首页 > 最新文献

High Resolution Spectroscopy最新文献

英文 中文
Precise pulsed laser spectroscopy in the visible and far uv region: toward the measurement of the 11S-21S interval in atomic helium 可见和远紫外区的精确脉冲激光光谱:氦原子11S-21S区间的测量
Pub Date : 1900-01-01 DOI: 10.1364/hrs.1993.wb8
S. Gangopadhyay, N. Melikechi, E. Eyler
Precise optical measurements have so far been conducted mainly in the visible and near-uv part of the spectrum. Extension to the far uv region depends on the development of tunable coherent sources that provide high resolution, accurate wavelength metrology, and a large photon flux. As part of our ongoing effort to measure the ionization energy of atomic helium by two- photon excitation at 120.28 nm, we have developed improved methods for generating vuv radiation in the vicinity of 120 nm, and for accurately measuring the systematic frequency shifts that occur during amplification and nonlinear mixing of nanosecond laser pulses.
迄今为止,精确的光学测量主要是在光谱的可见和近紫外部分进行的。延伸到远紫外区域取决于可调相干源的发展,提供高分辨率,精确的波长计量,和一个大的光子通量。作为我们在120.28 nm处通过双光子激发测量氦原子电离能的持续努力的一部分,我们已经开发了改进的方法来产生120 nm附近的vuv辐射,并精确测量在纳秒激光脉冲放大和非线性混合期间发生的系统频移。
{"title":"Precise pulsed laser spectroscopy in the visible and far uv region: toward the measurement of the 11S-21S interval in atomic helium","authors":"S. Gangopadhyay, N. Melikechi, E. Eyler","doi":"10.1364/hrs.1993.wb8","DOIUrl":"https://doi.org/10.1364/hrs.1993.wb8","url":null,"abstract":"Precise optical measurements have so far been conducted mainly in the visible and near-uv part of the spectrum. Extension to the far uv region depends on the development of tunable coherent sources that provide high resolution, accurate wavelength metrology, and a large photon flux. As part of our ongoing effort to measure the ionization energy of atomic helium by two- photon excitation at 120.28 nm, we have developed improved methods for generating vuv radiation in the vicinity of 120 nm, and for accurately measuring the systematic frequency shifts that occur during amplification and nonlinear mixing of nanosecond laser pulses.","PeriodicalId":109383,"journal":{"name":"High Resolution Spectroscopy","volume":"249 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124744470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Ultra-Narrow Velocity Distributions of Slow Atoms Produced with the Zeeman Tuning Technique 用塞曼调谐技术制造慢原子的超窄速度分布
Pub Date : 1900-01-01 DOI: 10.1364/hrs.1993.thb3
S. Zilio, V. Bagnato
We report on the use of a stimulated Raman transition in a slowed atomic beam to produce a narrow velocity distribution of atoms in a selected electronic state, which could be used for atomic collisions studies in the low temperature regime(1). The velocity selection is part of the deceleration process and in this sense it is unique. The atomic beam is decelerated by the radiation pressure force exerted on the atoms by a counter- propagating laser beam. The resonance condition is maintained along the deceleration path because the changing Doppler shift is compensated by Zeeman tuning the electronic sublevels(2) with a spatialy inhomogneous magnetic field. At the end of the slowing process, the initial Maxwell-Boltzman distribution is compressed to a narrow velocity distribution (Δv ~ 50 m/s), centered close to v = 0. This velocity bunching(3) increases considerably the number of atoms in each velocity class, allowing the use of velocity selection techniques as a feasible way of studying low velocity collisions.
我们报道了在慢速原子束中使用受激拉曼跃迁来产生选定电子状态下原子的窄速度分布,这可用于低温状态下的原子碰撞研究(1)。速度选择是减速过程的一部分,在这个意义上它是独一无二的。反传播激光束施加在原子上的辐射压力使原子束减速。由于塞曼用空间不均匀磁场调谐电子子电平(2)来补偿多普勒频移的变化,因此沿减速路径保持了共振条件。在慢化过程结束时,初始麦克斯韦-玻尔兹曼分布被压缩为一个以v = 0附近为中心的窄速度分布(Δv ~ 50 m/s)。这种速度聚集(3)大大增加了每个速度类别中的原子数量,从而允许使用速度选择技术作为研究低速碰撞的可行方法。
{"title":"Ultra-Narrow Velocity Distributions of Slow Atoms Produced with the Zeeman Tuning Technique","authors":"S. Zilio, V. Bagnato","doi":"10.1364/hrs.1993.thb3","DOIUrl":"https://doi.org/10.1364/hrs.1993.thb3","url":null,"abstract":"We report on the use of a stimulated Raman transition in a slowed atomic beam to produce a narrow velocity distribution of atoms in a selected electronic state, which could be used for atomic collisions studies in the low temperature regime(1). The velocity selection is part of the deceleration process and in this sense it is unique. The atomic beam is decelerated by the radiation pressure force exerted on the atoms by a counter- propagating laser beam. The resonance condition is maintained along the deceleration path because the changing Doppler shift is compensated by Zeeman tuning the electronic sublevels(2) with a spatialy inhomogneous magnetic field. At the end of the slowing process, the initial Maxwell-Boltzman distribution is compressed to a narrow velocity distribution (Δv ~ 50 m/s), centered close to v = 0. This velocity bunching(3) increases considerably the number of atoms in each velocity class, allowing the use of velocity selection techniques as a feasible way of studying low velocity collisions.","PeriodicalId":109383,"journal":{"name":"High Resolution Spectroscopy","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115899449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
High Resolution Spectroscopy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1