Pub Date : 2024-01-01Epub Date: 2023-09-05DOI: 10.1080/10408363.2023.2242481
Adam Rossiter, Ashley La, Jay L Koyner, Lui G Forni
Acute kidney injury (AKI) is a commonly encountered clinical syndrome. Although it often complicates community acquired illness, it is more common in hospitalized patients, particularly those who are critically ill or who have undergone major surgery. Approximately 20% of hospitalized adult patients develop an AKI during their hospital care, and this rises to nearly 60% in the critically ill, depending on the population being considered. In general, AKI is more common in older adults, in those with preexisting chronic kidney disease and in those with known risk factors for AKI (including diabetes and hypertension). The development of AKI is associated with an increase in both mortality and morbidity, including the development of post-AKI chronic kidney disease. Currently, AKI is defined by a rise in serum creatinine from either a known or derived baseline value and/or oliguria or anuria. However, clinicians may fail to recognize the initial development of AKI because of a delay in the rise of serum creatinine or because of inaccurate urine output monitoring. This, in turn, delays any putative measures to treat AKI or to limit its degree. Consequently, efforts have focused on new biomarkers associated with AKI that may allow early recognition of this syndrome with the intent that this will translate into improved patient outcomes. Here we outline current biomarkers associated with AKI and explore their potential in aiding diagnosis, understanding the pathophysiology and directing therapy.
急性肾损伤(AKI)是一种常见的临床综合征。虽然它经常与社区获得性疾病并发,但在住院患者中更为常见,尤其是重症患者或接受过大手术的患者。约有 20% 的住院成人患者在住院治疗期间发生了 AKI,而在重症患者中,这一比例上升到近 60%,这取决于所考虑的人群。一般来说,AKI 更常见于老年人、原有慢性肾脏疾病的患者以及有已知 AKI 危险因素(包括糖尿病和高血压)的患者。发生 AKI 会增加死亡率和发病率,包括发生 AKI 后慢性肾病。目前,AKI 的定义是血清肌酐从已知或推导的基线值升高和/或少尿或无尿。然而,由于血清肌酐上升延迟或尿量监测不准确,临床医生可能无法识别 AKI 的最初发展。这反过来又会延误任何治疗 AKI 或限制其程度的措施。因此,人们开始关注与 AKI 相关的新生物标志物,以便及早识别这种综合征,从而改善患者的预后。在此,我们概述了目前与 AKI 相关的生物标志物,并探讨了它们在帮助诊断、了解病理生理学和指导治疗方面的潜力。
{"title":"New biomarkers in acute kidney injury.","authors":"Adam Rossiter, Ashley La, Jay L Koyner, Lui G Forni","doi":"10.1080/10408363.2023.2242481","DOIUrl":"10.1080/10408363.2023.2242481","url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a commonly encountered clinical syndrome. Although it often complicates community acquired illness, it is more common in hospitalized patients, particularly those who are critically ill or who have undergone major surgery. Approximately 20% of hospitalized adult patients develop an AKI during their hospital care, and this rises to nearly 60% in the critically ill, depending on the population being considered. In general, AKI is more common in older adults, in those with preexisting chronic kidney disease and in those with known risk factors for AKI (including diabetes and hypertension). The development of AKI is associated with an increase in both mortality and morbidity, including the development of post-AKI chronic kidney disease. Currently, AKI is defined by a rise in serum creatinine from either a known or derived baseline value and/or oliguria or anuria. However, clinicians may fail to recognize the initial development of AKI because of a delay in the rise of serum creatinine or because of inaccurate urine output monitoring. This, in turn, delays any putative measures to treat AKI or to limit its degree. Consequently, efforts have focused on new biomarkers associated with AKI that may allow early recognition of this syndrome with the intent that this will translate into improved patient outcomes. Here we outline current biomarkers associated with AKI and explore their potential in aiding diagnosis, understanding the pathophysiology and directing therapy.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"23-44"},"PeriodicalIF":10.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10145574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1080/10408363.2023.2285284
Ziyad Khatab, Kattreen Hanna, Andrew Rofaeil, Catherine Wang, Raymond Maung, George M. Yousef
No standard tool to measure pathologist workload currently exists. An accurate measure of workload is needed for determining the number of pathologists to be hired, distributing the workload fairly...
{"title":"Pathologist workload, burnout, and wellness: connecting the dots","authors":"Ziyad Khatab, Kattreen Hanna, Andrew Rofaeil, Catherine Wang, Raymond Maung, George M. Yousef","doi":"10.1080/10408363.2023.2285284","DOIUrl":"https://doi.org/10.1080/10408363.2023.2285284","url":null,"abstract":"No standard tool to measure pathologist workload currently exists. An accurate measure of workload is needed for determining the number of pathologists to be hired, distributing the workload fairly...","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":"12 1","pages":""},"PeriodicalIF":10.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138743681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-16DOI: 10.1080/10408363.2023.2234488
Giovanni Ponti, Carmine De Angelis, Rosamaria Ponti, Linda Pongetti, Lorena Losi, Alberto Sticchi, Aldo Tomasi, Tomris Ozben
Hereditary familial tumors constitute 10-15% of all malignancies and present opportunities for the identification of therapeutic approaches against specific germline genetic defects. Hereditary breast and ovarian cancer (HBOC) syndrome, which is linked to the pathogenic mutations of the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) genes, is an important research model for personalized therapeutic approaches for specific germline mutations. HBOC is characterized by multiple cases of breast and ovarian carcinoma in association with other tumors (prostate, pancreas and stomach carcinoma) within the same family branch, a young age of onset (<36 years), bilaterality and an autosomal dominant pattern of inheritance. Counseling, evaluation of the clinical criteria for the diagnosis of HBOC, and the performance of genetic testing allow for the identification of subjects with BRCA1/2 mutations and provide crucial information for clinical and therapeutic management. The identification of a BRCA gene mutation has therapeutic implications for women with metastatic and non-metastatic breast cancer. In the therapeutic setting of BRCA+ breast cancer, treatment with poly (ADP-ribose) polymerase (PARP) inhibitors, which keep cancer cells from repairing their damaged DNA and cause cell death, is remarkable. This review summarizes the evidence demonstrating the value of BRCA1/2 status as a diagnostic and prognostic tool and as a predictive biomarker in the personalized approach to hereditary BRCA + cancers.
{"title":"Hereditary breast and ovarian cancer: from genes to molecular targeted therapies.","authors":"Giovanni Ponti, Carmine De Angelis, Rosamaria Ponti, Linda Pongetti, Lorena Losi, Alberto Sticchi, Aldo Tomasi, Tomris Ozben","doi":"10.1080/10408363.2023.2234488","DOIUrl":"10.1080/10408363.2023.2234488","url":null,"abstract":"<p><p>Hereditary familial tumors constitute 10-15% of all malignancies and present opportunities for the identification of therapeutic approaches against specific germline genetic defects. Hereditary breast and ovarian cancer (HBOC) syndrome, which is linked to the pathogenic mutations of the breast cancer 1 (<i>BRCA1</i>) and breast cancer 2 (<i>BRCA2</i>) genes, is an important research model for personalized therapeutic approaches for specific germline mutations. HBOC is characterized by multiple cases of breast and ovarian carcinoma in association with other tumors (prostate, pancreas and stomach carcinoma) within the same family branch, a young age of onset (<36 years), bilaterality and an autosomal dominant pattern of inheritance. Counseling, evaluation of the clinical criteria for the diagnosis of HBOC, and the performance of genetic testing allow for the identification of subjects with <i>BRCA1/2</i> mutations and provide crucial information for clinical and therapeutic management. The identification of a <i>BRCA</i> gene mutation has therapeutic implications for women with metastatic and non-metastatic breast cancer. In the therapeutic setting of <i>BRCA+</i> breast cancer, treatment with poly (ADP-ribose) polymerase (PARP) inhibitors, which keep cancer cells from repairing their damaged DNA and cause cell death, is remarkable. This review summarizes the evidence demonstrating the value of <i>BRCA1/2</i> status as a diagnostic and prognostic tool and as a predictive biomarker in the personalized approach to hereditary <i>BRCA</i> + cancers.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"640-650"},"PeriodicalIF":10.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9836657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-13DOI: 10.1080/10408363.2023.2232010
James V Harte, Caroline Coleman-Vaughan, Maeve P Crowley, Vitaliy Mykytiv
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.
{"title":"It's in the blood: a review of the hematological system in SARS-CoV-2-associated COVID-19.","authors":"James V Harte, Caroline Coleman-Vaughan, Maeve P Crowley, Vitaliy Mykytiv","doi":"10.1080/10408363.2023.2232010","DOIUrl":"10.1080/10408363.2023.2232010","url":null,"abstract":"<p><p>The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"595-624"},"PeriodicalIF":10.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10132275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-14DOI: 10.1080/10408363.2023.2232039
Konstantinos Dimopoulos, Armando Tripodi, Jens P Goetze
Thrombotic thrombocytopenic purpura (TTP) is a rare and potentially fatal disease for which rapid diagnosis is crucial for patient outcomes. Deficient activity (< 10%) of the liver enzyme, ADAMTS13, is the pathophysiological hallmark of TTP, and measurement of the enzyme activity can establish the diagnosis of TTP with high accuracy. Thus, along with the clinical history, appropriate laboratory assessment of a suspected case of TTP is essential for diagnosis and treatment. Here, we present a review of the available laboratory tests that can assist clinicians in establishing the diagnosis of TTP, with special focus on ADAMTS13 assays, including the measurement of the antigen and activity, and detection of autoantibodies to ADAMTS13.
{"title":"Laboratory investigation and diagnosis of thrombotic thrombocytopenic purpura.","authors":"Konstantinos Dimopoulos, Armando Tripodi, Jens P Goetze","doi":"10.1080/10408363.2023.2232039","DOIUrl":"10.1080/10408363.2023.2232039","url":null,"abstract":"<p><p>Thrombotic thrombocytopenic purpura (TTP) is a rare and potentially fatal disease for which rapid diagnosis is crucial for patient outcomes. Deficient activity (< 10%) of the liver enzyme, ADAMTS13, is the pathophysiological hallmark of TTP, and measurement of the enzyme activity can establish the diagnosis of TTP with high accuracy. Thus, along with the clinical history, appropriate laboratory assessment of a suspected case of TTP is essential for diagnosis and treatment. Here, we present a review of the available laboratory tests that can assist clinicians in establishing the diagnosis of TTP, with special focus on ADAMTS13 assays, including the measurement of the antigen and activity, and detection of autoantibodies to ADAMTS13.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"625-639"},"PeriodicalIF":10.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9778741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-30DOI: 10.1080/10408363.2023.2230290
Aliki Ntzifa, Evi Lianidou
Over the last decade, great advancements have been made in the field of liquid biopsy through extensive research and the development of new technologies that facilitate the use of liquid biopsy for cancer patients. This is shown by the numerous liquid biopsy tests that gained clearance by the US Food and Drug Administration (FDA) in recent years. Liquid biopsy has significantly altered cancer treatment by providing clinicians with powerful and immediate information about therapeutic decisions. However, the clinical integration of liquid biopsy is still challenging and there are many critical factors to consider prior to its implementation into routine clinical practice. Lack of standardization due to technical challenges and the definition of the clinical utility of specific assays further complicates the establishment of Standard Operating Procedures (SOPs) in liquid biopsy. Harmonization of laboratories to established guidelines is of major importance to overcome inter-lab variabilities observed. Quality control assessment in diagnostic laboratories that offer liquid biopsy testing will ensure that clinicians can base their therapeutic decisions on robust results. The regular participation of laboratories in external quality assessment schemes for liquid biopsy testing aims to promptly pinpoint deficiencies and efficiently educate laboratories to improve their quality of services. Accreditation of liquid biopsy diagnostic laboratories based on the ISO15189 standard in Europe or by CLIA/CAP accreditation procedures in the US is the best way to achieve the adaptation of liquid biopsy into the clinical setting by assuring reliable results for the clinicians and their cancer patients. Nowadays, various organizations from academia, industry, and regulatory agencies collaborate to set a framework that will include all procedures from the pre-analytical phase and the analytical process to the final interpretation of results. In this review, we underline several challenges in the analysis of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) concerning standardization of protocols, quality control assessment, harmonization of laboratories, and compliance to specific guidelines that need to be thoroughly considered before liquid biopsy enters the clinic.
{"title":"Pre-analytical conditions and implementation of quality control steps in liquid biopsy analysis.","authors":"Aliki Ntzifa, Evi Lianidou","doi":"10.1080/10408363.2023.2230290","DOIUrl":"10.1080/10408363.2023.2230290","url":null,"abstract":"<p><p>Over the last decade, great advancements have been made in the field of liquid biopsy through extensive research and the development of new technologies that facilitate the use of liquid biopsy for cancer patients. This is shown by the numerous liquid biopsy tests that gained clearance by the US Food and Drug Administration (FDA) in recent years. Liquid biopsy has significantly altered cancer treatment by providing clinicians with powerful and immediate information about therapeutic decisions. However, the clinical integration of liquid biopsy is still challenging and there are many critical factors to consider prior to its implementation into routine clinical practice. Lack of standardization due to technical challenges and the definition of the clinical utility of specific assays further complicates the establishment of Standard Operating Procedures (SOPs) in liquid biopsy. Harmonization of laboratories to established guidelines is of major importance to overcome inter-lab variabilities observed. Quality control assessment in diagnostic laboratories that offer liquid biopsy testing will ensure that clinicians can base their therapeutic decisions on robust results. The regular participation of laboratories in external quality assessment schemes for liquid biopsy testing aims to promptly pinpoint deficiencies and efficiently educate laboratories to improve their quality of services. Accreditation of liquid biopsy diagnostic laboratories based on the ISO15189 standard in Europe or by CLIA/CAP accreditation procedures in the US is the best way to achieve the adaptation of liquid biopsy into the clinical setting by assuring reliable results for the clinicians and their cancer patients. Nowadays, various organizations from academia, industry, and regulatory agencies collaborate to set a framework that will include all procedures from the pre-analytical phase and the analytical process to the final interpretation of results. In this review, we underline several challenges in the analysis of circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) concerning standardization of protocols, quality control assessment, harmonization of laboratories, and compliance to specific guidelines that need to be thoroughly considered before liquid biopsy enters the clinic.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"573-594"},"PeriodicalIF":10.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9888738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01Epub Date: 2023-07-14DOI: 10.1080/10408363.2023.2229915
Santica M Marcovina
Lipoprotein(a) is a complex lipoprotein with unique characteristics distinguishing it from all the other apolipoprotein B-containing lipoprotein particles. Its lipid composition and the presence of a single molecule of apolipoprotein B per particle, render lipoprotein(a) similar to low-density lipoproteins. However, the presence of a unique, carbohydrate-rich protein termed apolipoprotein(a), linked by a covalent bond to apolipoprotein B imparts unique characteristics to lipoprotein(a) distinguishing it from all the other lipoproteins. Apolipoprotein(a) is highly polymorphic in size ranging in molecular weight from <300 KDa to >800 kDa. Both the size polymorphism and the concentration of lipoprotein(a) in plasma are genetically determined and unlike other lipoproteins, plasma concentration is minimally impacted by lifestyle modifications or lipid-lowering drugs. Many studies involving hundreds of thousands of individuals have provided strong evidence that elevated lipoprotein(a) is genetically determined and a causal risk factor for atherosclerotic cardiovascular disease. The concentration attained in adulthood is already present in children at around 5 years of age and therefore, those with elevated lipoprotein(a) are prematurely exposed to a high risk of cardiovascular disease. Despite the large number of guidelines and consensus statements on the management of lipoprotein(a) in atherosclerotic cardiovascular disease published in the last decade, lipoprotein(a) is still seldom measured in clinical settings. In this review, we provide an overview of the most important features that characterize lipoprotein(a), its role in cardiovascular disease, and the importance of adding the measurement of lipoprotein(a) for screening adults and youths to identify those at increased risk of atherosclerotic cardiovascular disease due to their elevated plasma concentration of lipoprotein(a).
{"title":"Lipoprotein(a): a genetically determined risk factor for Cardiovascular disease.","authors":"Santica M Marcovina","doi":"10.1080/10408363.2023.2229915","DOIUrl":"10.1080/10408363.2023.2229915","url":null,"abstract":"<p><p>Lipoprotein(a) is a complex lipoprotein with unique characteristics distinguishing it from all the other apolipoprotein B-containing lipoprotein particles. Its lipid composition and the presence of a single molecule of apolipoprotein B per particle, render lipoprotein(a) similar to low-density lipoproteins. However, the presence of a unique, carbohydrate-rich protein termed apolipoprotein(a), linked by a covalent bond to apolipoprotein B imparts unique characteristics to lipoprotein(a) distinguishing it from all the other lipoproteins. Apolipoprotein(a) is highly polymorphic in size ranging in molecular weight from <300 KDa to >800 kDa. Both the size polymorphism and the concentration of lipoprotein(a) in plasma are genetically determined and unlike other lipoproteins, plasma concentration is minimally impacted by lifestyle modifications or lipid-lowering drugs. Many studies involving hundreds of thousands of individuals have provided strong evidence that elevated lipoprotein(a) is genetically determined and a causal risk factor for atherosclerotic cardiovascular disease. The concentration attained in adulthood is already present in children at around 5 years of age and therefore, those with elevated lipoprotein(a) are prematurely exposed to a high risk of cardiovascular disease. Despite the large number of guidelines and consensus statements on the management of lipoprotein(a) in atherosclerotic cardiovascular disease published in the last decade, lipoprotein(a) is still seldom measured in clinical settings. In this review, we provide an overview of the most important features that characterize lipoprotein(a), its role in cardiovascular disease, and the importance of adding the measurement of lipoprotein(a) for screening adults and youths to identify those at increased risk of atherosclerotic cardiovascular disease due to their elevated plasma concentration of lipoprotein(a).</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"560-572"},"PeriodicalIF":10.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10155004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-05-17DOI: 10.1080/10408363.2023.2209174
Tze Ping Loh, Chun Yee Lim, Sunil Kumar Sethi, Rui Zhen Tan, Corey Markus
Quality control practices in the modern laboratory are the result of significant advances over the many years of the profession. Major advance in conventional internal quality control has undergone a philosophical shift from a focus solely on the statistical assessment of the probability of error identification to more recent thinking on the capability of the measurement procedure (e.g. sigma metrics), and most recently, the risk of harm to the patient (the probability of patient results being affected by an error or the number of patient results with unacceptable analytical quality). Nonetheless, conventional internal quality control strategies still face significant limitations, such as the lack of (proven) commutability of the material with patient samples, the frequency of episodic testing, and the impact of operational and financial costs, that cannot be overcome by statistical advances. In contrast, patient-based quality control has seen significant developments including algorithms that improve the detection of specific errors, parameter optimization approaches, systematic validation protocols, and advanced algorithms that require very low numbers of patient results while retaining sensitive error detection. Patient-based quality control will continue to improve with the development of new algorithms that reduce biological noise and improve analytical error detection. Patient-based quality control provides continuous and commutable information about the measurement procedure that cannot be easily replicated by conventional internal quality control. Most importantly, the use of patient-based quality control helps laboratories to improve their appreciation of the clinical impact of the laboratory results produced, bringing them closer to the patients.Laboratories are encouraged to implement patient-based quality control processes to overcome the limitations of conventional internal quality control practices. Regulatory changes to recognize the capability of patient-based quality approaches, as well as laboratory informatics advances, are required for this tool to be adopted more widely.
{"title":"Advances in internal quality control.","authors":"Tze Ping Loh, Chun Yee Lim, Sunil Kumar Sethi, Rui Zhen Tan, Corey Markus","doi":"10.1080/10408363.2023.2209174","DOIUrl":"10.1080/10408363.2023.2209174","url":null,"abstract":"<p><p>Quality control practices in the modern laboratory are the result of significant advances over the many years of the profession. Major advance in conventional internal quality control has undergone a philosophical shift from a focus solely on the statistical assessment of the probability of error identification to more recent thinking on the capability of the measurement procedure (e.g. sigma metrics), and most recently, the risk of harm to the patient (the probability of patient results being affected by an error or the number of patient results with unacceptable analytical quality). Nonetheless, conventional internal quality control strategies still face significant limitations, such as the lack of (proven) commutability of the material with patient samples, the frequency of episodic testing, and the impact of operational and financial costs, that cannot be overcome by statistical advances. In contrast, patient-based quality control has seen significant developments including algorithms that improve the detection of specific errors, parameter optimization approaches, systematic validation protocols, and advanced algorithms that require very low numbers of patient results while retaining sensitive error detection. Patient-based quality control will continue to improve with the development of new algorithms that reduce biological noise and improve analytical error detection. Patient-based quality control provides continuous and commutable information about the measurement procedure that cannot be easily replicated by conventional internal quality control. Most importantly, the use of patient-based quality control helps laboratories to improve their appreciation of the clinical impact of the laboratory results produced, bringing them closer to the patients.Laboratories are encouraged to implement patient-based quality control processes to overcome the limitations of conventional internal quality control practices. Regulatory changes to recognize the capability of patient-based quality approaches, as well as laboratory informatics advances, are required for this tool to be adopted more widely.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"502-517"},"PeriodicalIF":10.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9847932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-06-05DOI: 10.1080/10408363.2023.2212765
Zhicheng Jin, Roger L Bertholf, Xin Yi
Vitamin D has received significant attention from clinical societies, researchers, and the general population in recent years. While 25-hydroxyvitamin D (25(OH)D) is the most commonly-used biomarker of vitamin D status, 1α,25-dihydroxyvitamin D (1,25(OH)2D), its bioactive form, plays a critical role in regulating calcium and phosphorus homeostasis and is also involved in the immune system and cellular differentiation. Consequently, accurate measurements of 1,25(OH)2D can aid in the differential diagnosis of calcium-related disorders such as hypocalcemia in vitamin D-dependent rickets and hypercalcemia due to inappropriate increase of serum 1,25(OH)2D in granulomatous diseases. However, due to its lipophilicity and very low circulating concentration, the measurement of 1,25(OH)2D is particularly challenging. Over the past several decades, numerous efforts have been made to develop sensitive, specific, and practical laboratory methods for measuring 1,25(OH)2D. Methods using radioreceptor assay, radioimmunoassay, enzyme immunoassay, enzyme-linked immunosorbent assay, automated chemiluminescent immunoassay, and liquid chromatography-tandem mass spectrometry have been described. Each of these methods has unique advantages and limitations, and some are no longer used. Despite the sophisticated methods in use today, substantial variations between methods still exist. A concerted effort toward standardization of 1,25(OH)2D measurement is needed to ensure accurate and reliable results across laboratories and methods.
{"title":"Advances and challenges in the measurement of 1,25-dihydroxyvitamin D: a comprehensive review.","authors":"Zhicheng Jin, Roger L Bertholf, Xin Yi","doi":"10.1080/10408363.2023.2212765","DOIUrl":"10.1080/10408363.2023.2212765","url":null,"abstract":"<p><p>Vitamin D has received significant attention from clinical societies, researchers, and the general population in recent years. While 25-hydroxyvitamin D (25(OH)D) is the most commonly-used biomarker of vitamin D status, 1α,25-dihydroxyvitamin D (1,25(OH)<sub>2</sub>D), its bioactive form, plays a critical role in regulating calcium and phosphorus homeostasis and is also involved in the immune system and cellular differentiation. Consequently, accurate measurements of 1,25(OH)<sub>2</sub>D can aid in the differential diagnosis of calcium-related disorders such as hypocalcemia in vitamin D-dependent rickets and hypercalcemia due to inappropriate increase of serum 1,25(OH)<sub>2</sub>D in granulomatous diseases. However, due to its lipophilicity and very low circulating concentration, the measurement of 1,25(OH)<sub>2</sub>D is particularly challenging. Over the past several decades, numerous efforts have been made to develop sensitive, specific, and practical laboratory methods for measuring 1,25(OH)<sub>2</sub>D. Methods using radioreceptor assay, radioimmunoassay, enzyme immunoassay, enzyme-linked immunosorbent assay, automated chemiluminescent immunoassay, and liquid chromatography-tandem mass spectrometry have been described. Each of these methods has unique advantages and limitations, and some are no longer used. Despite the sophisticated methods in use today, substantial variations between methods still exist. A concerted effort toward standardization of 1,25(OH)<sub>2</sub>D measurement is needed to ensure accurate and reliable results across laboratories and methods.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"535-548"},"PeriodicalIF":10.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9577552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01Epub Date: 2023-04-27DOI: 10.1080/10408363.2023.2199353
Nina M Diederiks, Yuri E M van der Burgt, L Renee Ruhaak, Christa M Cobbaert
In the past decade a remarkable rebirth of serum/plasma lipoprotein(a) (Lp(a)) as an independent risk factor of cardiovascular disease (CVD) occurred. Updated evidence for a causal continuous association in different ethnic groups between Lp(a) concentrations and cardiovascular outcomes has been published in the latest European Atherosclerosis Society (EAS) Lp(a) consensus statement. Interest in measuring Lp(a) at least once in a person's lifetime moreover originates from the development of promising new Lp(a) lowering drugs. Accurate and clinically effective Lp(a) tests are of key importance for the timely detection of high-risk individuals and for future evaluation of the therapeutic effects of Lp(a) lowering medication. To this end, it is necessary to improve the performance and standardization of existing Lp(a) tests, as is also noted in the Lp(a) consensus statement. Consequently, a state-of-the-art internationally endorsed reference measurement system (RMS) must be in place that allows for performance evaluation of Lp(a) field tests in order to certify their validity and accuracy. An ELISA-based RMS from Northwest Lipid Research Laboratory (University of Washington, Seattle, USA) has been available since the 1990s. A next-generation apo(a)/Lp(a) RMS is now being developed by a working group from the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). The envisioned apo(a) RMS is based on the direct measurement of selected proteotypic fragments generated after proteolytic digestion using quantitative protein mass spectrometry (MS). The choice for an MS-based RMS enables selective measurement of the proteotypic peptides and is by design apo(a) isoform insensitive. Clearly, the equimolar conversion of apo(a) into the surrogate peptide measurands is required to obtain accurate Lp(a) results. The completeness of proteolysis under reaction conditions from the candidate reference measurement procedure (RMP) has been demonstrated for the quantifying apo(a) peptides. Currently, the candidate apo(a) RMP is endorsed by the IFCC and recommendations for suitable secondary reference materials have been made in a recent commutability study paper. Ongoing efforts toward a complete apo(a) RMS that is listed by the Joint Committee on Traceability in Laboratory Medicine (JCTLM) are focused on the peptide-based calibration and the establishment of a network of calibration laboratories running the apo(a) RMS in a harmonized way. Once completed, it will be the holy grail for evaluation and certification of Lp(a) field methods.
{"title":"Developing an SI-traceable Lp(a) reference measurement system: a pilgrimage to selective and accurate apo(a) quantification.","authors":"Nina M Diederiks, Yuri E M van der Burgt, L Renee Ruhaak, Christa M Cobbaert","doi":"10.1080/10408363.2023.2199353","DOIUrl":"10.1080/10408363.2023.2199353","url":null,"abstract":"<p><p>In the past decade a remarkable rebirth of serum/plasma lipoprotein(a) (Lp(a)) as an independent risk factor of cardiovascular disease (CVD) occurred. Updated evidence for a causal continuous association in different ethnic groups between Lp(a) concentrations and cardiovascular outcomes has been published in the latest European Atherosclerosis Society (EAS) Lp(a) consensus statement. Interest in measuring Lp(a) at least once in a person's lifetime moreover originates from the development of promising new Lp(a) lowering drugs. Accurate and clinically effective Lp(a) tests are of key importance for the timely detection of high-risk individuals and for future evaluation of the therapeutic effects of Lp(a) lowering medication. To this end, it is necessary to improve the performance and standardization of existing Lp(a) tests, as is also noted in the Lp(a) consensus statement. Consequently, a <i>state-of-the-art</i> internationally endorsed reference measurement system (RMS) must be in place that allows for performance evaluation of Lp(a) field tests in order to certify their validity and accuracy. An ELISA-based RMS from Northwest Lipid Research Laboratory (University of Washington, Seattle, USA) has been available since the 1990s. A next-generation apo(a)/Lp(a) RMS is now being developed by a working group from the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). The envisioned apo(a) RMS is based on the direct measurement of selected proteotypic fragments generated after proteolytic digestion using quantitative protein mass spectrometry (MS). The choice for an MS-based RMS enables selective measurement of the proteotypic peptides and is by design apo(a) isoform insensitive. Clearly, the equimolar conversion of apo(a) into the surrogate peptide measurands is required to obtain accurate Lp(a) results. The completeness of proteolysis under reaction conditions from the candidate reference measurement procedure (RMP) has been demonstrated for the quantifying apo(a) peptides. Currently, the candidate apo(a) RMP is endorsed by the IFCC and recommendations for suitable secondary reference materials have been made in a recent commutability study paper. Ongoing efforts toward a complete apo(a) RMS that is listed by the Joint Committee on Traceability in Laboratory Medicine (JCTLM) are focused on the peptide-based calibration and the establishment of a network of calibration laboratories running the apo(a) RMS in a harmonized way. Once completed, it will be the holy grail for evaluation and certification of Lp(a) field methods.</p>","PeriodicalId":10760,"journal":{"name":"Critical reviews in clinical laboratory sciences","volume":" ","pages":"483-501"},"PeriodicalIF":10.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9763638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}