,体温随环境温度变化。变温动物为了解温度对线粒体功能的影响及其与适应和生理性能的关系提供了很好的模式生物[0]。例如,鲫鱼生活在斯堪的纳维亚的湖泊中,温度和氧合的波动频繁,与老鼠的线粒体相比,它们需要不同的线粒体氧化应激处理方法。将鱼暴露在不同的温度下多代发现线粒体效率可以适应[3]。吸热鸟类和哺乳动物的线粒体周围大多是温暖的环境,这是由线粒体自身产热造成的。我们仍然不确定线粒体是如何进化出足够的能力来维持恒温动物的,但是一些爬行动物,如泰古蜥蜴,能够为后代的孵化和繁殖提供兼性产热。新的数据表明,这些吸热事件伴随着骨骼肌[5]的线粒体适应,揭示了热量的分子来源,并描绘了向持续吸热发展的事件的画面。在恒温动物中,线粒体如何增加热量的产生在棕色脂肪组织(BAT)中得到了很好的描述,棕色脂肪组织是一种加热器官,在哺乳动物的进化中进化得相当晚,只有在真动物哺乳动物中才有。棕色脂肪细胞充满线粒体,表达一种特殊的产热蛋白,称为解偶联蛋白1 (UCP1),存在于线粒体内膜中。UCP1通过将质子泄漏回线粒体基质而绕过ATP合酶,因此不仅以热量的形式耗散了电化学梯度储存的能量,而且还释放出与细胞ATP稳态不耦合的高氧化速率。大约50年前,尼科尔斯实验室在理解BAT产热方面取得了巨大的飞跃,从一个真实的角度进行了回顾。尽管最近发表了cryo-EM结构[8,9],但质子易位的分子机制仍未解决,因此了解UCP1的调控仍然是一个活跃的研究领域。Musiol和他的同事发现了小鼠和人类变体之间抑制剂敏感性的差异,这表明自然发生的功能差异是在蛋白质水平[10]编码的。线粒体溶质载体家族25 (SLC25)的其他成员也可以泄漏质子,如2-氧戊二酸/苹果酸载体[11]。消散质子梯度以提高代谢率长期以来一直是生物医学界的兴趣,促进了化学解偶联剂的合成。一项新的研究表明,解偶联剂BAM15改善了脂肪肝临床前模型的代谢谱。 然而,SLC25和其他转运蛋白的典型功能是在细胞质和线粒体之间交换生物分子,虽然干扰会导致功能障碍和疾病,但这些转运蛋白也代表了多种疾病的药物靶标机会([13]综述)。为了精确的药物设计,需要揭示蛋白质结构和转运机制。Tavoulari和同事回顾了糖酵解终产物丙酮酸转运到线粒体基质[14]的历史和挑战,最近终于解决了机制和结构[15-17]。线粒体生物学在疾病中的作用是多种多样的,尽管取得了重大进展,但许多方面仍处于发现阶段。线粒体参与代谢疾病、脑功能、衰老和许多其他过程。在本期中,我们将了解线粒体如何通过蛋白质质量控制来维持器官功能,如何在氧化应激过程中成为敌人,如何控制全身代谢,并了解调节线粒体功能的新方法,例如通过microRNAs。线粒体质量控制紊乱可导致多种疾病。因此,在称为线粒体自噬的过程中清除功能失调的线粒体是很重要的。一项新的研究表明,转录因子HIF-1α似乎通过促进线粒体自噬[18]介导心肌梗死期间的心脏保护。摄入的咖啡因等化学物质会影响线粒体的质量控制。咖啡因似乎是通过帕金蛋白起作用的,帕金蛋白是一种参与线粒体自噬的关键蛋白质,在肌肉再生中起作用。大多数线粒体蛋白是核编码的,需要输入到线粒体中。Vazquez-Calvo及其同事研究了新输入蛋白质对聚集的敏感性,强调了蛋白质质量控制(PQC)系统在维持线粒体功能[20]中的作用。线粒体活性氧(ROS)的产生会造成损伤,特别是在器官暴露于不同浓度的氧气和底物时缺血再灌注时。我们仍然没有完全了解哪些机制增加或抵消活性氧水平的波动。Li和同事认为线粒体富马酸可以促进肾细胞[21]缺血/再灌注损伤(I/RI)后的小管损伤。化合物Z是一种大电导Ca2+−激活的K+通道(BKCa)激活剂,可以预防缺氧引起的线粒体功能障碍,突出了其在缺氧/再氧化[22]过程中减少ROS产生的能力。新兴的microRNAs领域与线粒体功能相结合,表明miRNA210似乎参与了缺氧诱导的肺动脉高压[23]期间线粒体的病理生理。线粒体的功能在不同的器官和细胞类型之间差别很大。胰腺细胞通过将葡萄糖感知转化为增加的ATP/ADP比率,从而触发胰岛素分泌,从而提供独特的线粒体设置。Munoz和他的同事回顾了这种独特的代谢机制是如何在2型糖尿病后遗症中受到干扰的,而其他人则展示了miR-29如何影响线粒体功能[25]。在许多其他细胞类型中,线粒体呼吸是由ATP需求控制的。如果线粒体不能满足ATP的需求,细胞和器官的功能将不可避免地下降,就像衰老过程中看到的那样。比较不同衰老豚鼠品系海马的线粒体呼吸,突出了线粒体性能、衰老和认知能力下降之间的联系。肌肉线粒体必须为运动和力量提供ATP。肌少症是一种影响生活质量和健康的肌肉质量和功能的进行性损失,它引起了人们对靶向线粒体来对抗肌肉萎缩[27]的兴趣。体育活动是目前唯一已知的治疗肌肉减少症的方法,而单次运动似乎启动了与线粒体自噬[28]相关的事件。其他人发现耐力训练增强了肌红蛋白和呼吸复合体IV[29]之间的相互作用。在肌肉的复杂调控网络中,丝氨酸/苏氨酸激酶家族中的丝裂原活化蛋白激酶(MAPK) p38 α被确定为线粒体功能[30]的关键介质。此外,过表达Mitofusin 2 (Mfn2),控制小鼠肌肉中的线粒体融合事件,改善肌肉质量和线粒体功能,抵消肌肉减少症[31]。线粒体还可以缓冲各种肌肉功能所需的钙水平,正如一项研究所显示的那样,它可以消融小白蛋白,这是肌肉中主要的钙缓冲物。 这期关于线粒体的特刊证明了研究界越来越认识到线粒体在生理中的生物能量作用,发现了线粒体调节和机制的新方面,激发了新的研究来揭示线粒体与生理之间的机制联系。作者声明无利益冲突。
{"title":"Mitochondrial Bioenergetics in Physiology","authors":"Martin Jastroch,&nbsp;Michaela Keuper","doi":"10.1111/apha.70056","DOIUrl":"https://doi.org/10.1111/apha.70056","url":null,"abstract":"&lt;p&gt;Physiology aims to understand the mechanisms that enable organisms to live in and adapt to their environment. These mechanisms range from the whole organism to the molecular level, but in all cases, energy has to be funneled into specific cellular functions. The central interfaces converting nutrients to cellular energy are small intracellular organelles, the mitochondria. Given the pivotal role of mitochondrial bioenergetics for powering physiology, a very active research field currently seeks to decipher how mitochondrial functions are integrated into cellular and organismic physiology, and how mitochondria contribute to ecological adaptation and human diseases.&lt;/p&gt;&lt;p&gt;&lt;i&gt;Acta Physiologica&lt;/i&gt; recently collated a special issue titled ‘Mitochondrial Bioenergetics in Physiology’, covering various aspects of mitochondrial adaptations in ectotherms, heat production in endotherms, the role of mitochondria in metabolic signaling during physiological challenges, and the function of mitochondrial transporters (Figure 1). The special issue reports on various aspects of mitochondrial involvement in health and disease, such as sarcopenia, pulmonary hypertension and cardioprotection, and factors regulating mitochondrial function, including microRNA and mitophagy, expanding our current understanding on mitochondrial physiology.&lt;/p&gt;&lt;p&gt;Despite their many cellular functions, mitochondria are best known for the oxidation of substrates to transport electrons along the respiratory chain, using the liberated energy to pump protons from the matrix over the mitochondrial inner membrane into the intermembrane space, thereby storing potential energy in a proton gradient that produces ATP. Although this mechanism is universal to all mitochondria, the efficiency and regulation differ tremendously between organisms, organs, and cell types, as they have to deal with different environmental and physiological challenges, requiring molecular integration into specific cellular functions to match energetic supply and demand.&lt;/p&gt;&lt;p&gt;The thermal environment of mitochondria can vary greatly in ectothermic organisms, where body temperature tracks the ambient temperature. Ectotherms represent beautiful model organisms to understand the effects of temperature on mitochondrial function and its relation to adaptation and physiological performance [&lt;span&gt;1&lt;/span&gt;]. The Crucian carp, for example, lives in Scandinavian lakes and experiences frequent fluctuations in temperature and oxygenation that require different handling of mitochondrial oxidative stress as compared to mitochondria of the mouse [&lt;span&gt;2&lt;/span&gt;]. Exposing fish to different temperatures over multiple generations uncovers that mitochondrial efficiency can adapt [&lt;span&gt;3&lt;/span&gt;].&lt;/p&gt;&lt;p&gt;Mitochondria of endothermic birds and mammals are surrounded by a mostly warm environment, created by heat production of mitochondria themselves. We are still not sure how sufficient mitochondrial capacity evolved to sustain endothermy, bu","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144085231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic High-Fat Diet Consumption Followed by Lipopolysaccharide Challenge Induces Persistent and Long-Lasting Microglial Priming, Mediates Synaptic Elimination via Complement C1q, and Leads to Behavioral Abnormalities in Male Wistar Rats 雄性Wistar大鼠慢性高脂肪饮食后脂多糖刺激诱导持续和持久的小胶质启动,通过补体C1q介导突触消除,并导致行为异常
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-19 DOI: 10.1111/apha.70060
Titikorn Chunchai, Hiranya Pintana, Chanon Kunasol, Patcharapong Pantiya, Busarin Arunsak, Sasiwan Kerdphoo, Wichwara Nawara, Suriphan Donchada, Nattayaporn Apaijai, Jirapas Sripetchwandee, Chanisa Thonusin, Nipon Chattipakorn, Siriporn C. Chattipakorn

Aim

Microglia exhibit innate immune memory, altering their responses to subsequent challenges. Consumption of high-fat diet (HFD) triggers innate immune responses, but the characteristics of HFD-induced microglial priming remain unclear. We aim to investigate how HFD-induced microglial priming, followed by a lipopolysaccharide (LPS) challenge, affects brain functions.

Methods

Male Wistar rats were divided into control, unprimed, and primed groups. The primed groups received either a single LPS injection (0.5 mg/kg, intraperitoneally) or HFD consumption for 4–8 weeks. Following the priming phase, all rats (except controls) were subjected to an LPS challenge with a 4- or 8-week interval. After 24 h of LPS challenge, cognition, anxiety-, and depressive-like behaviors were assessed. The brain and hippocampus were collected for further analysis.

Results

Both LPS- and 4-week HFD-primed groups, followed by LPS challenge, exhibited increased peripheral and brain oxidative stress, impaired neurogenesis, disrupted neurotransmitter balance, and altered glycolysis and Krebs cycle substrates. These changes also caused microglial morphological alterations, elevated C1q levels, and synaptic loss, which were associated with anxiety- and depressive-like behaviors, indicating that 4-week HFD consumption has a similar immune priming ability to a single dose of LPS injection. Extending HFD priming to 8 weeks exacerbated microglial and brain inflammation, synaptic loss, and behavioral deficits. Furthermore, prolonging the interval between priming and LPS challenge worsened inflammation and cognitive decline, suggesting the persistent effects of microglial priming.

Conclusions

HFD consumption persistently and time-dependently primes microglia similar to a single LPS injection, influencing immune responses and contributing to behavioral abnormalities.

目的小胶质细胞表现出先天免疫记忆,改变它们对后续挑战的反应。食用高脂肪饮食(HFD)会触发先天免疫反应,但HFD诱导的小胶质细胞启动的特征尚不清楚。我们的目的是研究hfd诱导的小胶质细胞启动,随后脂多糖(LPS)挑战,如何影响大脑功能。方法雄性Wistar大鼠分为对照组、未启动组和启动组。启动组接受单次LPS注射(0.5 mg/kg,腹腔注射)或消耗HFD,持续4-8周。在启动阶段之后,所有大鼠(除对照组外)都以4周或8周的间隔进行LPS刺激。LPS刺激24小时后,评估认知、焦虑和抑郁样行为。收集大脑和海马体作进一步分析。结果LPS组和4周hfd组均表现出外周和大脑氧化应激增加,神经发生受损,神经递质平衡被破坏,糖酵解和克雷布斯循环底物改变。这些变化还引起小胶质细胞形态学改变、C1q水平升高和突触丢失,这些与焦虑和抑郁样行为相关,表明4周食用HFD与单剂量LPS注射具有相似的免疫启动能力。HFD启动延长至8周会加重小胶质细胞和脑炎症、突触丧失和行为缺陷。此外,延长启动和LPS挑战之间的间隔会加重炎症和认知能力下降,这表明小胶质细胞启动的持续作用。结论持续且时间依赖性地消耗高脂食物会激活小胶质细胞,影响免疫反应并导致行为异常,类似于单次注射LPS。
{"title":"Chronic High-Fat Diet Consumption Followed by Lipopolysaccharide Challenge Induces Persistent and Long-Lasting Microglial Priming, Mediates Synaptic Elimination via Complement C1q, and Leads to Behavioral Abnormalities in Male Wistar Rats","authors":"Titikorn Chunchai,&nbsp;Hiranya Pintana,&nbsp;Chanon Kunasol,&nbsp;Patcharapong Pantiya,&nbsp;Busarin Arunsak,&nbsp;Sasiwan Kerdphoo,&nbsp;Wichwara Nawara,&nbsp;Suriphan Donchada,&nbsp;Nattayaporn Apaijai,&nbsp;Jirapas Sripetchwandee,&nbsp;Chanisa Thonusin,&nbsp;Nipon Chattipakorn,&nbsp;Siriporn C. Chattipakorn","doi":"10.1111/apha.70060","DOIUrl":"https://doi.org/10.1111/apha.70060","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Microglia exhibit innate immune memory, altering their responses to subsequent challenges. Consumption of high-fat diet (HFD) triggers innate immune responses, but the characteristics of HFD-induced microglial priming remain unclear. We aim to investigate how HFD-induced microglial priming, followed by a lipopolysaccharide (LPS) challenge, affects brain functions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Male Wistar rats were divided into control, unprimed, and primed groups. The primed groups received either a single LPS injection (0.5 mg/kg, intraperitoneally) or HFD consumption for 4–8 weeks. Following the priming phase, all rats (except controls) were subjected to an LPS challenge with a 4- or 8-week interval. After 24 h of LPS challenge, cognition, anxiety-, and depressive-like behaviors were assessed. The brain and hippocampus were collected for further analysis.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Both LPS- and 4-week HFD-primed groups, followed by LPS challenge, exhibited increased peripheral and brain oxidative stress, impaired neurogenesis, disrupted neurotransmitter balance, and altered glycolysis and Krebs cycle substrates. These changes also caused microglial morphological alterations, elevated C1q levels, and synaptic loss, which were associated with anxiety- and depressive-like behaviors, indicating that 4-week HFD consumption has a similar immune priming ability to a single dose of LPS injection. Extending HFD priming to 8 weeks exacerbated microglial and brain inflammation, synaptic loss, and behavioral deficits. Furthermore, prolonging the interval between priming and LPS challenge worsened inflammation and cognitive decline, suggesting the persistent effects of microglial priming.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>HFD consumption persistently and time-dependently primes microglia similar to a single LPS injection, influencing immune responses and contributing to behavioral abnormalities.</p>\u0000 </section>\u0000 </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144085503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Phasic Store-Operated Calcium Entry in Rat Slow- and Fast-Twitch Muscle Fibers 大鼠慢肌纤维和快肌纤维相储运钙输入的比较
IF 5.6 2区 医学 Q1 PHYSIOLOGY Pub Date : 2025-05-19 DOI: 10.1111/apha.70059
Elena Lilliu, Rocky Choi, Karlheinz Hilber, Bradley Launikonis, Xaver Koenig

Aim

This study investigates the activation and regulation of phasic store-operated calcium entry (pSOCE) in fast- and slow-twitch skeletal muscle fibers. Specifically, we aimed to enhance the sensitivity of pSOCE detection in slow-twitch fibers by optimizing ionic conditions and to compare the physiological relevance of pSOCE between fiber types.

Methods

We employed mechanically skinned fast-twitch extensor digitorum longus (EDL) muscle fibers loaded with spectrally distinct Ca2+-sensitive dyes to simultaneously measure action potential-induced sarcoplasmic reticulum Ca2+ release and t-tubular system Ca2+ dynamics with millisecond resolution. Experimental conditions were optimized by reducing cytosolic Mg2+ and EGTA buffering to enhance Ca2+ release in slow-twitch soleus fibers. Confocal microscopy was used to track t-tubular system Ca2+ depletion and reuptake during electric field stimulation.

Results

Skinned soleus fibers exhibited ~8-fold lower Ca2+ release per action potential compared to EDL fibers, yet pSOCE amplitudes were comparable. Reducing Mg2+ and EGTA levels increased Ca2+ release and left pSOCE kinetics in EDL fibers unaltered, but enabled pSOCE measurements in soleus fibers. While pSOCE in EDL fibers followed a linear dependence on the ambient Ca2+ concentration in the t-tubular system, such a relationship was violated in soleus fibers.

Conclusion

These findings reveal a novel, fiber-type-specific difference in pSOCE regulation. When compared to EDL fibers, soleus fibers exhibited a higher sensitivity to SOCE activation despite releasing less Ca2+ from the sarcoplasmic reticulum upon an action potential. These differences may allow soleus fibers to sustain Ca2+ homeostasis more effectively, be more resilient against disruptions in Ca2+ handling, and entail protection against disease states.

目的研究骨骼肌快、慢肌纤维中相储运钙进入(pSOCE)的激活和调控。具体来说,我们旨在通过优化离子条件来提高慢肌纤维中pSOCE检测的灵敏度,并比较不同纤维类型之间pSOCE的生理相关性。方法采用机械皮肤快速抽动指长伸肌(EDL)肌纤维加载不同的Ca2+敏感染料,以毫秒分辨率同时测量动作电位诱导的肌浆网Ca2+释放和t管系统Ca2+动力学。通过减少胞浆中Mg2+和EGTA缓冲来增强慢抽搐比目鱼肌纤维中Ca2+的释放,优化实验条件。共聚焦显微镜用于跟踪电场刺激时t管系统Ca2+的消耗和再摄取。结果与EDL纤维相比,剥皮比目鱼肌纤维的每动作电位Ca2+释放量低约8倍,但pSOCE振幅相当。降低Mg2+和EGTA水平增加Ca2+释放,EDL纤维中的pSOCE动力学保持不变,但使比目鱼纤维中的pSOCE测量成为可能。EDL纤维中的pSOCE与t管系统中环境Ca2+浓度呈线性关系,而比目鱼纤维中的这种关系则被打破。结论这些发现揭示了pSOCE调控中一种新颖的、纤维类型特异性的差异。与EDL纤维相比,比目鱼肌纤维对SOCE激活表现出更高的敏感性,尽管在动作电位时肌浆网释放的Ca2+较少。这些差异可能允许比目鱼纤维更有效地维持Ca2+稳态,对Ca2+处理的破坏更有弹性,并对疾病状态提供保护。
{"title":"Comparison of Phasic Store-Operated Calcium Entry in Rat Slow- and Fast-Twitch Muscle Fibers","authors":"Elena Lilliu,&nbsp;Rocky Choi,&nbsp;Karlheinz Hilber,&nbsp;Bradley Launikonis,&nbsp;Xaver Koenig","doi":"10.1111/apha.70059","DOIUrl":"https://doi.org/10.1111/apha.70059","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>This study investigates the activation and regulation of phasic store-operated calcium entry (pSOCE) in fast- and slow-twitch skeletal muscle fibers. Specifically, we aimed to enhance the sensitivity of pSOCE detection in slow-twitch fibers by optimizing ionic conditions and to compare the physiological relevance of pSOCE between fiber types.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We employed mechanically skinned fast-twitch extensor digitorum longus (EDL) muscle fibers loaded with spectrally distinct Ca<sup>2+</sup>-sensitive dyes to simultaneously measure action potential-induced sarcoplasmic reticulum Ca<sup>2+</sup> release and t-tubular system Ca<sup>2+</sup> dynamics with millisecond resolution. Experimental conditions were optimized by reducing cytosolic Mg<sup>2+</sup> and EGTA buffering to enhance Ca<sup>2+</sup> release in slow-twitch soleus fibers. Confocal microscopy was used to track t-tubular system Ca<sup>2+</sup> depletion and reuptake during electric field stimulation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Skinned soleus fibers exhibited ~8-fold lower Ca<sup>2+</sup> release per action potential compared to EDL fibers, yet pSOCE amplitudes were comparable. Reducing Mg<sup>2+</sup> and EGTA levels increased Ca<sup>2+</sup> release and left pSOCE kinetics in EDL fibers unaltered, but enabled pSOCE measurements in soleus fibers. While pSOCE in EDL fibers followed a linear dependence on the ambient Ca<sup>2+</sup> concentration in the t-tubular system, such a relationship was violated in soleus fibers.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>These findings reveal a novel, fiber-type-specific difference in pSOCE regulation. When compared to EDL fibers, soleus fibers exhibited a higher sensitivity to SOCE activation despite releasing less Ca<sup>2+</sup> from the sarcoplasmic reticulum upon an action potential. These differences may allow soleus fibers to sustain Ca<sup>2+</sup> homeostasis more effectively, be more resilient against disruptions in Ca<sup>2+</sup> handling, and entail protection against disease states.</p>\u0000 </section>\u0000 </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 6","pages":""},"PeriodicalIF":5.6,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.70059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144085502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Acta Physiologica
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1