Introduction: To investigate the inhibition properties and structure-activity relationship between monoamine oxidase (MAO) and selected monoamine oxidase inhibitors (MAOIs, including selegiline, rasagiline and clorgiline).
Methods: The inhibition effect and molecular mechanism between MAO and MAOIs were identified via the half maximal inhibitory concentration (IC50) and molecular docking technology.
Results: It was indicated that selegiline and rasagiline were MAO B inhibitors, but clorgiline was MAO-A inhibitor based on the selectivity index (SI) of MAOIs (0.000264, 0.0197 and 14607.143 for selegiline, rasagiline and clorgiline, respectively). The high-frequency amino acid residues of the MAOIs and MAO were Ser24, Arg51, Tyr69 and Tyr407 for MAO-A and Arg42 and Tyr435 for MAO B. The MAOIs and MAO A/B pharmacophores included the aromatic core, hydrogen bond acceptor, hydrogen bond donor-acceptor and hydrophobic core.
Conclusion: This study shows the inhibition effect and molecular mechanism between MAO and MAOIs and provides valuable findings on the design and treatment of Alzheimer's and Parkinson's diseases.
{"title":"Molecular Mechanism and Structure-activity Relationship of the Inhibition Effect between Monoamine Oxidase and Selegiline Analogues.","authors":"Chuanxi Yang, Xiaoning Wang, Chang Gao, Yunxiang Liu, Ziyi Ma, Jinqiu Zang, Haoce Wang, Lin Liu, Yonglin Liu, Haofen Sun, Weiliang Wang","doi":"10.2174/1573409919666230503143055","DOIUrl":"10.2174/1573409919666230503143055","url":null,"abstract":"<p><strong>Introduction: </strong>To investigate the inhibition properties and structure-activity relationship between monoamine oxidase (MAO) and selected monoamine oxidase inhibitors (MAOIs, including selegiline, rasagiline and clorgiline).</p><p><strong>Methods: </strong>The inhibition effect and molecular mechanism between MAO and MAOIs were identified via the half maximal inhibitory concentration (IC<sub>50</sub>) and molecular docking technology.</p><p><strong>Results: </strong>It was indicated that selegiline and rasagiline were MAO B inhibitors, but clorgiline was MAO-A inhibitor based on the selectivity index (SI) of MAOIs (0.000264, 0.0197 and 14607.143 for selegiline, rasagiline and clorgiline, respectively). The high-frequency amino acid residues of the MAOIs and MAO were Ser24, Arg51, Tyr69 and Tyr407 for MAO-A and Arg42 and Tyr435 for MAO B. The MAOIs and MAO A/B pharmacophores included the aromatic core, hydrogen bond acceptor, hydrogen bond donor-acceptor and hydrophobic core.</p><p><strong>Conclusion: </strong>This study shows the inhibition effect and molecular mechanism between MAO and MAOIs and provides valuable findings on the design and treatment of Alzheimer's and Parkinson's diseases.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"474-485"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9397931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng C.A. Mey., Platycodon grandiforus and Allium azureum Ledeb.
Objective: The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of "Treating different diseases with the same treatment".
Methods: The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The "TCM-component-target" network and the "TCM-shared target-disease" network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL.
Results: A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets.
Conclusion: KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.
{"title":"Exploring the Mechanisms of Self-made Kuiyu Pingchang Recipe for the Treatment of Ulcerative Colitis and Irritable Bowel Syndrome using a Network Pharmacology-based Approach and Molecular Docking.","authors":"Yong Wen, Xiaoxiang Wang, Ke Si, Ling Xu, Shuoyang Huang, Yu Zhan","doi":"10.2174/1573409919666230515103224","DOIUrl":"10.2174/1573409919666230515103224","url":null,"abstract":"<p><strong>Background: </strong>Ulcerative colitis (UC) and irritable bowel syndrome (IBS) are common intestinal diseases. According to the clinical experience and curative effect, the authors formulated Kuiyu Pingchang Decoction (KYPCD) comprised of <i>Paeoniae radix alba, Aurantii Fructus, Herba euphorbiae humifusae, Lasiosphaera seu Calvatia, Angelicae sinensis radix, Panax ginseng</i> C.A. Mey., <i>Platycodon grandiforus and Allium azureum Ledeb</i>.</p><p><strong>Objective: </strong>The aim of the present study was to explore the mechanisms of KYPCD in the treatment of UC and IBS following the Traditional Chinese Medicine (TCM) theory of \"Treating different diseases with the same treatment\".</p><p><strong>Methods: </strong>The chemical ingredients and targets of KYPCD were obtained using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform (TCMSP). The targets of UC and IBS were extracted using the DisGeNET, GeneCards, DrugBANK, OMIM and TTD databases. The \"TCM-component-target\" network and the \"TCM-shared target-disease\" network were imaged using Cytoscape software. The protein-protein interaction (PPI) network was built using the STRING database. The DAVID platform was used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Using Autodock Tools software, the main active components of KYPCD were molecularly docked with their targets and visualized using PyMOL.</p><p><strong>Results: </strong>A total of 46 active ingredients of KYPCD corresponding to 243 potential targets, 1,565 targets of UC and 1,062 targets of IBS, and 70 targets among active ingredients and two diseases were screened. Core targets in the PPI network included IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA. GO and KEGG enrichment analysis demonstrated 563 biological processes, 48 cellular components, 82 molecular functions and 144 signaling pathways. KEGG enrichment results revealed that the regulated pathways were mainly related to the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways. The results of molecular docking analysis indicated that the core active ingredients of KYPCD had optimal binding activity to their corresponding targets.</p><p><strong>Conclusion: </strong>KYPCD may use IL6, TNF, AKT1, IL1B, TP53, EGFR and VEGFA as the key targets to achieve the treatment of UC and IBS through the PI3K-AKT, MAPK, HIF-1 and IL-17 pathways.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"534-550"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9475016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Due to the biological importance of the benzoxazole derivatives, some 1- (benzo[d]oxazol-2-yl)-3,5-diphenyl-formazans 4a-f were synthesized and screened for in-silico studies and in-vitro antibacterial activity.
Methods: The benzo[d]oxazole-2-thiol (1) was prepared by reacting with 2-aminophenol and carbon disulfide in the presence of alcoholic potassium hydroxide. Then 2-hydrazinylbenzo[d] oxazole (2) was synthesized from the reaction of compound 1 with hydrazine hydrate in the presence of alcohol. Compound 2 was reacted with aromatic aldehydes to give Schiff base, 2-(2- benzylidene-hydrazinyl)benzo[d]oxazole derivatives 3a-f. The title compounds, formazan derivatives 4a-f, were prepared by a reaction of benzene diazonium chloride. All compounds were confirmed by their physical data, FTIR, 1H-NMR, and 13CNMR spectral data. All the prepared title compounds were screened for in-silico studies and in-vitro antibacterial activity on various microbial strains.
Results: Molecular docking against the 4URO receptor demonstrated that molecule 4c showed a maximum dock score of (-) 8.0 kcal/mol. MD simulation data reflected the stable ligand-receptor interaction. As per MM/PBSA analysis, the maximum free binding energy of (-) 58.831 kJ/mol was exhibited by 4c. DFT calculation data confirmed that most of the molecules were soft molecules with electrophilic nature.
Conclusion: The synthesized molecules were validated using molecular docking, MD simulation, MMPBSA analysis, and DFT calculation. Among all the molecules, 4c showed maximum activity. The activity profile of the synthesized molecules against tested micro-organisms was found to be 4c>4b>4a>4e>4f>4d.
{"title":"Computational Studies and Antimicrobial Activity of 1-(benzo[d]oxazol-2- yl)-3,5-diphenylformazan Derivatives.","authors":"Mazen Almehmadi, Ahad Amer Alsaiari, Mamdouh Allahyani, Abdulaziz Alsharif, Abdulelah Aljuaid, Supriyo Saha, Mohammad Asif","doi":"10.2174/1573409919666230703103135","DOIUrl":"10.2174/1573409919666230703103135","url":null,"abstract":"<p><strong>Background: </strong>Due to the biological importance of the benzoxazole derivatives, some 1- (benzo[d]oxazol-2-yl)-3,5-diphenyl-formazans 4a-f were synthesized and screened for in-silico studies and <i>in-vitro</i> antibacterial activity.</p><p><strong>Methods: </strong>The benzo[d]oxazole-2-thiol (1) was prepared by reacting with 2-aminophenol and carbon disulfide in the presence of alcoholic potassium hydroxide. Then 2-hydrazinylbenzo[d] oxazole (2) was synthesized from the reaction of compound 1 with hydrazine hydrate in the presence of alcohol. Compound 2 was reacted with aromatic aldehydes to give Schiff base, 2-(2- benzylidene-hydrazinyl)benzo[d]oxazole derivatives 3a-f. The title compounds, formazan derivatives 4a-f, were prepared by a reaction of benzene diazonium chloride. All compounds were confirmed by their physical data, FTIR, <sup>1</sup>H-NMR, and <sup>13</sup>CNMR spectral data. All the prepared title compounds were screened for <i>in-silico</i> studies and <i>in-vitro</i> antibacterial activity on various microbial strains.</p><p><strong>Results: </strong>Molecular docking against the 4URO receptor demonstrated that molecule 4c showed a maximum dock score of (-) 8.0 kcal/mol. MD simulation data reflected the stable ligand-receptor interaction. As per MM/PBSA analysis, the maximum free binding energy of (-) 58.831 kJ/mol was exhibited by 4c. DFT calculation data confirmed that most of the molecules were soft molecules with electrophilic nature.</p><p><strong>Conclusion: </strong>The synthesized molecules were validated using molecular docking, MD simulation, MMPBSA analysis, and DFT calculation. Among all the molecules, 4c showed maximum activity. The activity profile of the synthesized molecules against tested micro-organisms was found to be 4c>4b>4a>4e>4f>4d.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"835-846"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9752155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1573409919666230607103721
Tiancheng Wang, Weijie Zhang, Cancan Fang, Nan Wang, Yue Zhuang, Song Gao
<p><strong>Background: </strong>A network pharmacology study on the biological action of ginseng in the treatment of colorectal cancer (CRC) by regulating the tumor microenvironment (TME).</p><p><strong>Objectives: </strong>To investigate the potential mechanism of action of ginseng in the treatment of CRC by regulating TME.</p><p><strong>Methods: </strong>This research employed network pharmacology, molecular docking techniques, and bioinformatics validation. Firstly, the active ingredients and the corresponding targets of ginseng were retrieved using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the Traditional Chinese Medicine Integrated Database (TCMID), and the Traditional Chinese Medicine Database@Taiwan (TCM Database@Taiwan). Secondly, the targets related to CRC were retrieved using Genecards, Therapeutic Target Database (TTD), and Online Mendelian Inheritance in Man (OMIM). Tertiary, the targets related to TME were derived from screening the GeneCards and National Center for Biotechnology Information (NCBI)-Gene. Then the common targets of ginseng, CRC, and TME were obtained by Venn diagram. Afterward, the Protein-protein interaction (PPI) network was constructed in the STRING 11.5 database, intersecting targets identified by PPI analysis were introduced into Cytoscape 3.8.2 software cytoHubba plugin, and the final determination of core targets was based on degree value. The OmicShare Tools platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets. Autodock and PyMOL were used for molecular docking verification and visual data analysis of docking results. Finally, we verified the core targets by Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases in bioinformatics.</p><p><strong>Results: </strong>A total of 22 active ingredients and 202 targets were identified to be closely related to the TME of CRC. PPI network mapping identified SRC, STAT3, PIK3R1, HSP90AA1, and AKT1 as possible core targets. Go enrichment analysis showed that it was mainly involved in T cell co-stimulation, lymphocyte co-stimulation, growth hormone response, protein input, and other biological processes; KEGG pathway analysis found 123 related signal pathways, including EGFR tyrosine kinase inhibitor resistance, chemokine signaling pathway, VEGF signaling pathway, ErbB signaling pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer, etc. The molecular docking results showed that the main chemical components of ginseng have a stable binding activity to the core targets. The results of the GEPIA database showed that the mRNA levels of PIK3R1 were significantly lowly expressed and HSP90AA1 was significantly highly expressed in CRC tissues. Analysis of the relationship between core target mRNA levels and the pathological stage of CRC showed that the levels of SRC changed si
背景一项关于人参通过调节肿瘤微环境(TME)治疗结直肠癌(CRC)的生物作用的网络药理学研究:研究人参通过调节肿瘤微环境治疗结直肠癌的潜在作用机制:本研究采用了网络药理学、分子对接技术和生物信息学验证。首先,利用中药系统药理学数据库和分析平台(TCMSP)、中药综合数据库(TCMID)和台湾中药数据库(TCM Database@Taiwan)检索人参的有效成分和相应的靶点。其次,通过Genecards、Therapeutic Target Database (TTD)和Online Mendelian Inheritance in Man (OMIM)检索与CRC相关的靶点。第三,通过基因卡片(GeneCards)和美国国家生物技术信息中心(NCBI)-基因(National Center for Biotechnology Information, NCBI-Gene)筛选出与TME相关的靶点。然后通过维恩图得出人参、CRC和TME的共同靶点。随后,在STRING 11.5数据库中构建了蛋白质-蛋白质相互作用(PPI)网络,并将PPI分析确定的交叉靶标引入Cytoscape 3.8.2软件的cytoHubba插件,根据度值最终确定核心靶标。利用 OmicShare Tools 平台对核心靶标进行了基因本体(GO)富集分析和京都基因组百科全书(KEGG)通路分析。Autodock 和 PyMOL 用于分子对接验证和对接结果的可视化数据分析。最后,我们通过生物信息学中的基因表达谱交互分析(GEPIA)和人类蛋白质图谱(HPA)数据库对核心靶标进行了验证:结果:共发现22种活性成分和202个靶点与CRC的TME密切相关。PPI网络图将SRC、STAT3、PIK3R1、HSP90AA1和AKT1确定为可能的核心靶点。Go富集分析表明,它主要参与T细胞协同刺激、淋巴细胞协同刺激、生长激素反应、蛋白质输入等生物学过程;KEGG通路分析发现了123条相关信号通路,包括表皮生长因子受体酪氨酸激酶抑制剂耐药、趋化因子信号通路、血管内皮生长因子信号通路、ErbB信号通路、PD-L1表达和癌症中的PD-1检查点通路等。分子对接结果表明,人参的主要化学成分与核心靶点具有稳定的结合活性。GEPIA数据库的结果显示,PIK3R1的mRNA水平在CRC组织中明显低表达,而HSP90AA1则明显高表达。对核心靶标 mRNA 水平与 CRC 病理分期关系的分析表明,SRC 的水平随病理分期的变化而明显变化。HPA数据库结果显示,SRC在CRC组织中的表达水平升高,而STAT3、PIK3R1、HSP90AA1和AKT1在CRC组织中的表达水平降低:结论:人参可作用于SRC、STAT3、PIK3R1、HSP90AA1和AKT1,调节T细胞成本刺激、淋巴细胞成本刺激、生长激素反应和蛋白质输入,是调节CRC TME的分子机制。这反映了人参在调节 CRC TME 中的多靶点、多途径作用,为进一步揭示人参的药理基础、作用机制和新药设计开发提供了新思路。
{"title":"Research on the Regulatory Mechanism of Ginseng on the Tumor Microenvironment of Colorectal Cancer based on Network Pharmacology and Bioinformatics Validation.","authors":"Tiancheng Wang, Weijie Zhang, Cancan Fang, Nan Wang, Yue Zhuang, Song Gao","doi":"10.2174/1573409919666230607103721","DOIUrl":"10.2174/1573409919666230607103721","url":null,"abstract":"<p><strong>Background: </strong>A network pharmacology study on the biological action of ginseng in the treatment of colorectal cancer (CRC) by regulating the tumor microenvironment (TME).</p><p><strong>Objectives: </strong>To investigate the potential mechanism of action of ginseng in the treatment of CRC by regulating TME.</p><p><strong>Methods: </strong>This research employed network pharmacology, molecular docking techniques, and bioinformatics validation. Firstly, the active ingredients and the corresponding targets of ginseng were retrieved using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), the Traditional Chinese Medicine Integrated Database (TCMID), and the Traditional Chinese Medicine Database@Taiwan (TCM Database@Taiwan). Secondly, the targets related to CRC were retrieved using Genecards, Therapeutic Target Database (TTD), and Online Mendelian Inheritance in Man (OMIM). Tertiary, the targets related to TME were derived from screening the GeneCards and National Center for Biotechnology Information (NCBI)-Gene. Then the common targets of ginseng, CRC, and TME were obtained by Venn diagram. Afterward, the Protein-protein interaction (PPI) network was constructed in the STRING 11.5 database, intersecting targets identified by PPI analysis were introduced into Cytoscape 3.8.2 software cytoHubba plugin, and the final determination of core targets was based on degree value. The OmicShare Tools platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets. Autodock and PyMOL were used for molecular docking verification and visual data analysis of docking results. Finally, we verified the core targets by Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) databases in bioinformatics.</p><p><strong>Results: </strong>A total of 22 active ingredients and 202 targets were identified to be closely related to the TME of CRC. PPI network mapping identified SRC, STAT3, PIK3R1, HSP90AA1, and AKT1 as possible core targets. Go enrichment analysis showed that it was mainly involved in T cell co-stimulation, lymphocyte co-stimulation, growth hormone response, protein input, and other biological processes; KEGG pathway analysis found 123 related signal pathways, including EGFR tyrosine kinase inhibitor resistance, chemokine signaling pathway, VEGF signaling pathway, ErbB signaling pathway, PD-L1 expression and PD-1 checkpoint pathway in cancer, etc. The molecular docking results showed that the main chemical components of ginseng have a stable binding activity to the core targets. The results of the GEPIA database showed that the mRNA levels of PIK3R1 were significantly lowly expressed and HSP90AA1 was significantly highly expressed in CRC tissues. Analysis of the relationship between core target mRNA levels and the pathological stage of CRC showed that the levels of SRC changed si","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"486-500"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Hyperlipidemia is considered a major risk factor for the progress of atherosclerosis.
Objective: Cholesteryl ester transfer protein (CETP) facilitates the relocation of cholesterol esters from HDL to LDL. CETP inhibition produces higher HDL and lower LDL levels.
Methods: Synthesis of nine benzylamino benzamides 8a-8f and 9a-9c was performed.
Results: In vitro biological study displayed potential CETP inhibitory activity, where compound 9c had the best activity with an IC50 of 1.03 μM. Induced-fit docking demonstrated that 8a-8f and 9a-9c accommodated the CETP active site and hydrophobic interaction predominated ligand/ CETP complex formation.
Conclusion: Pharmacophore mapping showed that this scaffold endorsed CETP inhibitors features and consequently elaborated the high CETP binding affinity.
{"title":"Synthesis, Molecular Modeling and Biological Evaluation of Novel Trifluoromethyl Benzamides as Promising CETP Inhibitors.","authors":"Reema Abu Khalaf, Amani Abusaad, Bara'a Al-Nawaiseh, Dima Sabbah, Ghadeer Albadawi","doi":"10.2174/1573409919666230509123852","DOIUrl":"10.2174/1573409919666230509123852","url":null,"abstract":"<p><strong>Background: </strong>Hyperlipidemia is considered a major risk factor for the progress of atherosclerosis.</p><p><strong>Objective: </strong>Cholesteryl ester transfer protein (CETP) facilitates the relocation of cholesterol esters from HDL to LDL. CETP inhibition produces higher HDL and lower LDL levels.</p><p><strong>Methods: </strong>Synthesis of nine benzylamino benzamides 8a-8f and 9a-9c was performed.</p><p><strong>Results: </strong><i>In vitro</i> biological study displayed potential CETP inhibitory activity, where compound 9c had the best activity with an IC<sub>50</sub> of 1.03 μM. Induced-fit docking demonstrated that 8a-8f and 9a-9c accommodated the CETP active site and hydrophobic interaction predominated ligand/ CETP complex formation.</p><p><strong>Conclusion: </strong>Pharmacophore mapping showed that this scaffold endorsed CETP inhibitors features and consequently elaborated the high CETP binding affinity.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"564-574"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9498295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1573409920666230817144710
Hariram Singh, Devender Pathak
Background: Epilepsy is a chronic neurological disorder caused by irregular electrical activity in the brain. To manage this disorder effectively, it is imperative to identify potential pharmacological targets and to understand the pathophysiology of epilepsy in depth.
Objective: This research aimed to identify promising leads from a library of 1,2,4-triazine-6Hindolo[ 2,3-b]quinoline derivatives and optimize them using in silico and dynamic processes.
Methods: We used computational studies to examine 1,2,4-Triazine-6H-indolo[2,3-b]quinoline derivatives. Some methods were used to strengthen the stability of binding sites, including Docking, ADMET, IFD, MMGBSA, Density Functional Theory (DFT), and Molecular Dynamics.
Results: HRSN24 and HRSN34 exhibited promising pharmacokinetic and pharmacodynamic characteristics compared to standard drugs (Carbamazepine and Phenytoin) and a co-crystal ligand (Diazepam). Both HRSN24 and HRSN34 presented notable Glide Xp docking scores (-4.528 and -4.633 Kcal/mol), IFD scores (-702.22 and -700.3 Kcal/mol), and MMGBSA scores (-45.71 and -14.46 Kcal/mol). HRSN24 was selected for molecular dynamics and DFT analysis. During MD, HRSN24 identified LYS21, GLY22, ASP24, ARG26, VAL53, MET55, and SER308 as the most important amino acid residues for hydrophobic interactions. A DFT computation was performed to determine the physicochemical properties of HRSN24, revealing a total energy of -1362.28 atomic units, a HOMO value of -0.20186, and a LUMO value of -0.01915.
Conclusion: Based on computational modelling techniques, an array of 1,2,4-triazine-6H-indolo [2,3-b]quinoline derivatives were evaluated for their anti-convulsant properties. A stable compound within the GABAA receptor was identified by HRSN24, suggesting its affinity as an anti-convulsant.
{"title":"Unveiling the Anti-convulsant Potential of Novel Series of 1,2,4-Triazine- 6H-Indolo[2,3-b]quinoline Derivatives: <i>In Silico</i> Molecular Docking, ADMET, DFT, and Molecular Dynamics Exploration.","authors":"Hariram Singh, Devender Pathak","doi":"10.2174/1573409920666230817144710","DOIUrl":"10.2174/1573409920666230817144710","url":null,"abstract":"<p><strong>Background: </strong>Epilepsy is a chronic neurological disorder caused by irregular electrical activity in the brain. To manage this disorder effectively, it is imperative to identify potential pharmacological targets and to understand the pathophysiology of epilepsy in depth.</p><p><strong>Objective: </strong>This research aimed to identify promising leads from a library of 1,2,4-triazine-6Hindolo[ 2,3-b]quinoline derivatives and optimize them using <i>in silico</i> and dynamic processes.</p><p><strong>Methods: </strong>We used computational studies to examine 1,2,4-Triazine-6H-indolo[2,3-b]quinoline derivatives. Some methods were used to strengthen the stability of binding sites, including Docking, ADMET, IFD, MMGBSA, Density Functional Theory (DFT), and Molecular Dynamics.</p><p><strong>Results: </strong>HRSN24 and HRSN34 exhibited promising pharmacokinetic and pharmacodynamic characteristics compared to standard drugs (Carbamazepine and Phenytoin) and a co-crystal ligand (Diazepam). Both HRSN24 and HRSN34 presented notable Glide Xp docking scores (-4.528 and -4.633 Kcal/mol), IFD scores (-702.22 and -700.3 Kcal/mol), and MMGBSA scores (-45.71 and -14.46 Kcal/mol). HRSN24 was selected for molecular dynamics and DFT analysis. During MD, HRSN24 identified LYS21, GLY22, ASP24, ARG26, VAL53, MET55, and SER308 as the most important amino acid residues for hydrophobic interactions. A DFT computation was performed to determine the physicochemical properties of HRSN24, revealing a total energy of -1362.28 atomic units, a HOMO value of -0.20186, and a LUMO value of -0.01915.</p><p><strong>Conclusion: </strong>Based on computational modelling techniques, an array of 1,2,4-triazine-6H-indolo [2,3-b]quinoline derivatives were evaluated for their anti-convulsant properties. A stable compound within the GABAA receptor was identified by HRSN24, suggesting its affinity as an anti-convulsant.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"822-834"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10018712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: This study aims to evaluate the efficacy and safety of PARP inhibitor therapy in advanced ovarian cancer and identify the optimal treatment for the survival of patients.
Background: The diversity of PARP inhibitors makes clinicians confused about the optimal strategy and the most effective BRCAm mutation-based regimen for the survival of patients with advanced ovarian cancer.
Objectives: The objective of this study is to compare the effects of various PARP inhibitors alone or in combination with other agents in advanced ovarian cancer.
Methods: PubMed, Embase, Cochrane Library, and Web of Science were searched for relevant studies on PARP inhibitors for ovarian cancer. Bayesian network meta-analysis was performed using Stata 15.0 and R 4.0.4. The primary outcome was the overall PFS, and the secondary outcomes included OS, AE3, DISAE, and TFST.
Results: Fifteen studies involving 5,788 participants were included. The Bayesian network metaanalysis results showed that olaparibANDAI was the most beneficial in prolonging overall PFS and non-BRCAm PFS, followed by niraparibANDAI. However, for BRCAm patients, olaparibTR might be the most effective, followed by niraparibANDAI. Olaparib was the most effective for the OS of BRCAm patients. AI, olaparibANDAI, and veliparibTR were more likely to induce grade 3 or higher adverse events. AI and olaparibANDAI were more likely to cause DISAE.
Conclusion: PARP inhibitors are beneficial to the survival of patients with advanced ovarian cancer. The olaparibTR is the most effective for BRCAm patients, whereas olaparibANDAI and niraparibANDAI are preferable for non-BRCAm patients. Other: More high-quality studies are desired to investigate the efficacy and safety of PARP inhibitors in patients with other genetic performances.
{"title":"Efficacy and Safety of PARP Inhibitor Therapy in Advanced Ovarian Cancer: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials.","authors":"Juying Chen, Xiaozhe Wu, Hongzhe Wang, Xiaoshan Lian, Bing Li, Xiangbo Zhan","doi":"10.2174/1573409920666230907093331","DOIUrl":"10.2174/1573409920666230907093331","url":null,"abstract":"<p><strong>Aims: </strong>This study aims to evaluate the efficacy and safety of PARP inhibitor therapy in advanced ovarian cancer and identify the optimal treatment for the survival of patients.</p><p><strong>Background: </strong>The diversity of PARP inhibitors makes clinicians confused about the optimal strategy and the most effective BRCAm mutation-based regimen for the survival of patients with advanced ovarian cancer.</p><p><strong>Objectives: </strong>The objective of this study is to compare the effects of various PARP inhibitors alone or in combination with other agents in advanced ovarian cancer.</p><p><strong>Methods: </strong>PubMed, Embase, Cochrane Library, and Web of Science were searched for relevant studies on PARP inhibitors for ovarian cancer. Bayesian network meta-analysis was performed using Stata 15.0 and R 4.0.4. The primary outcome was the overall PFS, and the secondary outcomes included OS, AE3, DISAE, and TFST.</p><p><strong>Results: </strong>Fifteen studies involving 5,788 participants were included. The Bayesian network metaanalysis results showed that olaparibANDAI was the most beneficial in prolonging overall PFS and non-BRCAm PFS, followed by niraparibANDAI. However, for BRCAm patients, olaparibTR might be the most effective, followed by niraparibANDAI. Olaparib was the most effective for the OS of BRCAm patients. AI, olaparibANDAI, and veliparibTR were more likely to induce grade 3 or higher adverse events. AI and olaparibANDAI were more likely to cause DISAE.</p><p><strong>Conclusion: </strong>PARP inhibitors are beneficial to the survival of patients with advanced ovarian cancer. The olaparibTR is the most effective for BRCAm patients, whereas olaparibANDAI and niraparibANDAI are preferable for non-BRCAm patients. Other: More high-quality studies are desired to investigate the efficacy and safety of PARP inhibitors in patients with other genetic performances.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"736-751"},"PeriodicalIF":1.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10257115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: This study aimed to determine the in vitro and in silico effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes.
Background: Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important.
Objectives: This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today's world.
Methods: In the current study, the in vitro and in silico effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated.
Results: All the molecules showed an inhibitory effect on the enzymes. The IC50 and Ki values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC50 and Ki values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC50 and Ki values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively.
Conclusion: According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.
{"title":"Assessment of Anticholinergic and Antidiabetic Properties of Some Natural and Synthetic Molecules: An <i>In vitro</i> and <i>In silico</i> Approach.","authors":"Veysel Çomaklı, İmdat Aygül, Rüya Sağlamtaş, Müslüm Kuzu, Ramazan Demirdağ, Hülya Akincioğlu, Şevki Adem, İlhami Gülçin","doi":"10.2174/1573409919666230518151414","DOIUrl":"10.2174/1573409919666230518151414","url":null,"abstract":"<p><strong>Introduction: </strong>This study aimed to determine the <i>in vitro</i> and <i>in silico</i> effects of some natural and synthetic molecules on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and α-glucosidase enzymes.</p><p><strong>Background: </strong>Alzheimer's disease (AD) and Type II diabetes mellitus (T2DM) are considered the most important diseases of today's world. However, the side effects of therapeutic agents used in both diseases limit their use. Therefore, developing drugs with high therapeutic efficacy and better pharmacological profile is important.</p><p><strong>Objectives: </strong>This study sets out to determine the related enzyme inhibitors used in treating AD and T2DM, considered amongst the most important diseases of today's world.</p><p><strong>Methods: </strong>In the current study, the <i>in vitro</i> and <i>in silico</i> effects of dienestrol, hesperetin, Lthyroxine, 3,3',5-Triiodo-L-thyronine (T3) and dobutamine molecules on AChE, BChE and α - glycosidase enzyme activities were investigated.</p><p><strong>Results: </strong>All the molecules showed an inhibitory effect on the enzymes. The IC<sub>50</sub> and K<sub>i</sub> values of the L-Thyroxine molecule, which showed the strongest inhibition effect for the AChE enzyme, were determined as 1.71 μM and 0.83 ± 0.195 μM, respectively. In addition, dienestrol, T3, and dobutamine molecules showed a more substantial inhibition effect than tacrine. The dobutamine molecule showed the most substantial inhibition effect for the BChE enzyme, and IC<sub>50</sub> and K<sub>i</sub> values were determined as 1.83 μM and 0.845 ± 0.143 μM, respectively. The IC<sub>50</sub> and K<sub>i</sub> values for the hesperetin molecule, which showed the strongest inhibition for the α -glycosidase enzyme, were determined as 13.57 μM and 12.33 ± 2.57 μM, respectively.</p><p><strong>Conclusion: </strong>According to the results obtained, the molecules used in the study may be considered potential inhibitor candidates for AChE, BChE and α-glycosidase.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"441-451"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9492283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aims: In this work, some new chromeno[4',3'-b]pyrano[6,5-d]pyrimidines,3-amino and 3-methyl-5-aryl-4-imino-5(H)-chromeno[4',3'-b]pyrano[6,5-d]pyrimidine-6-ones derivatives were synthesized.
Background: Chromenopyrimidines have attracted significant attention recently because of their activities, such as antiviral and cytotoxic activity.
Objective: All synthesized compounds were characterized using IR, 1H-NMR, Mass Spectroscopy, and elemental analysis data.
Methods: Molecular docking studies were carried out to determine the inhibitory action of studied ligands against the Main Protease (6LU7, 6m03) of coronavirus (COVID-19). Moreover, the Lipinski Rule parameters were calculated for the synthesized compounds.
Results: The result of the docking studies showed a significant inhibitory action against the Main protease (Mpro) of SARS-CoV-2, and the binding energy (ΔG) values of the ligands against the protein (6LU7, 6M03) are -7.8 to -9.9 Kcal/mole.
Conclusion: It may conclude that some ligands were likely to be considered lead-like against the main protease of SARS-CoV-2.
{"title":"Synthesis, Docking Study of Some Novel Chromeno[4',3'-b]Pyrano [6,5-d]Pyrimidine Derivatives Against COVID-19 Main Protease (Mpro) (6LU7, 6M03).","authors":"Radineh Motamedi, Safieh Soufian, Zahra Rostami Ghalhar, Mahdiyeh Jalali, Hooman Rahimi","doi":"10.2174/1573409919666230529125038","DOIUrl":"10.2174/1573409919666230529125038","url":null,"abstract":"<p><strong>Aims: </strong>In this work, some new chromeno[4',3'-b]pyrano[6,5-d]pyrimidines,3-amino and 3-methyl-5-aryl-4-imino-5(H)-chromeno[4',3'-b]pyrano[6,5-d]pyrimidine-6-ones derivatives were synthesized.</p><p><strong>Background: </strong>Chromenopyrimidines have attracted significant attention recently because of their activities, such as antiviral and cytotoxic activity.</p><p><strong>Objective: </strong>All synthesized compounds were characterized using IR, <sup>1</sup>H-NMR, Mass Spectroscopy, and elemental analysis data.</p><p><strong>Methods: </strong>Molecular docking studies were carried out to determine the inhibitory action of studied ligands against the Main Protease (6LU7, 6m03) of coronavirus (COVID-19). Moreover, the Lipinski Rule parameters were calculated for the synthesized compounds.</p><p><strong>Results: </strong>The result of the docking studies showed a significant inhibitory action against the Main protease (M<sup>pro</sup>) of SARS-CoV-2, and the binding energy (ΔG) values of the ligands against the protein (6LU7, 6M03) are -7.8 to -9.9 Kcal/mole.</p><p><strong>Conclusion: </strong>It may conclude that some ligands were likely to be considered lead-like against the main protease of SARS-CoV-2.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"551-563"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9600661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.2174/1573409919666230720141115
Xu Lian, Kaidi Fan, Xuemei Qin, Yuetao Liu
Background: Traditional Chinese medicine (TCM) Xiao Jianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained.
Objective: The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches.
Methods: Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ Lin_F9XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD).
Results: Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG.
Conclusion: Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.
{"title":"Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis.","authors":"Xu Lian, Kaidi Fan, Xuemei Qin, Yuetao Liu","doi":"10.2174/1573409919666230720141115","DOIUrl":"10.2174/1573409919666230720141115","url":null,"abstract":"<p><strong>Background: </strong>Traditional Chinese medicine (TCM) Xiao Jianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained.</p><p><strong>Objective: </strong>The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches.</p><p><strong>Methods: </strong>Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ <sub>Lin_F9</sub>XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD).</p><p><strong>Results: </strong>Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG.</p><p><strong>Conclusion: </strong>Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.</p>","PeriodicalId":10886,"journal":{"name":"Current computer-aided drug design","volume":" ","pages":"598-615"},"PeriodicalIF":1.7,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9836420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}