Pub Date : 2022-01-01DOI: 10.1016/j.crstbi.2022.02.002
Dagnija Tupiņa , Alexander Krah , Jan K. Marzinek , Lorena Zuzic , Adam A. Moverley , Chrystala Constantinidou , Peter J. Bond
Flagella are necessary for bacterial movement and contribute to various aspects of virulence. They are complex cylindrical structures built of multiple molecular rings with self-assembly properties. The flagellar rotor is composed of the MS-ring and the C-ring. The FliG protein of the C-ring is central to flagellar assembly and function due to its roles in linking the C-ring with the MS-ring and in torque transmission from stator to rotor. No high-resolution structure of an assembled C-ring has been resolved to date, and the conformation adopted by FliG within the ring is unclear due to variations in available crystallographic data. Here, we use molecular dynamics (MD) simulations to study the conformation and dynamics of FliG in different states of assembly, including both in physiologically relevant and crystallographic lattice environments. We conclude that the linker between the FliG N-terminal and middle domain likely adopts an extended helical conformation in vivo, in contrast with the contracted conformation observed in some previous X-ray studies. We further support our findings with integrative model building of full-length FliG and a FliG ring model that is compatible with cryo-electron tomography (cryo-ET) and electron microscopy (EM) densities of the C-ring. Collectively, our study contributes to a better mechanistic understanding of the flagellar rotor assembly and its function.
{"title":"Bridging the N-terminal and middle domains in FliG of the flagellar rotor","authors":"Dagnija Tupiņa , Alexander Krah , Jan K. Marzinek , Lorena Zuzic , Adam A. Moverley , Chrystala Constantinidou , Peter J. Bond","doi":"10.1016/j.crstbi.2022.02.002","DOIUrl":"10.1016/j.crstbi.2022.02.002","url":null,"abstract":"<div><p>Flagella are necessary for bacterial movement and contribute to various aspects of virulence. They are complex cylindrical structures built of multiple molecular rings with self-assembly properties. The flagellar rotor is composed of the MS-ring and the C-ring. The FliG protein of the C-ring is central to flagellar assembly and function due to its roles in linking the C-ring with the MS-ring and in torque transmission from stator to rotor. No high-resolution structure of an assembled C-ring has been resolved to date, and the conformation adopted by FliG within the ring is unclear due to variations in available crystallographic data. Here, we use molecular dynamics (MD) simulations to study the conformation and dynamics of FliG in different states of assembly, including both in physiologically relevant and crystallographic lattice environments. We conclude that the linker between the FliG N-terminal and middle domain likely adopts an extended helical conformation in vivo, in contrast with the contracted conformation observed in some previous X-ray studies. We further support our findings with integrative model building of full-length FliG and a FliG ring model that is compatible with cryo-electron tomography (cryo-ET) and electron microscopy (EM) densities of the C-ring. Collectively, our study contributes to a better mechanistic understanding of the flagellar rotor assembly and its function.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"4 ","pages":"Pages 59-67"},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665928X22000046/pdfft?md5=54167321814b4f9235b624adb9db5f3a&pid=1-s2.0-S2665928X22000046-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45296238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crstbi.2021.12.001
Danielle L. Sexton , Steffen Burgold , Andreas Schertel , Elitza I. Tocheva
Studying bacterial cell envelope architecture with electron microscopy is challenging due to the poor preservation of microbial ultrastructure with traditional methods. Here, we established and validated a super-resolution cryo-correlative light and electron microscopy (cryo-CLEM) method, and combined it with cryo-focused ion beam (cryo-FIB) milling and scanning electron microscopy (SEM) volume imaging to structurally characterize the bacterium Deinococcus radiodurans. Subsequent cryo-electron tomography (cryo-ET) revealed an unusual diderm cell envelope architecture with a thick layer of peptidoglycan (PG) between the inner and outer membranes, an additional periplasmic layer, and a proteinaceous surface S-layer. Cells grew in tetrads, and division septa were formed by invagination of the inner membrane (IM), followed by a thick layer of PG. Cytoskeletal filaments, FtsA and FtsZ, were observed at the leading edges of constricting septa. Numerous macromolecular complexes were found associated with the cytoplasmic side of the IM. Altogether, our study revealed several unique ultrastructural features of D. radiodurans cells, opening new lines of investigation into the physiology and evolution of the bacterium.
{"title":"Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans","authors":"Danielle L. Sexton , Steffen Burgold , Andreas Schertel , Elitza I. Tocheva","doi":"10.1016/j.crstbi.2021.12.001","DOIUrl":"10.1016/j.crstbi.2021.12.001","url":null,"abstract":"<div><p>Studying bacterial cell envelope architecture with electron microscopy is challenging due to the poor preservation of microbial ultrastructure with traditional methods. Here, we established and validated a super-resolution cryo-correlative light and electron microscopy (cryo-CLEM) method, and combined it with cryo-focused ion beam (cryo-FIB) milling and scanning electron microscopy (SEM) volume imaging to structurally characterize the bacterium <em>Deinococcus radiodurans</em>. Subsequent cryo-electron tomography (cryo-ET) revealed an unusual diderm cell envelope architecture with a thick layer of peptidoglycan (PG) between the inner and outer membranes, an additional periplasmic layer, and a proteinaceous surface S-layer. Cells grew in tetrads, and division septa were formed by invagination of the inner membrane (IM), followed by a thick layer of PG. Cytoskeletal filaments, FtsA and FtsZ, were observed at the leading edges of constricting septa. Numerous macromolecular complexes were found associated with the cytoplasmic side of the IM. Altogether, our study revealed several unique ultrastructural features of <em>D. radiodurans</em> cells, opening new lines of investigation into the physiology and evolution of the bacterium.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"4 ","pages":"Pages 1-9"},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8688812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39869480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crstbi.2022.07.002
Jennifer C. Van Wyk , B. Trevor Sewell , Michael J. Danson , Tsepo L. Tsekoa , Muhammed F. Sayed , Don A. Cowan
Nitrile hydratases (NHases) are important biocatalysts for the enzymatic conversion of nitriles to industrially-important amides such as acrylamide and nicotinamide. Although thermostability in this enzyme class is generally low, there is not sufficient understanding of its basis for rational enzyme design. The gene expressing the Co-type NHase from the moderate thermophile, Geobacillus pallidus RAPc8 (NRRL B-59396), was subjected to random mutagenesis. Four mutants were selected that were 3 to 15-fold more thermostable than the wild-type NHase, resulting in a 3.4–7.6 kJ/mol increase in the activation energy of thermal inactivation at 63 °C. High resolution X-ray crystal structures (1.15–1.80 Å) were obtained of the wild-type and four mutant enzymes. Mutant 9E, with a resolution of 1.15 Å, is the highest resolution crystal structure obtained for a nitrile hydratase to date. Structural comparisons between the wild-type and mutant enzymes illustrated the importance of salt bridges and hydrogen bonds in enhancing NHase thermostability. These additional interactions variously improved thermostability by increased intra- and inter-subunit interactions, preventing cooperative unfolding of α-helices and stabilising loop regions. Some hydrogen bonds were mediated via a water molecule, specifically highlighting the significance of structured water molecules in protein thermostability. Although knowledge of the mutant structures makes it possible to rationalize their behaviour, it would have been challenging to predict in advance that these mutants would be stabilising.
{"title":"Engineering enhanced thermostability into the Geobacillus pallidus nitrile hydratase","authors":"Jennifer C. Van Wyk , B. Trevor Sewell , Michael J. Danson , Tsepo L. Tsekoa , Muhammed F. Sayed , Don A. Cowan","doi":"10.1016/j.crstbi.2022.07.002","DOIUrl":"10.1016/j.crstbi.2022.07.002","url":null,"abstract":"<div><p>Nitrile hydratases (NHases) are important biocatalysts for the enzymatic conversion of nitriles to industrially-important amides such as acrylamide and nicotinamide. Although thermostability in this enzyme class is generally low, there is not sufficient understanding of its basis for rational enzyme design. The gene expressing the Co-type NHase from the moderate thermophile, <em>Geobacillus pallidus</em> RAPc8 (NRRL B-59396), was subjected to random mutagenesis. Four mutants were selected that were 3 to 15-fold more thermostable than the wild-type NHase, resulting in a 3.4–7.6 kJ/mol increase in the activation energy of thermal inactivation at 63 °C. High resolution X-ray crystal structures (1.15–1.80 Å) were obtained of the wild-type and four mutant enzymes. Mutant 9E, with a resolution of 1.15 Å, is the highest resolution crystal structure obtained for a nitrile hydratase to date. Structural comparisons between the wild-type and mutant enzymes illustrated the importance of salt bridges and hydrogen bonds in enhancing NHase thermostability. These additional interactions variously improved thermostability by increased intra- and inter-subunit interactions, preventing cooperative unfolding of α-helices and stabilising loop regions. Some hydrogen bonds were mediated via a water molecule, specifically highlighting the significance of structured water molecules in protein thermostability. Although knowledge of the mutant structures makes it possible to rationalize their behaviour, it would have been challenging to predict in advance that these mutants would be stabilising.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"4 ","pages":"Pages 256-270"},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a0/5c/main.PMC9465369.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40360201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crstbi.2022.06.002
Viet-Khoa Tran-Nguyen , Saw Simeon , Muhammad Junaid , Pedro J. Ballester
The interaction between PD1 and its ligand PDL1 has been shown to render tumor cells resistant to apoptosis and promote tumor progression. An innovative mechanism to inhibit the PD1/PDL1 interaction is PDL1 dimerization induced by small-molecule PDL1 binders. Structure-based virtual screening is a promising approach to discovering such small-molecule PD1/PDL1 inhibitors. Here we investigate which type of generic scoring functions is most suitable to tackle this problem. We consider CNN-Score, an ensemble of convolutional neural networks, as the representative of machine-learning scoring functions. We also evaluate Smina, a commonly used classical scoring function, and IFP, a top structural fingerprint similarity scoring function. These three types of scoring functions were evaluated on two test sets sharing the same set of small-molecule PD1/PDL1 inhibitors, but using different types of inactives: either true inactives (molecules with no in vitro PD1/PDL1 inhibition activity) or assumed inactives (property-matched decoy molecules generated from each active). On both test sets, CNN-Score performed much better than Smina, which in turn strongly outperformed IFP. The fact that the latter was the case, despite precluding any possibility of exploiting decoy bias, demonstrates the predictive value of CNN-Score for PDL1. These results suggest that re-scoring Smina-docked molecules with CNN-Score is a promising structure-based virtual screening method to discover new small-molecule inhibitors of this therapeutic target.
{"title":"Structure-based virtual screening for PDL1 dimerizers: Evaluating generic scoring functions","authors":"Viet-Khoa Tran-Nguyen , Saw Simeon , Muhammad Junaid , Pedro J. Ballester","doi":"10.1016/j.crstbi.2022.06.002","DOIUrl":"10.1016/j.crstbi.2022.06.002","url":null,"abstract":"<div><p>The interaction between PD1 and its ligand PDL1 has been shown to render tumor cells resistant to apoptosis and promote tumor progression. An innovative mechanism to inhibit the PD1/PDL1 interaction is PDL1 dimerization induced by small-molecule PDL1 binders. Structure-based virtual screening is a promising approach to discovering such small-molecule PD1/PDL1 inhibitors. Here we investigate which type of generic scoring functions is most suitable to tackle this problem. We consider CNN-Score, an ensemble of convolutional neural networks, as the representative of machine-learning scoring functions. We also evaluate Smina, a commonly used classical scoring function, and IFP, a top structural fingerprint similarity scoring function. These three types of scoring functions were evaluated on two test sets sharing the same set of small-molecule PD1/PDL1 inhibitors, but using different types of inactives: either true inactives (molecules with no <em>in vitro</em> PD1/PDL1 inhibition activity) or assumed inactives (property-matched decoy molecules generated from each active). On both test sets, CNN-Score performed much better than Smina, which in turn strongly outperformed IFP. The fact that the latter was the case, despite precluding any possibility of exploiting decoy bias, demonstrates the predictive value of CNN-Score for PDL1. These results suggest that re-scoring Smina-docked molecules with CNN-Score is a promising structure-based virtual screening method to discover new small-molecule inhibitors of this therapeutic target.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"4 ","pages":"Pages 206-210"},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40410364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1016/j.crstbi.2022.06.001
Izaak N. Beck , David M. Picton , Tim R. Blower
Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multitudinous and varied resistance mechanisms. Bacteriophage Exclusion (BREX) systems protect from phage infection by generating methylation patterns at non-palindromic 6 bp sites in host bacterial DNA, to distinguish and block replication of non-self DNA. Type 1 BREX systems are comprised of six conserved core genes. Here, we present the first reported structure of a BREX core protein, BrxA from the phage defence island of Escherichia fergusonii ATCC 35469 plasmid pEFER, solved to 2.09 Å. BrxA is a monomeric protein in solution, with an all α-helical globular fold. Conservation of surface charges and structural homology modelling against known phage defence systems highlighted that BrxA contains two helix-turn-helix motifs, juxtaposed by 180°, positioned to bind opposite sides of a DNA major groove. BrxA was subsequently shown to bind dsDNA. This new understanding of BrxA structure, and first indication of BrxA biological activity, suggests a conserved mode of DNA-recognition has become widespread and implemented by diverse phage defence systems.
{"title":"Crystal structure of the BREX phage defence protein BrxA","authors":"Izaak N. Beck , David M. Picton , Tim R. Blower","doi":"10.1016/j.crstbi.2022.06.001","DOIUrl":"10.1016/j.crstbi.2022.06.001","url":null,"abstract":"<div><p>Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multitudinous and varied resistance mechanisms. Bacteriophage Exclusion (BREX) systems protect from phage infection by generating methylation patterns at non-palindromic 6 bp sites in host bacterial DNA, to distinguish and block replication of non-self DNA. Type 1 BREX systems are comprised of six conserved core genes. Here, we present the first reported structure of a BREX core protein, BrxA from the phage defence island of <em>Escherichia fergusonii</em> ATCC 35469 plasmid pEFER, solved to 2.09 Å. BrxA is a monomeric protein in solution, with an all α-helical globular fold. Conservation of surface charges and structural homology modelling against known phage defence systems highlighted that BrxA contains two helix-turn-helix motifs, juxtaposed by 180°, positioned to bind opposite sides of a DNA major groove. BrxA was subsequently shown to bind dsDNA. This new understanding of BrxA structure, and first indication of BrxA biological activity, suggests a conserved mode of DNA-recognition has become widespread and implemented by diverse phage defence systems.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"4 ","pages":"Pages 211-219"},"PeriodicalIF":2.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9240713/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40559392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-12-20DOI: 10.1101/2021.12.17.473245
A. Baumann, A. Denninger, M. Domin, B. Demé, D. Kirschner
Myelin is a natural and dynamic multilamellar membrane structure that continues to be of significant biological and neurological interest, especially with respect to its biosynthesis and assembly during its normal formation, maintenance, and pathological breakdown. To explore the usefulness of neutron diffraction in the structural analysis of myelin, we investigated the use of in vivo labeling by metabolically incorporating non-toxic levels of deuterium (2H; D) via drinking water into a pregnant dam (D-dam) and her developing embryos. All of the mice were sacrificed when the pups (D-pups) were 55 days old. Myelinated sciatic nerves were dissected, fixed in glutaraldehyde and examined by neutron diffraction. Parallel samples that were unfixed (trigeminal nerves) were frozen for mass spectrometry (MS). The diffraction patterns of the nerves from deuterium-fed mice (D-mice) vs. the controls (H-mice) had major differences in the intensities of the Bragg peaks but no appreciable differences in myelin periodicity. Neutron scattering density profiles showed an appreciable increase in density at the center of the lipid-rich membrane bilayer. This increase was greater in D-pups than in D-dam, and its localization was consistent with deuteration of lipid hydrocarbon, which predominates over transmembrane protein in myelin. MS analysis of the lipids isolated from the trigeminal nerves demonstrated that in the pups the percentage of lipids that had one or more deuterium atoms was uniformly high across lipid species (97.6% ± 2.0%), whereas in the mother the lipids were substantially less deuterated (60.6% ± 26.4%) with levels varying among lipid species and subspecies. The mass distribution pattern of deuterium-containing isotopologues indicated the fraction (in %) of each lipid (sub-)species having one or more deuteriums incorporated: in the D-pups, the pattern was always bell-shaped, and the average number of D atoms ranged from a low of ∼4 in fatty acid to a high of ∼9 in cerebroside. By contrast, in D-dam most lipids had more complex, overlapping distributions that were weighted toward a lower average number of deuteriums, which ranged from a low of ∼3–4 in fatty acid and in one species of sulfatide to a high of 6–7 in cerebroside and sphingomyelin. The consistently high level of deuteration in D-pups can be attributed to their de novo lipogenesis during gestation and rapid, postnatal myelination. The widely varying levels of deuteration in D-dam, by contrast, likely depends on the relative metabolic stability of the particular lipid species during myelin maintenance. Our current findings demonstrate that stably-incorporated D label can be detected and localized using neutron diffraction in a complex tissue such as myelin; and moreover, that MS can be used to screen a broad range of deuterated lipid species to monitor differential rates of lipid turnover. In addition to helping to develop a comprehensive understanding of the de novo synthesis and turnover
{"title":"Metabolically-incorporated deuterium in myelin localized by neutron diffraction and identified by mass spectrometry","authors":"A. Baumann, A. Denninger, M. Domin, B. Demé, D. Kirschner","doi":"10.1101/2021.12.17.473245","DOIUrl":"https://doi.org/10.1101/2021.12.17.473245","url":null,"abstract":"Myelin is a natural and dynamic multilamellar membrane structure that continues to be of significant biological and neurological interest, especially with respect to its biosynthesis and assembly during its normal formation, maintenance, and pathological breakdown. To explore the usefulness of neutron diffraction in the structural analysis of myelin, we investigated the use of in vivo labeling by metabolically incorporating non-toxic levels of deuterium (2H; D) via drinking water into a pregnant dam (D-dam) and her developing embryos. All of the mice were sacrificed when the pups (D-pups) were 55 days old. Myelinated sciatic nerves were dissected, fixed in glutaraldehyde and examined by neutron diffraction. Parallel samples that were unfixed (trigeminal nerves) were frozen for mass spectrometry (MS). The diffraction patterns of the nerves from deuterium-fed mice (D-mice) vs. the controls (H-mice) had major differences in the intensities of the Bragg peaks but no appreciable differences in myelin periodicity. Neutron scattering density profiles showed an appreciable increase in density at the center of the lipid-rich membrane bilayer. This increase was greater in D-pups than in D-dam, and its localization was consistent with deuteration of lipid hydrocarbon, which predominates over transmembrane protein in myelin. MS analysis of the lipids isolated from the trigeminal nerves demonstrated that in the pups the percentage of lipids that had one or more deuterium atoms was uniformly high across lipid species (97.6% ± 2.0%), whereas in the mother the lipids were substantially less deuterated (60.6% ± 26.4%) with levels varying among lipid species and subspecies. The mass distribution pattern of deuterium-containing isotopologues indicated the fraction (in %) of each lipid (sub-)species having one or more deuteriums incorporated: in the D-pups, the pattern was always bell-shaped, and the average number of D atoms ranged from a low of ∼4 in fatty acid to a high of ∼9 in cerebroside. By contrast, in D-dam most lipids had more complex, overlapping distributions that were weighted toward a lower average number of deuteriums, which ranged from a low of ∼3–4 in fatty acid and in one species of sulfatide to a high of 6–7 in cerebroside and sphingomyelin. The consistently high level of deuteration in D-pups can be attributed to their de novo lipogenesis during gestation and rapid, postnatal myelination. The widely varying levels of deuteration in D-dam, by contrast, likely depends on the relative metabolic stability of the particular lipid species during myelin maintenance. Our current findings demonstrate that stably-incorporated D label can be detected and localized using neutron diffraction in a complex tissue such as myelin; and moreover, that MS can be used to screen a broad range of deuterated lipid species to monitor differential rates of lipid turnover. In addition to helping to develop a comprehensive understanding of the de novo synthesis and turnover","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"4 1","pages":"231 - 245"},"PeriodicalIF":2.8,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42516335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
{"title":"Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors","authors":"Priyanka Dutta , Pratibha Bharti , Janesh Kumar , Sankar Maiti","doi":"10.1016/j.crstbi.2021.10.001","DOIUrl":"10.1016/j.crstbi.2021.10.001","url":null,"abstract":"<div><p>Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"3 ","pages":"Pages 277-289"},"PeriodicalIF":2.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/13/main.PMC8569634.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39721762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Single-wavelength anomalous dispersion (SAD)-phasing using sulfur as the unique anomalous scatterer is a powerful method to solve the phase problem in protein crystallography. However, it is not yet widely used by non-expert crystallographers. We report here the structure determination of the double stranded RNA binding domain of human dihydrouridine synthase using the sulfur-SAD method and highly redundant data collected at 1.8 Å (“off-edge”), at which the estimated overall anomalous signal was 1.08%. High multiplicity data were collected on a single crystal rotated along the ϕ or ω axis at different κ angles, with the primary beam intensity being attenuated from 50% to 95%, compared to data collection at 0.98 Å, to reduce radiation damage. SHELXD succeeded to locate 14 out 15 sulfur sites only using the data sets recorded with highest beam attenuation, which provided phases sufficient for structure solving. In an attempt to stimulate the use of sulfur-SAD phasing by a broader community of crystallographers, we describe our experimental strategy together with a compilation of previous successful cases, suggesting that sulfur-SAD phasing should be attempted for determining the de novo structure of any protein with average sulfur content diffracting better than 3 Å resolution.
{"title":"De novo crystal structure determination of double stranded RNA binding domain using only the sulfur anomalous diffraction in SAD phasing","authors":"Beatriz Gomes Guimarães , Béatrice Golinelli-Pimpaneau","doi":"10.1016/j.crstbi.2021.05.002","DOIUrl":"10.1016/j.crstbi.2021.05.002","url":null,"abstract":"<div><p>Single-wavelength anomalous dispersion (SAD)-phasing using sulfur as the unique anomalous scatterer is a powerful method to solve the phase problem in protein crystallography. However, it is not yet widely used by non-expert crystallographers. We report here the structure determination of the double stranded RNA binding domain of human dihydrouridine synthase using the sulfur-SAD method and highly redundant data collected at 1.8 Å (“off-edge”), at which the estimated overall anomalous signal was 1.08%. High multiplicity data were collected on a single crystal rotated along the ϕ or ω axis at different κ angles, with the primary beam intensity being attenuated from 50% to 95%, compared to data collection at 0.98 Å, to reduce radiation damage. <em>SHELXD</em> succeeded to locate 14 out 15 sulfur sites only using the data sets recorded with highest beam attenuation, which provided phases sufficient for structure solving. In an attempt to stimulate the use of sulfur-SAD phasing by a broader community of crystallographers, we describe our experimental strategy together with a compilation of previous successful cases, suggesting that sulfur-SAD phasing should be attempted for determining the <em>de novo</em> structure of any protein with average sulfur content diffracting better than 3 Å resolution.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"3 ","pages":"Pages 112-120"},"PeriodicalIF":2.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crstbi.2021.05.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39163170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human cytochromes P45011β (CYP11B1) and P450aldo (CYP11B2) are monooxygenases that synthesize cortisol through steroid 11β-hydroxylation and aldosterone through a three-step process comprising 11β-hydroxylation and two 18-hydroxylations, respectively. CYP11B1 also catalyzes 18-monohydroxylation and 11β,18-dihydroxylation. To study the molecular basis of such catalytic divergence of the two enzymes, we examined a CYP11B1 mutant (Mt-CYP11B1) with amino acid replacements on the distal surface by determining the catalytic activities and crystal structure in the metyrapone-bound form at 1.4-Å resolution. Mt-CY11B1 retained both 11β-hydroxylase and 18-hydroxylase activities of the wild type (Wt-CYP11B1) but lacked 11β,18-dihydroxylase activity. Comparisons of the crystal structure of Mt-CYP11B1 to those of Wt-CYP11B1 and CYP11B2 that were already reported show that the mutation reduced the innermost space putatively surrounding the C3 side of substrate 11-deoxycorticosterone (DOC) bound to Wt-CYP11B1, while the corresponding space in CYP11B2 is enlarged markedly and accessible to bulk water through a channel. Molecular dynamics simulations of their DOC-bound forms supported the above findings and revealed that the enlarged space of CYP11B2 had a hydrogen bonding network involving water molecules that position DOC. Thus, upon positioning 11β-hydroxysteroid for 18-hydroxylation in their substrate-binding sites, steric hindrance could occur more strongly in Mt-CYP11B1 than in Wt-CYP11B1 but less in CYP11B2. Our investigation employing Mt-CYP11B1 sheds light on the divergence in structure and function between CYP11B1 and CYP11B2 and suggests that CYP11B1 with spatially-restricted substrate-binding site serves as 11β-hydroxylase, while CYP11B2 with spatially-extended substrate-binding site successively processes additional 18-hydroxylations to produce aldosterone.
{"title":"Spatially restricted substrate-binding site of cortisol-synthesizing CYP11B1 limits multiple hydroxylations and hinders aldosterone synthesis","authors":"Kuniaki Mukai , Hiroshi Sugimoto , Katsumasa Kamiya , Reiko Suzuki , Tomomi Matsuura , Takako Hishiki , Hideo Shimada , Yoshitsugu Shiro , Makoto Suematsu , Norio Kagawa","doi":"10.1016/j.crstbi.2021.08.001","DOIUrl":"10.1016/j.crstbi.2021.08.001","url":null,"abstract":"<div><p>Human cytochromes P450<sub>11β</sub> (CYP11B1) and P450<sub>aldo</sub> (CYP11B2) are monooxygenases that synthesize cortisol through steroid 11β-hydroxylation and aldosterone through a three-step process comprising 11β-hydroxylation and two 18-hydroxylations, respectively. CYP11B1 also catalyzes 18-monohydroxylation and 11β,18-dihydroxylation. To study the molecular basis of such catalytic divergence of the two enzymes, we examined a CYP11B1 mutant (Mt-CYP11B1) with amino acid replacements on the distal surface by determining the catalytic activities and crystal structure in the metyrapone-bound form at 1.4-Å resolution. Mt-CY11B1 retained both 11β-hydroxylase and 18-hydroxylase activities of the wild type (Wt-CYP11B1) but lacked 11β,18-dihydroxylase activity. Comparisons of the crystal structure of Mt-CYP11B1 to those of Wt-CYP11B1 and CYP11B2 that were already reported show that the mutation reduced the innermost space putatively surrounding the C3 side of substrate 11-deoxycorticosterone (DOC) bound to Wt-CYP11B1, while the corresponding space in CYP11B2 is enlarged markedly and accessible to bulk water through a channel. Molecular dynamics simulations of their DOC-bound forms supported the above findings and revealed that the enlarged space of CYP11B2 had a hydrogen bonding network involving water molecules that position DOC. Thus, upon positioning 11β-hydroxysteroid for 18-hydroxylation in their substrate-binding sites, steric hindrance could occur more strongly in Mt-CYP11B1 than in Wt-CYP11B1 but less in CYP11B2. Our investigation employing Mt-CYP11B1 sheds light on the divergence in structure and function between CYP11B1 and CYP11B2 and suggests that CYP11B1 with spatially-restricted substrate-binding site serves as 11β-hydroxylase, while CYP11B2 with spatially-extended substrate-binding site successively processes additional 18-hydroxylations to produce aldosterone.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"3 ","pages":"Pages 192-205"},"PeriodicalIF":2.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crstbi.2021.08.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39387459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.1016/j.crstbi.2021.08.002
Ishan Taneja , Alex S. Holehouse
Intrinsically disordered proteins and protein regions (IDRs) make up around 30% of the human proteome where they play essential roles in dictating and regulating many core biological processes. While IDRs are often studied as isolated domains, in naturally occurring proteins most IDRs are found adjacent to folded domains, where they exist as either N- or C-terminal tails or as linkers connecting two folded domains. Prior work has shown that charge properties of IDRs can influence their conformational behavior, both in isolation and in the context of folded domains. In contrast, the converse scenario is less well-explored: how do the charge properties of folded domains influence IDR conformational behavior? To answer this question, we combined a large-scale structural bioinformatics analysis with all-atom implicit solvent simulations of both rationally designed and naturally occurring proteins. Our results reveal three key takeaways. Firstly, the relative position and accessibility of charged residues across the surface of a folded domain can dictate IDR conformational behavior, overriding expectations based on net surface charge properties. Secondly, naturally occurring proteins possess multiple charge patches that are physically accessible to local IDRs. Finally, even modest changes in the local electrostatic environment of a folded domain can substantially modulate IDR-folded domain interactions. Taken together, our results suggest that folded domain surfaces can act as local determinants of IDR conformational behavior.
{"title":"Folded domain charge properties influence the conformational behavior of disordered tails","authors":"Ishan Taneja , Alex S. Holehouse","doi":"10.1016/j.crstbi.2021.08.002","DOIUrl":"10.1016/j.crstbi.2021.08.002","url":null,"abstract":"<div><p>Intrinsically disordered proteins and protein regions (IDRs) make up around 30% of the human proteome where they play essential roles in dictating and regulating many core biological processes. While IDRs are often studied as isolated domains, in naturally occurring proteins most IDRs are found adjacent to folded domains, where they exist as either N- or C-terminal tails or as linkers connecting two folded domains. Prior work has shown that charge properties of IDRs can influence their conformational behavior, both in isolation and in the context of folded domains. In contrast, the converse scenario is less well-explored: how do the charge properties of folded domains influence IDR conformational behavior? To answer this question, we combined a large-scale structural bioinformatics analysis with all-atom implicit solvent simulations of both rationally designed and naturally occurring proteins. Our results reveal three key takeaways. Firstly, the relative position and accessibility of charged residues across the surface of a folded domain can dictate IDR conformational behavior, overriding expectations based on net surface charge properties. Secondly, naturally occurring proteins possess multiple charge patches that are physically accessible to local IDRs. Finally, even modest changes in the local electrostatic environment of a folded domain can substantially modulate IDR-folded domain interactions. Taken together, our results suggest that folded domain surfaces can act as local determinants of IDR conformational behavior.</p></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"3 ","pages":"Pages 216-228"},"PeriodicalIF":2.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crstbi.2021.08.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39445424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}