首页 > 最新文献

Current molecular pharmacology最新文献

英文 中文
Mitochondria-targeted Uncouplers Decrease Inflammatory Reactions in Endothelial Cells by Enhancing Methylation of the ICAM1 Gene Promoter. 线粒体靶向解偶联剂通过增强ICAM1基因启动子的甲基化减少内皮细胞的炎症反应。
IF 2.9 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-01-01 DOI: 10.2174/1874467217666230815142556
Liudmila A Zinovkina, Ciara I Makievskaya, Ivan I Galkin, Roman A Zinovkin

Introduction: The study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions. Mild uncoupling of oxidative phosphorylation and respiration in endothelial mitochondria exerts a long lasting anti-inflammatory effect. However, the detailed mechanism of the anti-inflammatory activity of mitochondrial uncouplers remains unclear.We hypothesized that mild mitochondrial uncoupling leads to epigenetic changes in genomic DNA contributing to the anti-inflammatory response.

Methods: We studied the long-term effects of mitochondria-targeted compounds with the uncoupler's activities: the antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1), dodecyl-triphenylphosphonium (C12TPP), and 2,4-dinitrophenol (DNP). The mRNA expression of the intercellular adhesion molecule 1 (ICAM1), a marker of inflammatory activation of endothelial cells, was measured by RT-qPCR. Cytosine methylation in the CpG sites of the ICAM1 gene promoter was estimated by bisulfite sequencing of individual clones.

Results: It was found that downregulation of ICAM1 expression caused by DNP and C12TPP was accompanied by an increase in the methylation of CpG sites in the ICAM1 gene promoter. None of the compounds affected intracellular or intramitochondrial ATP levels.

Conclusion: Low concentrations of mitochondrial oxidative phosphorylation uncouplers are able to increase methylation of ICAM1 gene promoter, which corresponds to the observed decrease in the levels of mRNA of this gene. Thus, the change in methylation of the ICAM1 gene promoter may underlie the mechanism of decreased ICAM1 expression caused by mild mitochondrial depolarization. Mitochondrial uncouplers may be exploited as possible therapeutic candidates to treat excessive inflammation in endothelium, by changing the methylation status of genomic DNA.

本研究旨在探讨内皮细胞中低浓度线粒体解偶联剂对ICAM1基因启动子CpG二核苷酸甲基化的影响。内皮过度的炎症反应是许多心血管疾病发生的原因。线粒体是内皮细胞功能的重要调节因子。内皮线粒体中氧化磷酸化和呼吸的轻度解偶联具有持久的抗炎作用。然而,线粒体解偶联剂抗炎活性的详细机制尚不清楚。我们假设轻微的线粒体解偶联导致基因组DNA的表观遗传变化,有助于抗炎反应。方法:我们研究了线粒体靶向化合物与解偶联剂活性的长期影响:抗氧化剂塑料喹啉-癸基三苯磷(SkQ1)、十二烷基三苯磷(C12TPP)和2,4-二硝基苯酚(DNP)。采用RT-qPCR检测内皮细胞炎症激活标志物细胞间粘附分子1 (ICAM1)的mRNA表达。ICAM1基因启动子CpG位点的胞嘧啶甲基化通过单个克隆的亚硫酸盐测序来估计。结果:发现DNP和C12TPP引起的ICAM1表达下调伴随着ICAM1基因启动子CpG位点甲基化的增加。这些化合物都不影响细胞内或线粒体内ATP水平。结论:低浓度线粒体氧化磷酸化解偶联剂能够增加ICAM1基因启动子的甲基化,这与观察到的该基因mRNA水平的降低相对应。因此,ICAM1基因启动子甲基化的变化可能是轻度线粒体去极化导致ICAM1表达下降的机制。线粒体解偶联剂可以通过改变基因组DNA的甲基化状态来治疗内皮细胞过度炎症。
{"title":"Mitochondria-targeted Uncouplers Decrease Inflammatory Reactions in Endothelial Cells by Enhancing Methylation of the ICAM1 Gene Promoter.","authors":"Liudmila A Zinovkina, Ciara I Makievskaya, Ivan I Galkin, Roman A Zinovkin","doi":"10.2174/1874467217666230815142556","DOIUrl":"10.2174/1874467217666230815142556","url":null,"abstract":"<p><strong>Introduction: </strong>The study aimed to investigate the effects of low concentrations of mitochondrial uncouplers in endothelial cells on the CpG dinucleotide methylation of the ICAM1 gene promoter. The excessive inflammatory response in the endothelium is responsible for the development of many cardiovascular diseases. Mitochondria are important regulators of endothelial cell functions. Mild uncoupling of oxidative phosphorylation and respiration in endothelial mitochondria exerts a long lasting anti-inflammatory effect. However, the detailed mechanism of the anti-inflammatory activity of mitochondrial uncouplers remains unclear.We hypothesized that mild mitochondrial uncoupling leads to epigenetic changes in genomic DNA contributing to the anti-inflammatory response.</p><p><strong>Methods: </strong>We studied the long-term effects of mitochondria-targeted compounds with the uncoupler's activities: the antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1), dodecyl-triphenylphosphonium (C12TPP), and 2,4-dinitrophenol (DNP). The mRNA expression of the intercellular adhesion molecule 1 (ICAM1), a marker of inflammatory activation of endothelial cells, was measured by RT-qPCR. Cytosine methylation in the CpG sites of the ICAM1 gene promoter was estimated by bisulfite sequencing of individual clones.</p><p><strong>Results: </strong>It was found that downregulation of ICAM1 expression caused by DNP and C12TPP was accompanied by an increase in the methylation of CpG sites in the ICAM1 gene promoter. None of the compounds affected intracellular or intramitochondrial ATP levels.</p><p><strong>Conclusion: </strong>Low concentrations of mitochondrial oxidative phosphorylation uncouplers are able to increase methylation of ICAM1 gene promoter, which corresponds to the observed decrease in the levels of mRNA of this gene. Thus, the change in methylation of the ICAM1 gene promoter may underlie the mechanism of decreased ICAM1 expression caused by mild mitochondrial depolarization. Mitochondrial uncouplers may be exploited as possible therapeutic candidates to treat excessive inflammation in endothelium, by changing the methylation status of genomic DNA.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e150823219723"},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10017169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening and Identification of ESR1 as a Target of Icaritin in Hepatocellular Carcinoma: Evidence from Bibliometrics and Bioinformatic Analysis 筛选和鉴定肝细胞癌中淫羊藿苷的靶点 ESR1:文献计量学和生物信息学分析的证据
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-12-27 DOI: 10.2174/0118761429260902230925044009
Yinghui Zhou, Jia Gu, Huiying Yu, Fengyang Chen, Chao Long, Maiweilan Maihemuti, Tingsong Chen, Wei Zhang
Background: In 2022, icaritin a Traditional Chinese Medicine with estrogen-like activities was recommended by the CSCO guidelines as a systematic treatment for patients with advanced HCC due to its clinical safety and efficacy. However the mechanism and targets of icaritin are unclear. In this study we aimed to reveal the target of icaritin in HCC Methods: First literature related to icaritin was downloaded from the Web of Science. The software programs “Rstudio” “VOSviewer” and “Mendeley Desktop” were used to analyze the distribution of icaritin publications and research hotspots. Meanwhile icaritin-related genes were obtained by combining them with the PubChem database. Second transcriptome data of HCC patients were obtained from the TCGA database. The proteinprotein interaction (PPI) analysis of icaritin-related genes was performed using the String data platform and the visualization and network topology analysis were performed using Cytoscape. Cox regression analyses were combined to screen the hub target and verified it through cell experiments. Results: A total of 239 icaritin-related articles were obtained HCC is a new hotspot in the icaritin field. 292 icaritin-related genes were obtained and a core module containing 34 genes was obtained by module division. Among them ESR1 was an independent prognostic factor. Molecular docking showed that ESR1 and icaritin had a high affinity. Functional studies revealed that ESR1 inhibits HCC cell malignant proliferation and improves the sensitivity of HCC cells to icaritin. Conclusion: We propose that ESR1 as a target of icaritin may be conducive to improving icaritin therapy.
背景:2022 年,具有雌激素样活性的中药伊卡丽汀因其临床安全性和有效性被 CSCO 指南推荐为晚期 HCC 患者的系统治疗药物。然而,伊卡丽汀的作用机制和靶点尚不清楚。本研究旨在揭示伊卡丽汀在 HCC 中的作用靶点:首先从科学网(Web of Science)下载与伊卡立汀相关的文献。使用 "Rstudio"、"VOSviewer "和 "Mendeley Desktop "等软件分析冰蒜素的文献分布和研究热点。同时,通过与 PubChem 数据库结合,获得了与冰片黄素相关的基因。HCC患者的第二个转录组数据来自TCGA数据库。利用String数据平台对icaritin相关基因进行蛋白相互作用(PPI)分析,并利用Cytoscape进行可视化和网络拓扑分析。结合Cox回归分析筛选出枢纽靶点,并通过细胞实验进行验证。结果共获得239篇与icaritin相关的文章 HCC是icaritin领域的一个新热点。共获得 292 个冰醋酸相关基因,并通过模块划分获得了包含 34 个基因的核心模块。其中ESR1是一个独立的预后因子。分子对接显示,ESR1与冰片素具有很高的亲和力。功能研究发现,ESR1能抑制HCC细胞的恶性增殖,并能提高HCC细胞对伊卡利丁的敏感性。结论我们认为,ESR1作为伊卡利丁的靶点可能有利于改善伊卡利丁的治疗效果。
{"title":"Screening and Identification of ESR1 as a Target of Icaritin in Hepatocellular Carcinoma: Evidence from Bibliometrics and Bioinformatic Analysis","authors":"Yinghui Zhou, Jia Gu, Huiying Yu, Fengyang Chen, Chao Long, Maiweilan Maihemuti, Tingsong Chen, Wei Zhang","doi":"10.2174/0118761429260902230925044009","DOIUrl":"https://doi.org/10.2174/0118761429260902230925044009","url":null,"abstract":"Background: In 2022, icaritin a Traditional Chinese Medicine with estrogen-like activities was recommended by the CSCO guidelines as a systematic treatment for patients with advanced HCC due to its clinical safety and efficacy. However the mechanism and targets of icaritin are unclear. In this study we aimed to reveal the target of icaritin in HCC Methods: First literature related to icaritin was downloaded from the Web of Science. The software programs “Rstudio” “VOSviewer” and “Mendeley Desktop” were used to analyze the distribution of icaritin publications and research hotspots. Meanwhile icaritin-related genes were obtained by combining them with the PubChem database. Second transcriptome data of HCC patients were obtained from the TCGA database. The proteinprotein interaction (PPI) analysis of icaritin-related genes was performed using the String data platform and the visualization and network topology analysis were performed using Cytoscape. Cox regression analyses were combined to screen the hub target and verified it through cell experiments. Results: A total of 239 icaritin-related articles were obtained HCC is a new hotspot in the icaritin field. 292 icaritin-related genes were obtained and a core module containing 34 genes was obtained by module division. Among them ESR1 was an independent prognostic factor. Molecular docking showed that ESR1 and icaritin had a high affinity. Functional studies revealed that ESR1 inhibits HCC cell malignant proliferation and improves the sensitivity of HCC cells to icaritin. Conclusion: We propose that ESR1 as a target of icaritin may be conducive to improving icaritin therapy.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"1 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139055331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RBM3 Accelerates Wound Healing of Skin in Diabetes through ERK1/2 Signaling RBM3通过ERK1/2信号促进糖尿病皮肤伤口愈合
4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-11-01 DOI: 10.2174/0118761429260980231005105929
Jianguo Feng, Menghong Long, Xin Zhao, Pijun Yan, Yunxiao Lin, Maohua Wang, Wenhua Huang
Background: With the increasing risk of infections and other serious complications, the underlying molecular mechanism of wound healing impairment in diabetes deserves attention. Cold shock proteins (CSPs), including CIRP and RBM3 are highly expressed in the skin; however, it is unknown whether CSPs are involved in the wound-healing impairment of diabetic skin. Objective: The objective of this study is to investigate the effects of RBM3 on skin wound healing in diabetes. Methods: In vitro experiments, western blot assay was used to test the levels of proteins in HaCaT cells treated with different concentrations of glucose. RBM3 was over-expressed in HaCaT cells using lentivirus particles. Cell viability was analyzed by Cell-Counting Kit-8 assay and colony formation assay. The migration of HaCaT cells at different concentrations of glucose was evaluated by wound healing assay. In vivo experiments, the mouse model of diabetes was established by intraperitoneal injection of streptozotocin. Four weeks later, the mice were anesthetized by intraperitoneal injection of pentobarbital sodium for skin tissue collection or wound healing experiments. RBM3 knockout mice were established by removing exons 2–6 using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technique and then used in skin wound healing experiments with or without diabetic stress. Results: In this study, the expression of RBM3, rather than CIRP, was altered in the skin of diabetic specimens, and the RBM3’s overexpression accelerated the cell viability and proliferation of HaCaT cells under high glucose conditions. RBM3 deficiency caused delayed wound healing in RBM3 knockout in diabetic conditions. Moreover. RBM3 enhanced the ERK1/2 signaling pathway, and its inhibitor FR180204 blocked the beneficial effect of RBM3 overexpression on skin wound healing in diabetes. Conclusion: RBM3 activated the ERK1/2 signal to facilitate skin wound healing in diabetes, offering a novel therapeutic target for its treatment.
背景:随着感染和其他严重并发症的风险增加,糖尿病创面愈合障碍的潜在分子机制值得关注。冷休克蛋白(CSPs),包括CIRP和RBM3在皮肤中高表达;然而,目前尚不清楚csp是否参与糖尿病皮肤的伤口愈合损伤。目的:探讨RBM3对糖尿病患者皮肤创面愈合的影响。方法:体外实验采用western blot法检测不同浓度葡萄糖处理HaCaT细胞的蛋白水平。利用慢病毒颗粒在HaCaT细胞中过表达RBM3。采用细胞计数试剂盒-8法和菌落形成法分析细胞活力。通过伤口愈合实验,观察不同浓度葡萄糖对HaCaT细胞迁移的影响。体内实验,通过腹腔注射链脲佐菌素建立小鼠糖尿病模型。4周后,腹腔注射戊巴比妥钠麻醉小鼠进行皮肤组织采集或创面愈合实验。利用聚集规律间隔短回文重复(CRISPR)-Cas9技术,通过去除2-6外显子建立RBM3敲除小鼠,然后用于有或无糖尿病应激的皮肤伤口愈合实验。结果:在本研究中,糖尿病标本皮肤中RBM3的表达发生了改变,而不是CIRP的表达,高糖条件下RBM3的过表达加速了HaCaT细胞的活力和增殖。RBM3缺失导致糖尿病患者RBM3基因敲除后伤口愈合延迟。此外。RBM3增强了ERK1/2信号通路,其抑制剂FR180204阻断了RBM3过表达对糖尿病皮肤创面愈合的有益作用。结论:RBM3激活ERK1/2信号促进糖尿病皮肤创面愈合,为糖尿病的治疗提供了新的治疗靶点。
{"title":"RBM3 Accelerates Wound Healing of Skin in Diabetes through ERK1/2 Signaling","authors":"Jianguo Feng, Menghong Long, Xin Zhao, Pijun Yan, Yunxiao Lin, Maohua Wang, Wenhua Huang","doi":"10.2174/0118761429260980231005105929","DOIUrl":"https://doi.org/10.2174/0118761429260980231005105929","url":null,"abstract":"Background: With the increasing risk of infections and other serious complications, the underlying molecular mechanism of wound healing impairment in diabetes deserves attention. Cold shock proteins (CSPs), including CIRP and RBM3 are highly expressed in the skin; however, it is unknown whether CSPs are involved in the wound-healing impairment of diabetic skin. Objective: The objective of this study is to investigate the effects of RBM3 on skin wound healing in diabetes. Methods: In vitro experiments, western blot assay was used to test the levels of proteins in HaCaT cells treated with different concentrations of glucose. RBM3 was over-expressed in HaCaT cells using lentivirus particles. Cell viability was analyzed by Cell-Counting Kit-8 assay and colony formation assay. The migration of HaCaT cells at different concentrations of glucose was evaluated by wound healing assay. In vivo experiments, the mouse model of diabetes was established by intraperitoneal injection of streptozotocin. Four weeks later, the mice were anesthetized by intraperitoneal injection of pentobarbital sodium for skin tissue collection or wound healing experiments. RBM3 knockout mice were established by removing exons 2–6 using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technique and then used in skin wound healing experiments with or without diabetic stress. Results: In this study, the expression of RBM3, rather than CIRP, was altered in the skin of diabetic specimens, and the RBM3’s overexpression accelerated the cell viability and proliferation of HaCaT cells under high glucose conditions. RBM3 deficiency caused delayed wound healing in RBM3 knockout in diabetic conditions. Moreover. RBM3 enhanced the ERK1/2 signaling pathway, and its inhibitor FR180204 blocked the beneficial effect of RBM3 overexpression on skin wound healing in diabetes. Conclusion: RBM3 activated the ERK1/2 signal to facilitate skin wound healing in diabetes, offering a novel therapeutic target for its treatment.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"55 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135111812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artemisinin Attenuates Isoproterenol-induced Cardiac Hypertrophy via the ERK1/2 and p38 MAPK Signaling Pathways 青蒿素通过ERK1/2和p38 MAPK信号通路减弱异丙肾上腺素诱导的心肌肥厚
4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-13 DOI: 10.2174/0118761429244886230927070818
Renxing Song, Chunming Xiong, Juncai Bai, Zhenzhou Bai, Wei Liu
Background: Artemisinin (ART) is mainly derived from Artemisia annua, a traditional Chinese medicinal plant, and has been found to affect cellular biochemical processes, such as proliferation, angiogenesis, and apoptosis, in addition to its antimalarial properties. However, its effect on cardiac hypertrophy and the underlying mechanisms remain unclear. Objective: This study aimed to investigate the effect of ART on cardiac hypertrophy and explore its possible mechanisms. Materials and Methods: A rat model was established by intraperitoneal injection of isoproterenol (ISO) for 3 days, and the degree of myocardial hypertrophy was compared among 5 groups: a control (CON) group, an ISO group, and groups treated with different doses of ART (7 mg/kg/d, 35 mg/kg/d, and 75 mg/kg/d). Echocardiography was used to evaluate cardiac function and structure. The cross-sectional area of cardiomyocytes was measured by hematoxylin and eosin (H&E) staining. The heart weight (HW), body weight (BW), and tail length were measured, and the HW/tail length ratio and the HW/BW ratio were calculated. H9C2 rat cardiomyocytes were cultured, and different amounts of ART were added 2 hours before ISO stimulation. Phalloidin staining was used to evaluate the degree of cell hypertrophy. The levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were quantified in rat plasma and cell supernatant using enzyme-linked immunosorbent assay (ELISA), while the expression levels of p- ERK1/2, p-JNK, and p-p38 MAPK were assessed in the myocardium and H9C2 cells via western blot analysis. Conclusion: The mechanism of ART against cardiac hypertrophy was related to inhibition of the ERK1/2 and p38 MAPK signaling pathways. Result: Intragastric administration of ART at a dosage of 35 mg/kg/d or over-mitigated the early-stage cardiac hypertrophy induced by ISO in rats led to a reduction in left ventricular posterior wall diastolic thickness, interventricular septal thickness at diastole, lowered ANP and BNP levels, as well as a decrease in HW/tail length and HW/BW ratio. In vitro studies demonstrated that ART at a concentration of 100 μM inhibited ISO-mediated hypertrophy of H9C2 cells. The ISO group showed a higher p-ERK/GAPDH ratio and p-p38 MAPK/GAPDH ratio than the control group both in vivo and in vitro. Although the p-JNK/GAPDH ratio was increased in the ISO group, there was no statistical difference. The p-ERK/GAPDH and p-p38/GAPDH ratios were significantly lower in the ART group than in the ISO group.
背景:青蒿素(Artemisinin, ART)主要来源于传统中药植物黄花蒿(Artemisia annua),除具有抗疟作用外,还能影响细胞的生化过程,如增殖、血管生成和凋亡。然而,其对心脏肥厚的影响及其潜在机制尚不清楚。目的:探讨ART对心肌肥厚的影响及其可能的机制。材料与方法:采用腹腔注射异丙肾上腺素(ISO) 3 d建立大鼠模型,比较对照组(CON)、ISO组和ART不同剂量组(7 mg/kg/d、35 mg/kg/d、75 mg/kg/d)心肌肥厚程度。超声心动图评价心脏功能和结构。苏木精和伊红(H&E)染色测定心肌细胞横截面积。测定心重(HW)、体重(BW)、尾长,并计算HW/尾长比和HW/BW。培养H9C2大鼠心肌细胞,在ISO刺激前2小时加入不同剂量的ART。用Phalloidin染色评价细胞肥大程度。采用酶联免疫吸附法(ELISA)测定大鼠血浆和细胞上清液中心房钠肽(ANP)和脑钠肽(BNP)的水平,采用western blot法检测心肌和H9C2细胞中p- ERK1/2、p- jnk和p-p38 MAPK的表达水平。结论:ART抗心肌肥厚的机制可能与抑制ERK1/2和p38 MAPK信号通路有关。结果:经胃给药35 mg/kg/d或过度减轻ISO致大鼠早期心肌肥厚,可导致左室舒张后壁厚度、舒张时室间隔厚度降低,ANP和BNP水平降低,HW/尾长和HW/BW比降低。体外研究表明,100 μM浓度的ART可抑制iso介导的H9C2细胞肥大。在体内和体外,ISO组p-ERK/GAPDH比值和p-p38 MAPK/GAPDH比值均高于对照组。ISO组p-JNK/GAPDH比值虽升高,但差异无统计学意义。ART组p-ERK/GAPDH和p-p38/GAPDH比值明显低于ISO组。
{"title":"Artemisinin Attenuates Isoproterenol-induced Cardiac Hypertrophy via the ERK1/2 and p38 MAPK Signaling Pathways","authors":"Renxing Song, Chunming Xiong, Juncai Bai, Zhenzhou Bai, Wei Liu","doi":"10.2174/0118761429244886230927070818","DOIUrl":"https://doi.org/10.2174/0118761429244886230927070818","url":null,"abstract":"Background: Artemisinin (ART) is mainly derived from Artemisia annua, a traditional Chinese medicinal plant, and has been found to affect cellular biochemical processes, such as proliferation, angiogenesis, and apoptosis, in addition to its antimalarial properties. However, its effect on cardiac hypertrophy and the underlying mechanisms remain unclear. Objective: This study aimed to investigate the effect of ART on cardiac hypertrophy and explore its possible mechanisms. Materials and Methods: A rat model was established by intraperitoneal injection of isoproterenol (ISO) for 3 days, and the degree of myocardial hypertrophy was compared among 5 groups: a control (CON) group, an ISO group, and groups treated with different doses of ART (7 mg/kg/d, 35 mg/kg/d, and 75 mg/kg/d). Echocardiography was used to evaluate cardiac function and structure. The cross-sectional area of cardiomyocytes was measured by hematoxylin and eosin (H&amp;E) staining. The heart weight (HW), body weight (BW), and tail length were measured, and the HW/tail length ratio and the HW/BW ratio were calculated. H9C2 rat cardiomyocytes were cultured, and different amounts of ART were added 2 hours before ISO stimulation. Phalloidin staining was used to evaluate the degree of cell hypertrophy. The levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were quantified in rat plasma and cell supernatant using enzyme-linked immunosorbent assay (ELISA), while the expression levels of p- ERK1/2, p-JNK, and p-p38 MAPK were assessed in the myocardium and H9C2 cells via western blot analysis. Conclusion: The mechanism of ART against cardiac hypertrophy was related to inhibition of the ERK1/2 and p38 MAPK signaling pathways. Result: Intragastric administration of ART at a dosage of 35 mg/kg/d or over-mitigated the early-stage cardiac hypertrophy induced by ISO in rats led to a reduction in left ventricular posterior wall diastolic thickness, interventricular septal thickness at diastole, lowered ANP and BNP levels, as well as a decrease in HW/tail length and HW/BW ratio. In vitro studies demonstrated that ART at a concentration of 100 μM inhibited ISO-mediated hypertrophy of H9C2 cells. The ISO group showed a higher p-ERK/GAPDH ratio and p-p38 MAPK/GAPDH ratio than the control group both in vivo and in vitro. Although the p-JNK/GAPDH ratio was increased in the ISO group, there was no statistical difference. The p-ERK/GAPDH and p-p38/GAPDH ratios were significantly lower in the ART group than in the ISO group.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"131 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135922774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-treatment of Astragaloside IV with Vitamin D in Diabetic Peripheral Neuropathic Rats: Protective Effects and Potential Mechanisms 黄芪甲苷与维生素D联合治疗糖尿病周围神经病变大鼠:保护作用及可能机制
4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-10-13 DOI: 10.2174/0118761429267000231004111024
Fengyan Tang, Bo Zhao, Li Zhang, Faisal Raza, Hajra Zafar, Shao Zhong, Lin Li, Wenhua Zhu, Lingna Fang, Bing Lu, Liwen Shen, Ping Guo, Nengxing Yu, Quanmin Li
Objective: The potential mechanism underlying the protective effect of Astragaloside IV (AS-IV) co-treatment with 1, 25-dihydroxy-vitamin D (Vit-D) on neuropathy in diabetic high-fat rats was investigated Methods: The rat diabetic hyperlipidemia (DH) model was established via streptozotocin and a high-fat diet (HFD). After co-treatment (of AS-IV and Vit-D at respective doses of 50 mg/kg via oral gavage and 30000 IU/kg via intramuscular injection), blood glucose levels, markers of inflammation and oxidative stress, as well as apoptosis and histopathology were evaluated with appropriate techniques. Results: Co-treatment could effectively reduce blood glucose levels substantially (p< 0.01), improve weight loss, and decrease oral glucose tolerance. Reduced respective sensory and motor nerve conduction velocities in rats were substantially improved (p<0.01) after co-treatment. Also, we observed obvious improvement in DH-induced injured nerve fiber myelin structure and other organ pathologies in co-treated rats. Besides, we observed up-regulated expressions of peroxisomal-proliferator activated receptor-alpha (PPAR-α) and Vit-D receptors (VDR) (p< 0.01) through the western blotting technique. Using the same technique, we also discovered reduced levels of interleukin (IL)1 beta, IL-6, and tumor necrosis factor-alpha, coupled with increased IL-10 and superoxide dismutase levels (p< 0.01). Importantly, co-treatment could effectively exert antioxidative and anti-inflammatory effects. Also, co-treatment resulted in the up-regulation of PPAR-α and VDR expressions, inhibition of the renin–angiotensin–aldosterone system, and promotion of β-cell sensitivity to insulin. Conclusion: The combined application of AS-IV and Vit-D exhibited health effects such as anti-oxidation, regulation of inflammatory factors, and promotion of cell repair, which may be considered as the mechanisms underlying treatment of diabetic peripheral neuropathy and improvement in biochemical indicators.
目的:探讨黄芪甲苷(AS-IV)联合1,25 -二羟基维生素D (vitd)对糖尿病高脂大鼠神经病变保护作用的可能机制。方法:采用链脲佐菌素联合高脂饮食(HFD)建立大鼠糖尿病高脂血症(DH)模型。联合给药(as - iv和vitd分别以50 mg/kg灌胃剂量和30000 IU/kg肌注剂量)后,采用适当的技术评估血糖水平、炎症和氧化应激指标、细胞凋亡和组织病理学。结果:联合治疗可显著降低血糖水平(p<0.01),促进减肥,降低口服葡萄糖耐量。联合治疗后大鼠感觉神经传导速度和运动神经传导速度均显著改善(p<0.01)。同时,我们观察到dh诱导的损伤大鼠神经纤维髓鞘结构和其他器官病理有明显改善。此外,我们观察到过氧化物酶体增殖物激活受体α (PPAR-α)和维生素d受体(VDR)的表达上调(p<0.01)。使用相同的技术,我们还发现白细胞介素(IL)1 β、IL-6和肿瘤坏死因子α水平降低,同时IL-10和超氧化物歧化酶水平升高(p<0.01)。重要的是,联合治疗可有效发挥抗氧化和抗炎作用。同时,共处理导致PPAR-α和VDR表达上调,抑制肾素-血管紧张素-醛固酮系统,促进β细胞对胰岛素的敏感性。结论:as - iv和vitd联合应用具有抗氧化、调节炎症因子、促进细胞修复等健康作用,可能是治疗糖尿病周围神经病变和改善生化指标的机制之一。
{"title":"Co-treatment of Astragaloside IV with Vitamin D in Diabetic Peripheral Neuropathic Rats: Protective Effects and Potential Mechanisms","authors":"Fengyan Tang, Bo Zhao, Li Zhang, Faisal Raza, Hajra Zafar, Shao Zhong, Lin Li, Wenhua Zhu, Lingna Fang, Bing Lu, Liwen Shen, Ping Guo, Nengxing Yu, Quanmin Li","doi":"10.2174/0118761429267000231004111024","DOIUrl":"https://doi.org/10.2174/0118761429267000231004111024","url":null,"abstract":"Objective: The potential mechanism underlying the protective effect of Astragaloside IV (AS-IV) co-treatment with 1, 25-dihydroxy-vitamin D (Vit-D) on neuropathy in diabetic high-fat rats was investigated Methods: The rat diabetic hyperlipidemia (DH) model was established via streptozotocin and a high-fat diet (HFD). After co-treatment (of AS-IV and Vit-D at respective doses of 50 mg/kg via oral gavage and 30000 IU/kg via intramuscular injection), blood glucose levels, markers of inflammation and oxidative stress, as well as apoptosis and histopathology were evaluated with appropriate techniques. Results: Co-treatment could effectively reduce blood glucose levels substantially (p< 0.01), improve weight loss, and decrease oral glucose tolerance. Reduced respective sensory and motor nerve conduction velocities in rats were substantially improved (p<0.01) after co-treatment. Also, we observed obvious improvement in DH-induced injured nerve fiber myelin structure and other organ pathologies in co-treated rats. Besides, we observed up-regulated expressions of peroxisomal-proliferator activated receptor-alpha (PPAR-α) and Vit-D receptors (VDR) (p< 0.01) through the western blotting technique. Using the same technique, we also discovered reduced levels of interleukin (IL)1 beta, IL-6, and tumor necrosis factor-alpha, coupled with increased IL-10 and superoxide dismutase levels (p< 0.01). Importantly, co-treatment could effectively exert antioxidative and anti-inflammatory effects. Also, co-treatment resulted in the up-regulation of PPAR-α and VDR expressions, inhibition of the renin–angiotensin–aldosterone system, and promotion of β-cell sensitivity to insulin. Conclusion: The combined application of AS-IV and Vit-D exhibited health effects such as anti-oxidation, regulation of inflammatory factors, and promotion of cell repair, which may be considered as the mechanisms underlying treatment of diabetic peripheral neuropathy and improvement in biochemical indicators.","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135922775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression. 树状体纳米茄碱通过抑制PI3K/AKT/mTOR信号通路和抑制hTERT表达在慢性髓性白血病细胞中的抗癌作用
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-03-27 DOI: 10.2174/1874467215666220516143155
Golareh Asgaritarghi, Seyedeh Sahar Mortazavi Farsani, Dina Sadeghizadeh, Farhood Najafi, Majid Sadeghizadeh

Background: Solanine was primarily known as a toxic compound. Nonetheless, recently the apoptotic role of solanine through suppression of PI3K/AKT/mTOR signaling pathway has been shown against many malignancies except chronic myelogenous leukemia (CML). Sustaining the aforementioned pro-survival pathway, BCR-ABL fused oncoprotein in CML activates NF-kB and c- MYC for apparent immortalizing factor hTERT. Since solanine is a poor water-soluble molecule, herein, a nanocarrier was employed to intensify its pernicious effect on cancerous cells.

Objective: The current research aimed at evaluating the effect of dendrosomal nano solanine (DNS) on leukemic and HUVEC cells.

Methods: DNS characterization was determined by NMR, DLS and TEM. The viability, apoptosis and cell cycle of DNS and imatinib-treated cells were determined. A quantitative real-time PCR was employed to measure the expression of PI3K, AKT, mTOR, S6K, NF-kB, c-MYC and hTERT mRNAs. The Protein levels were evaluated by western blot.

Results: Investigating the anticancer property of free and dendrosomal nano solanine (DNS) and the feasible interplaying between DNS and imatinib on leukemic cells, we figured out the potential inhibitory role of DNS and DNS+IM on cancerous cells in comparison with chemotherapy drugs. Moreover, results revealed that the encapsulated form of solanine was much more preventive on the expression of PI3KCA, mTOR, NF-kB, c-MYC and hTERT accompanied by the dephosphorelating AKT protein.

Conclusion: The results advocate the hypothesis that DNS, rather than solanine, probably due to impressive penetration, can restrain the principal pro-survival signaling pathway in erythroleukemia K562 and the HL60 cell lines and subsequently declined mRNA level of hTERT which causes drug resistance during long-term treatment. Additionally, combinational treatment of DNS and IM could also bestow an additive anti-leukemic effect. As further clinical studies are necessary to validate DNS efficacy on CML patients, DNS could have the potency to be considered as a new therapeutic agent even in combination with IM.

背景:龙葵碱最初被认为是一种有毒化合物。尽管如此,近年来,龙葵碱通过抑制PI3K/AKT/mTOR信号通路的凋亡作用已被证明可用于除慢性髓性白血病(CML)外的许多恶性肿瘤。维持上述促生存途径,CML中BCR-ABL融合癌蛋白激活NF-kB和c- MYC的表观永生化因子hTERT。由于龙葵碱是一种水溶性较差的分子,因此本文采用纳米载体来增强其对癌细胞的有害作用。目的:研究树状体纳米龙葵碱(DNS)对白血病和HUVEC细胞的作用。方法:采用NMR、DLS、TEM对其进行表征。测定DNS处理细胞和伊马替尼处理细胞的活力、凋亡和细胞周期。采用实时荧光定量PCR检测PI3K、AKT、mTOR、S6K、NF-kB、c-MYC和hTERT mrna的表达。western blot检测蛋白水平。结果:通过研究游离纳米茄碱(DNS)和树状体纳米茄碱(DNS)的抗癌特性,以及DNS与伊马替尼对白血病细胞的可能相互作用,发现了与化疗药物相比,DNS和DNS+IM对癌细胞的潜在抑制作用。此外,结果显示,茄碱包封形式对PI3KCA、mTOR、NF-kB、c-MYC和hTERT的表达具有更强的预防作用,并伴有去磷相关AKT蛋白的表达。结论:这些结果支持这样的假设:DNS而非茄碱,可能是由于其渗透力强,抑制了红细胞白血病K562和HL60细胞系中主要的促生存信号通路,从而降低了hTERT mRNA水平,从而导致长期治疗期间的耐药。此外,DNS和IM联合治疗也可给予附加的抗白血病作用。由于需要进一步的临床研究来验证DNS对CML患者的疗效,因此即使与IM联合使用,DNS也有可能被认为是一种新的治疗药物。
{"title":"Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression.","authors":"Golareh Asgaritarghi,&nbsp;Seyedeh Sahar Mortazavi Farsani,&nbsp;Dina Sadeghizadeh,&nbsp;Farhood Najafi,&nbsp;Majid Sadeghizadeh","doi":"10.2174/1874467215666220516143155","DOIUrl":"https://doi.org/10.2174/1874467215666220516143155","url":null,"abstract":"<p><strong>Background: </strong>Solanine was primarily known as a toxic compound. Nonetheless, recently the apoptotic role of solanine through suppression of PI3K/AKT/mTOR signaling pathway has been shown against many malignancies except chronic myelogenous leukemia (CML). Sustaining the aforementioned pro-survival pathway, BCR-ABL fused oncoprotein in CML activates NF-kB and c- MYC for apparent immortalizing factor hTERT. Since solanine is a poor water-soluble molecule, herein, a nanocarrier was employed to intensify its pernicious effect on cancerous cells.</p><p><strong>Objective: </strong>The current research aimed at evaluating the effect of dendrosomal nano solanine (DNS) on leukemic and HUVEC cells.</p><p><strong>Methods: </strong>DNS characterization was determined by NMR, DLS and TEM. The viability, apoptosis and cell cycle of DNS and imatinib-treated cells were determined. A quantitative real-time PCR was employed to measure the expression of PI3K, AKT, mTOR, S6K, NF-kB, c-MYC and hTERT mRNAs. The Protein levels were evaluated by western blot.</p><p><strong>Results: </strong>Investigating the anticancer property of free and dendrosomal nano solanine (DNS) and the feasible interplaying between DNS and imatinib on leukemic cells, we figured out the potential inhibitory role of DNS and DNS+IM on cancerous cells in comparison with chemotherapy drugs. Moreover, results revealed that the encapsulated form of solanine was much more preventive on the expression of PI3KCA, mTOR, NF-kB, c-MYC and hTERT accompanied by the dephosphorelating AKT protein.</p><p><strong>Conclusion: </strong>The results advocate the hypothesis that DNS, rather than solanine, probably due to impressive penetration, can restrain the principal pro-survival signaling pathway in erythroleukemia K562 and the HL60 cell lines and subsequently declined mRNA level of hTERT which causes drug resistance during long-term treatment. Additionally, combinational treatment of DNS and IM could also bestow an additive anti-leukemic effect. As further clinical studies are necessary to validate DNS efficacy on CML patients, DNS could have the potency to be considered as a new therapeutic agent even in combination with IM.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 5","pages":"592-608"},"PeriodicalIF":2.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9481217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways. 香芹酚作为癌症靶点/信号通路的潜在调节剂。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-03-27 DOI: 10.2174/1874467215666220705142954
Jyoti Singh, Suaib Luqman, Abha Meena

Background: Carvacrol is a naturally occurring phenolic isopropyl monoterpene isolated from oregano, thyme, pepperwort, ajwain, marjoram, and wild bergamot. It possesses pharmacological activities, including anticancer, anti-genotoxic, and anti-inflammation associated with antioxidant properties. The antioxidant property of carvacrol is found to be accountable for its anticancer property. Thus, the present review summarizes and discusses the anticancer potential of carvacrol, revealing its target, signalling pathways, efficacy, pharmacokinetics, and toxicity.

Objective: Carvacrol showed promising activity to be considered in more detail for cancer treatment. This review aims to summarize the evidence concerning the understanding of anticancer potential of carvacrol. However, the mode of action of carvacrol is not yet fully explored and hence requires detailed exploratory studies. This review consists of carvacol's in vitro, in vivo, preclinical and clinical studies.

Methods: A literature search was done by searching various online databases like Pubmed, Scopus, and Google Scholar with the specific keyword "Carvacrol," along with other keywords, such as "antioxidant properties," "oncology research," "genotoxicity," and "anti-inflammatory property".

Results: Carvacrol possesses weak mutagenic and genotoxic potential at non-toxic doses. Carvacrol alone shows the potential to target cancerous cells and significantly deter the growth of cancer cells; this is a targeted method. It offers anti-inflammatory effects by decreasing oxidative stress, primarily targeting ER and mitochondria. Carvacrol depicts targeted explicitly ROSdependent and mitochondrial-mediated apoptosis in different cancer cells. Moreover, carvacrol significantly regulates the cell cycle and prevents tumor progression. Few reports also suggest its significant role in inhibiting cell migration, invasion, and angiogenesis in tumor cells. Hence, carvacrol affects cell survival and cell-killing activity by targeting key biomarkers and major signalling pathways, including PI3K/AKT/mTOR, MAPK, STAT3, and Notch.

Conclusion: Until now, its anticancer mechanism is not yet fully explored. A limited number of research studies have been conducted on carvacrol. It possesses both cancer prevention and cancer therapeutic properties. This molecule needs more validatory research so that it can be analyzed precisely.

背景:香芹酚是一种天然存在的酚类异丙基单萜,从牛至、百里香、胡椒草、苦杏仁、马郁兰和野生佛手柑中分离出来。它具有药理活性,包括抗癌,抗基因毒性和抗炎症与抗氧化特性相关。香芹酚的抗氧化特性被发现是其抗癌特性的原因。因此,本文总结和讨论了香芹酚的抗癌潜力,揭示了它的靶点、信号通路、功效、药代动力学和毒性。目的:香芹酚显示出有希望的活性,可以更详细地考虑用于癌症治疗。本文综述了有关香芹酚抗癌潜力的研究进展。然而,香芹酚的作用方式尚未完全探索,因此需要详细的探索性研究。本文综述了carvacol的体外、体内、临床前和临床研究。方法:以“Carvacrol”为关键词,结合“抗氧化性能”、“肿瘤研究”、“遗传毒性”、“抗炎性能”等关键词,在Pubmed、Scopus、Google Scholar等在线数据库中进行文献检索。结果:香芹酚在无毒剂量下具有较弱的致突变性和遗传毒性。Carvacrol单独显示出针对癌细胞的潜力,并显著阻止癌细胞的生长;这是一种有针对性的方法。它通过降低氧化应激具有抗炎作用,主要针对内质网和线粒体。Carvacrol在不同的癌细胞中明确描述了ros依赖和线粒体介导的细胞凋亡。此外,香芹酚显著调节细胞周期并阻止肿瘤进展。少数报道也表明其在抑制肿瘤细胞迁移、侵袭和血管生成方面具有重要作用。因此,香芹酚通过靶向关键生物标志物和主要信号通路,包括PI3K/AKT/mTOR、MAPK、STAT3和Notch,影响细胞存活和细胞杀伤活性。结论:到目前为止,其抗癌机制尚未被充分探索。对香芹酚进行了数量有限的研究。它具有预防癌症和治疗癌症的双重特性。这种分子需要更多的验证性研究,以便精确分析。
{"title":"Carvacrol as a Prospective Regulator of Cancer Targets/Signalling Pathways.","authors":"Jyoti Singh,&nbsp;Suaib Luqman,&nbsp;Abha Meena","doi":"10.2174/1874467215666220705142954","DOIUrl":"https://doi.org/10.2174/1874467215666220705142954","url":null,"abstract":"<p><strong>Background: </strong>Carvacrol is a naturally occurring phenolic isopropyl monoterpene isolated from oregano, thyme, pepperwort, ajwain, marjoram, and wild bergamot. It possesses pharmacological activities, including anticancer, anti-genotoxic, and anti-inflammation associated with antioxidant properties. The antioxidant property of carvacrol is found to be accountable for its anticancer property. Thus, the present review summarizes and discusses the anticancer potential of carvacrol, revealing its target, signalling pathways, efficacy, pharmacokinetics, and toxicity.</p><p><strong>Objective: </strong>Carvacrol showed promising activity to be considered in more detail for cancer treatment. This review aims to summarize the evidence concerning the understanding of anticancer potential of carvacrol. However, the mode of action of carvacrol is not yet fully explored and hence requires detailed exploratory studies. This review consists of carvacol's in vitro, in vivo, preclinical and clinical studies.</p><p><strong>Methods: </strong>A literature search was done by searching various online databases like Pubmed, Scopus, and Google Scholar with the specific keyword \"Carvacrol,\" along with other keywords, such as \"antioxidant properties,\" \"oncology research,\" \"genotoxicity,\" and \"anti-inflammatory property\".</p><p><strong>Results: </strong>Carvacrol possesses weak mutagenic and genotoxic potential at non-toxic doses. Carvacrol alone shows the potential to target cancerous cells and significantly deter the growth of cancer cells; this is a targeted method. It offers anti-inflammatory effects by decreasing oxidative stress, primarily targeting ER and mitochondria. Carvacrol depicts targeted explicitly ROSdependent and mitochondrial-mediated apoptosis in different cancer cells. Moreover, carvacrol significantly regulates the cell cycle and prevents tumor progression. Few reports also suggest its significant role in inhibiting cell migration, invasion, and angiogenesis in tumor cells. Hence, carvacrol affects cell survival and cell-killing activity by targeting key biomarkers and major signalling pathways, including PI3K/AKT/mTOR, MAPK, STAT3, and Notch.</p><p><strong>Conclusion: </strong>Until now, its anticancer mechanism is not yet fully explored. A limited number of research studies have been conducted on carvacrol. It possesses both cancer prevention and cancer therapeutic properties. This molecule needs more validatory research so that it can be analyzed precisely.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 5","pages":"542-558"},"PeriodicalIF":2.7,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy. 白藜芦醇增强阿霉素和顺铂化疗:一种新的治疗策略。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-02-23 DOI: 10.2174/1874467215666220415131344
Sepideh Mirzaei, Mohammad Hossein Gholami, Amirhossein Zabolian, Hossein Saleki, Morteza Bagherian, Seyed Mohammadreza Torabi, Seyed Omid Sharifzadeh, Kiavash Hushmandi, Kaila R Fives, Haroon Khan, Milad Ashrafizadeh, Ali Zarrabi, Anupam Bishayee

Background: The treatment of cancer is a current challenge for public health, causing high rates of morbidity and mortality worldwide. Doxorubicin (DOX) and cisplatin (CP) are two well-known chemotherapeutic agents approved by the Food and Drug Administration to treat cancer patients. However, there are two problems associated with DOX and CP: drug resistance and adverse impact. Resveratrol (Res) belongs to the stilbene class and possesses various health-promoting effects, such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective effects.

Objective: The present review aims to give special attention to the therapeutic impacts of Res in potentiating DOX and CP's antitumor activities and reducing their side effects.

Methods: PubMed, Science Direct, and Google Scholar were used to search articles for the current manuscripts.

Results: Co-administration of Res can prevent chemoresistance and potentiate the induction of apoptosis and cell cycle arrest in cancer cells. Res can enhance the sensitivity of cancer cells to DOX and CP chemotherapy by inhibiting the migration and metastasis of cancer cells. Simultaneously, Res, due to its therapeutic actions ameliorates the adverse impacts of DOX and CP on normal cells and organs, including the liver, kidney, brain, and testes. As Res suffers from poor bioavailability, nanoformulations have been developed with promising results to improve its antitumor activity and protective effects.

Conclusion: Based on preclinical studies, it is obvious that Res is a promising adjsuvant for CP and DOX chemotherapy, and its benefits can be utilized in the clinical course.

背景:癌症的治疗是当前公共卫生面临的一个挑战,在世界范围内造成高发病率和死亡率。阿霉素(DOX)和顺铂(CP)是美国食品和药物管理局批准用于治疗癌症患者的两种知名化疗药物。然而,与DOX和CP相关的两个问题是:耐药性和不良影响。白藜芦醇(Resveratrol, Res)属于二苯乙烯类,具有多种促进健康的作用,如抗氧化、抗炎、抗癌、保肝和神经保护作用。目的:本文综述了Res在增强DOX和CP的抗肿瘤活性和减少其副作用方面的作用。方法:使用PubMed、Science Direct和Google Scholar检索当前稿件。结果:联合给药可预防肿瘤细胞化疗耐药,增强细胞凋亡和细胞周期阻滞的诱导作用。Res可通过抑制癌细胞的迁移和转移,增强癌细胞对DOX和CP化疗的敏感性。同时,由于其治疗作用,Res改善了DOX和CP对正常细胞和器官(包括肝、肾、脑和睾丸)的不良影响。由于Res的生物利用度较差,纳米制剂在提高其抗肿瘤活性和保护作用方面取得了可喜的成果。结论:临床前研究表明,Res是一种很有前景的CP和DOX化疗辅助药物,其益处可在临床过程中发挥作用。
{"title":"Resveratrol Augments Doxorubicin and Cisplatin Chemotherapy: A Novel Therapeutic Strategy.","authors":"Sepideh Mirzaei,&nbsp;Mohammad Hossein Gholami,&nbsp;Amirhossein Zabolian,&nbsp;Hossein Saleki,&nbsp;Morteza Bagherian,&nbsp;Seyed Mohammadreza Torabi,&nbsp;Seyed Omid Sharifzadeh,&nbsp;Kiavash Hushmandi,&nbsp;Kaila R Fives,&nbsp;Haroon Khan,&nbsp;Milad Ashrafizadeh,&nbsp;Ali Zarrabi,&nbsp;Anupam Bishayee","doi":"10.2174/1874467215666220415131344","DOIUrl":"https://doi.org/10.2174/1874467215666220415131344","url":null,"abstract":"<p><strong>Background: </strong>The treatment of cancer is a current challenge for public health, causing high rates of morbidity and mortality worldwide. Doxorubicin (DOX) and cisplatin (CP) are two well-known chemotherapeutic agents approved by the Food and Drug Administration to treat cancer patients. However, there are two problems associated with DOX and CP: drug resistance and adverse impact. Resveratrol (Res) belongs to the stilbene class and possesses various health-promoting effects, such as antioxidant, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective effects.</p><p><strong>Objective: </strong>The present review aims to give special attention to the therapeutic impacts of Res in potentiating DOX and CP's antitumor activities and reducing their side effects.</p><p><strong>Methods: </strong>PubMed, Science Direct, and Google Scholar were used to search articles for the current manuscripts.</p><p><strong>Results: </strong>Co-administration of Res can prevent chemoresistance and potentiate the induction of apoptosis and cell cycle arrest in cancer cells. Res can enhance the sensitivity of cancer cells to DOX and CP chemotherapy by inhibiting the migration and metastasis of cancer cells. Simultaneously, Res, due to its therapeutic actions ameliorates the adverse impacts of DOX and CP on normal cells and organs, including the liver, kidney, brain, and testes. As Res suffers from poor bioavailability, nanoformulations have been developed with promising results to improve its antitumor activity and protective effects.</p><p><strong>Conclusion: </strong>Based on preclinical studies, it is obvious that Res is a promising adjsuvant for CP and DOX chemotherapy, and its benefits can be utilized in the clinical course.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 3","pages":"280-306"},"PeriodicalIF":2.7,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9493601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The Therapeutic Activities of Metformin: Focus on the Nrf2 Signaling Pathway and Oxidative Stress Amelioration. 二甲双胍的治疗作用:聚焦于Nrf2信号通路和氧化应激改善。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 DOI: 10.2174/1874467215666220620143655
Mohammad Yassin Zamanian, Lydia Giménez-Llort, Marjan Nikbakhtzadeh, Zahra Kamiab, Mahsa Heidari, Gholamreza Bazmandegan

In the present study, the health-protective and therapeutic properties of MET have been discussed, focusing on the effect of MET on the Nrf2 expression in patients with different pathological conditions. Metformin (MET) regulates high blood glucose, thus being an integral part of the antidiabetic medications used to treat type 2 diabetes mellitus. It belongs to biguanide class medications that are administered through the oral route. Moreover, the agent is widely known for its anti-cancer, anti-oxidant, anti-inflammatory, and neuroprotective effects. The MET modulates the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway, which in turn yields the above-mentioned medical benefits to patients. The Nrf2 signaling pathways are modulated in multiple ways described subsequently: 1) MET acts on the cancer cells and inactivates Raf-ERK signaling, thus reducing Nrf2 expression, 2) MET obstructs the expression of proteins that are involved in apoptosis of tumor cells and also prevents tumor cells from oxidation through an AMPK-independent pathway; 3) MET carries out Keap1-independent mechanism for reducing the levels of Nrf2 protein in cancer cells; 4) MET upregulates the Nrf2-mediated transcription to stimulate the anti-oxidant process that prevents oxidative stress in cells system and consequently gives neuroprotection from rotenone and 5) MET downregulates p65 and upregulates Nrf2 which helps improve the angiogenesis impairment stimulated by gestational diabetes mellitus. This article presents an analysis of the health-protective properties of MET and also sheds light on the effect of MET on the Nrf2 expression in patients with different pathological conditions.

在本研究中,我们讨论了MET的保健和治疗特性,重点讨论了MET对不同病理状态患者Nrf2表达的影响。二甲双胍(MET)调节高血糖,因此是治疗2型糖尿病的抗糖尿病药物的一个组成部分。它属于双胍类药物,通过口服途径给药。此外,该制剂因其抗癌、抗氧化、抗炎和神经保护作用而广为人知。MET调节核因子-红细胞-2相关因子-2 (Nrf2)信号通路,从而为患者带来上述医疗益处。Nrf2信号通路通过多种方式调节:1)MET作用于癌细胞,使Raf-ERK信号失活,从而降低Nrf2的表达;2)MET通过ampk不依赖的途径阻断肿瘤细胞凋亡相关蛋白的表达,并阻止肿瘤细胞氧化;3) MET在降低癌细胞中Nrf2蛋白水平中发挥了不依赖于keap1的作用机制;4) MET上调Nrf2介导的转录,刺激抗氧化过程,防止细胞系统的氧化应激,从而对鱼烯酮起到神经保护作用;5)MET下调p65,上调Nrf2,有助于改善妊娠糖尿病引起的血管生成障碍。本文分析了MET的健康保护作用,并揭示了MET对不同病理状态患者Nrf2表达的影响。
{"title":"The Therapeutic Activities of Metformin: Focus on the Nrf2 Signaling Pathway and Oxidative Stress Amelioration.","authors":"Mohammad Yassin Zamanian,&nbsp;Lydia Giménez-Llort,&nbsp;Marjan Nikbakhtzadeh,&nbsp;Zahra Kamiab,&nbsp;Mahsa Heidari,&nbsp;Gholamreza Bazmandegan","doi":"10.2174/1874467215666220620143655","DOIUrl":"https://doi.org/10.2174/1874467215666220620143655","url":null,"abstract":"<p><p>In the present study, the health-protective and therapeutic properties of MET have been discussed, focusing on the effect of MET on the Nrf2 expression in patients with different pathological conditions. Metformin (MET) regulates high blood glucose, thus being an integral part of the antidiabetic medications used to treat type 2 diabetes mellitus. It belongs to biguanide class medications that are administered through the oral route. Moreover, the agent is widely known for its anti-cancer, anti-oxidant, anti-inflammatory, and neuroprotective effects. The MET modulates the nuclear factor erythroid-2 related factor-2 (Nrf2) signaling pathway, which in turn yields the above-mentioned medical benefits to patients. The Nrf2 signaling pathways are modulated in multiple ways described subsequently: 1) MET acts on the cancer cells and inactivates Raf-ERK signaling, thus reducing Nrf2 expression, 2) MET obstructs the expression of proteins that are involved in apoptosis of tumor cells and also prevents tumor cells from oxidation through an AMPK-independent pathway; 3) MET carries out Keap1-independent mechanism for reducing the levels of Nrf2 protein in cancer cells; 4) MET upregulates the Nrf2-mediated transcription to stimulate the anti-oxidant process that prevents oxidative stress in cells system and consequently gives neuroprotection from rotenone and 5) MET downregulates p65 and upregulates Nrf2 which helps improve the angiogenesis impairment stimulated by gestational diabetes mellitus. This article presents an analysis of the health-protective properties of MET and also sheds light on the effect of MET on the Nrf2 expression in patients with different pathological conditions.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 3","pages":"331-345"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9195059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Neuropilin-2 Inhibits Drug Resistance and Progression of Melanoma Involving the MiR-331-3p Regulated Cascade. Neuropilin-2通过MiR-331-3p调控级联抑制黑色素瘤的耐药和进展
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2023-01-01 DOI: 10.2174/1874467216666221220111756
Qun Xie, Ruirui Zhang, Dandan Liu, Jing Yang, Qiang Hu, Chao Shan, Xiaohan Li

Background: MicroRNAs (miRs) are small noncoding RNAs that are crucial in the development and progression of tumours. Melanoma is an aggressive form of skin cancer and is resistant to most of the chemotherapeutic agents. However, the role of miRs in melanoma remains poorly studied.

Objective: The work aimed to demonstrate that miR-331-3p is downregulated in melanoma against the benign melanocytic nevi.

Methods: RT-PCR analysis was performed for the expression of proteins; cell proliferation and wound healing assays were carried out. Flow cytometry study was conducted for cell cycle analysis; colony formation assay was performed by soft agar method. For developing a tumour xenograft model, nu/nu mice were selected.

Results: Up-regulation of miR-331-3p in melanoma cells decreased cell proliferation, cell migration, and also drug resistance. Over-expression of miR-331-3p resulted in suppression of NRP2 and up-regulation of E-cadherin levels. Moreover, the levels of MDR1, ABCG-2, and ABCG-5 were decreased. However, the knockdown of NRP2 demonstrated similar effects as that of miR- 331-3p overexpression in tumour cells. Overexpression of miR-331-3p caused significant inhibition of tumour growth and its metastasis in mice model of melanoma, which was associated with depletion of NRP2 protein and increased expression of E-cadherin. However, the effects of miR- 331-3p on the migration, cell proliferation, and self-renewal were overturned by the upregulation of NRP2, which also resulted in the inhibition of E-cadherin and overexpression of MDR-1, ABCG-2, and ABCG-5.

Conclusion: The findings point out the key role of miR-331-3p in the progression and drug resistance of melanoma involving NRP2.

背景:MicroRNAs (miRs)是一种小的非编码rna,在肿瘤的发生和发展中起着至关重要的作用。黑色素瘤是一种侵袭性皮肤癌,对大多数化疗药物都有抗药性。然而,miRs在黑色素瘤中的作用研究仍然很少。目的:本研究旨在证明miR-331-3p在黑色素瘤中对良性黑素细胞痣的下调。方法:采用RT-PCR分析蛋白表达;进行细胞增殖和伤口愈合试验。流式细胞术分析细胞周期;采用软琼脂法进行菌落形成试验。为了建立肿瘤异种移植模型,选择nu/nu小鼠。结果:在黑色素瘤细胞中上调miR-331-3p可降低细胞增殖、细胞迁移和耐药。过表达miR-331-3p导致NRP2被抑制,E-cadherin水平上调。MDR1、ABCG-2、ABCG-5水平降低。然而,在肿瘤细胞中,NRP2的下调表现出与miR- 331-3p过表达相似的效果。过表达miR-331-3p可显著抑制黑色素瘤小鼠模型的肿瘤生长及其转移,这与NRP2蛋白的缺失和E-cadherin的表达增加有关。然而,miR- 331-3p对迁移、细胞增殖和自我更新的影响被NRP2上调推翻,这也导致E-cadherin受到抑制,MDR-1、ABCG-2和ABCG-5过表达。结论:研究结果指出miR-331-3p在涉及NRP2的黑色素瘤的进展和耐药中起关键作用。
{"title":"Neuropilin-2 Inhibits Drug Resistance and Progression of Melanoma Involving the MiR-331-3p Regulated Cascade.","authors":"Qun Xie,&nbsp;Ruirui Zhang,&nbsp;Dandan Liu,&nbsp;Jing Yang,&nbsp;Qiang Hu,&nbsp;Chao Shan,&nbsp;Xiaohan Li","doi":"10.2174/1874467216666221220111756","DOIUrl":"https://doi.org/10.2174/1874467216666221220111756","url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRs) are small noncoding RNAs that are crucial in the development and progression of tumours. Melanoma is an aggressive form of skin cancer and is resistant to most of the chemotherapeutic agents. However, the role of miRs in melanoma remains poorly studied.</p><p><strong>Objective: </strong>The work aimed to demonstrate that miR-331-3p is downregulated in melanoma against the benign melanocytic nevi.</p><p><strong>Methods: </strong>RT-PCR analysis was performed for the expression of proteins; cell proliferation and wound healing assays were carried out. Flow cytometry study was conducted for cell cycle analysis; colony formation assay was performed by soft agar method. For developing a tumour xenograft model, nu/nu mice were selected.</p><p><strong>Results: </strong>Up-regulation of miR-331-3p in melanoma cells decreased cell proliferation, cell migration, and also drug resistance. Over-expression of miR-331-3p resulted in suppression of NRP2 and up-regulation of E-cadherin levels. Moreover, the levels of MDR1, ABCG-2, and ABCG-5 were decreased. However, the knockdown of NRP2 demonstrated similar effects as that of miR- 331-3p overexpression in tumour cells. Overexpression of miR-331-3p caused significant inhibition of tumour growth and its metastasis in mice model of melanoma, which was associated with depletion of NRP2 protein and increased expression of E-cadherin. However, the effects of miR- 331-3p on the migration, cell proliferation, and self-renewal were overturned by the upregulation of NRP2, which also resulted in the inhibition of E-cadherin and overexpression of MDR-1, ABCG-2, and ABCG-5.</p><p><strong>Conclusion: </strong>The findings point out the key role of miR-331-3p in the progression and drug resistance of melanoma involving NRP2.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":"16 7","pages":"787-799"},"PeriodicalIF":2.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9487622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current molecular pharmacology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1