Background: Cancer involves uncontrolled cell growth due to genetic mutations. Tumors can form when CDK6, a gene essential for controlling cell growth, isn't working correctly. Researchers are investigating drugs that inhibit CDK6; some of them appear promising. Nevertheless, CDK6 is advantageous and harmful to cancer because it controls other cellular processes. By inhibiting CDK6 and CDK4, CDK4/6 inhibitors offer a novel therapeutic strategy that stops cell proliferation. The study investigates the function of CDK6 in cancer, the difficulties in targeting CDK6, and possible remedies.
Objective: Scientists have developed drugs designed to block CDK6 and prevent it from altering other proteins. These drugs, also known as CDK6 inhibitors, help treat cancer. Finding the best drugs for CDK6 is still tricky, though. The drugs' selectivity, potency, and cost are some difficulties. These factors depend on CDK6's structure and interactions with other proteins. The structure of CDK6 and how it influences its function and regulation are explained in this review. It also describes CDK6's function in cancer and its interaction with other molecules and proteins, which is crucial for cell division. This review also discusses the present and upcoming therapies that target CDK6, as well as how CDK6 interacts with drugs that block it.
Conclusion: This review presents the structure, current research, and overview of CDK6. It also reviews the role of CDK6 in cancer, function, and regulation. Additionally, it explores its role in cancer signaling networks and its interaction with CDK6 inhibitors. Lastly, it discusses the current status and prospects of therapies targeting CDK6.
The main epidemiological and clinical data on colorectal cancer, as well as the features of molecular pathology, are discussed in the literature review. Efforts are being putto identify promising targets, particularly small non-coding nucleotide sequences, which can lead to new treatments for this disease. The discovery of significant mutations that contribute to the development of colorectal tumors is a major step in the advancement of molecular oncology, as these mutations give rise to heterogeneous tumors that differ in their origin. These mutations play a significant role in the progression of the disease and are now being targeted for treatment. The prognosis for a disease is influenced by the patient's sensitivity to antitumor therapy. However, new approaches to finding effective targets for antitumor treatments face new fundamental challenges due to clinical issues. These issues include the epigenetic regulation of markers of oncogenesis, which allows for the development of new therapeutic strategies. RNA interference, in particular, has been linked to non-copying RNA sequences such as microRNAs. These microRNAs are associated with certain processes that can influence all aspects of oncogenesis. The diversity of microRNAs allows for a differentiated approach when treating tumors in various locations.
Diabetes Mellitus (DM) is referred to as hyperglycemia in either fasting or postprandial phases. Oxidative stress, which is defined by an excessive amount of reactive oxygen species (ROS) production, increased exposure to external stress, and an excessive amount of the cellular defense system against them, results in cellular damage. Increased DNA damage is one of the main causes of genomic instability, and genetic changes are an underlying factor in the emergence of cancer. Through covalent connections with DNA and proteins, quercetin has been demonstrated to offer protection against the creation of oxidative DNA damage. It has been found that quercetin shields DNA from possible oxidative stress-related harm by reducing the production of ROS. Therefore, Quercetin helps to lessen DNA damage and improve the ability of DNA repair mechanisms. This review mainly focuses on the role of quercetin in repairing DNA damage and compensating for drug resistance in diabetic patients. Data on the target topic was obtained from major scientific databases, including SpringerLink, Web of Science, Google Scholar, Medline Plus, PubMed, Science Direct, and Elsevier. In preclinical studies, quercetin guards against DNA deterioration by regulating the degree of lipid peroxidation and enhancing the antioxidant defense system. By reactivating antioxidant enzymes, decreasing ROS levels, and decreasing the levels of 8-hydroxydeoxyguanosine, Quercetin protects DNA from oxidative damage. In clinical studies, it was found that quercetin supplementation was related to increased antioxidant capacity and decreased risk of type 2 diabetes mellitus in the experimental group as compared to the placebo group. It is concluded that quercetin has a significant role in DNA repair in order to overcome drug resistance in diabetes.