Sand-slug fracturing has been the main fracturing pumping mode due to the tightness of shale. This mode makes it easier to inject proppants. However, it may cause poor connectivity in the middle brittle formation due to the discontinuous propping. This paper describes an attempt to fracture the unconventional shales with conventional sand-ramp fracturing pumping mode. The results show that good effect is achieved compared with the sand-slug fracturing mode used in the adjacent wells. Shale reservoir reconstruction has large construction displacement and high pressure, and it adopts fracturing technology of slickwater and linear glue1. In other blocks, Sand-slug mode causes large amounts of slickwater injecting into the formation. The role of water, in addition to carrying sand and making seams, will also cause "water lock" in the micro-fissure, reducing the gas permeability. Therefore, the large amount of liquid is not good to the reservoir. The Sand-ramp modes using less fluid and higher sand content2-3, resulting in a greater height and length of the fractures. By using a small amount of proppant, Sand-ramp mode can also achieve high conductivity4, communicating the natural cracks5-7 at the same time. Two wells were designed for Sand-ramp mode in the test area. Based on the understandings on geological characteristics and formation property, the sand-ramp fracturing pumping mode was designed. Two of six wells in the pad were selected to apply this mode. To maximize the stimulated reservoir volume, slickwater accounted for 40% to 60% of the total injected fluids. 100-mesh quartz sands were pumped in priority to improve the complexity of fracture. Then, the 40-70 mesh ceramsites was pumped with crosslinked gel to support the primary, secondary and natural fractures. The pumping rate is 12-13 cubic meters per minute and no acid is used throughout the whole pumping process. The maximum proppant concentration of sand-ramp reached to 480 kilogram per cubic meters, which was much higher than that of sand-slugs. As a result, good propped fractures were obtained. Since no fluid sweep was used after the sand-slug, the average fluid injection per stage is declined by 27%, but the average sand injection volume was increased by 17%, which significantly reduced the cost and the possible influence to environment. With the sand-ramp mode, the highest test production of the block was up to 278500 cubic meters per day. This well produced 35 million cubic meters of shale gas in 270 days. The practicability of the sand-ramp pumping mode used in unconventional shales is proven to be positive, especially in the formation with high horizontal stress difference. However, the development result needs to be continuously studied.
由于页岩的致密性,砂段塞压裂一直是主要的压裂泵送方式。这种模式使得注入支撑剂更加容易。然而,由于支撑的不连续,可能会导致中间脆性地层连通性差。本文介绍了采用常规砂坡道压裂泵送方式对非常规页岩进行压裂的尝试。结果表明,与邻井采用的砂段塞压裂方式相比,该压裂方式取得了良好的效果。页岩储层改造施工排量大、施工压力高,采用滑溜水-线性胶合压裂技术。在其他区块,砂段塞模式会导致大量滑溜水注入地层。水的作用,除了携砂造缝外,还会在微裂隙中造成“锁水”,降低透气性。因此,大量的液体对储层是不利的。砂坡道模式使用更少的流体和更高的含砂量,导致裂缝的高度和长度更大。通过使用少量支撑剂,砂坡道模式也可以获得高导电性,同时连通天然裂缝。在试验区设计了两口井采用砂坡道模式。基于对地质特征和地层性质的认识,设计了砂坡道压裂泵送模式。该区块的6口井中有2口被选中应用该模式。为了最大限度地提高增产油藏的体积,滑溜水占注入流体总量的40%至60%。优先泵送100目石英砂,以提高裂缝的复杂性。然后,用交联凝胶泵送40-70目陶粒,以支撑初级、次级和天然裂缝。泵送速率为每分钟12-13立方米,在整个泵送过程中不使用酸。砂坡道的最大支撑剂浓度可达480 kg / m3,远高于砂段塞。结果,获得了良好的支撑裂缝。由于在砂段塞之后没有进行扫井作业,每级平均注液量下降了27%,但平均注砂量增加了17%,显著降低了成本和对环境的影响。在砂坡道模式下,该区块的最高测试产量可达278500立方米/天。这口井在270天内生产了3500万立方米的页岩气。在非常规页岩中,特别是在水平应力差较大的地层中,证明了坡道抽砂模式的实用性。但是,开发效果还需要不断的研究。
{"title":"Application of Sand-Ramp Fracturing Pumping Mode in Unconventional Shales Stimulation","authors":"Guangzhi Yang, Shicheng Zhang, Ming Liu","doi":"10.2118/191154-MS","DOIUrl":"https://doi.org/10.2118/191154-MS","url":null,"abstract":"\u0000 Sand-slug fracturing has been the main fracturing pumping mode due to the tightness of shale. This mode makes it easier to inject proppants. However, it may cause poor connectivity in the middle brittle formation due to the discontinuous propping. This paper describes an attempt to fracture the unconventional shales with conventional sand-ramp fracturing pumping mode. The results show that good effect is achieved compared with the sand-slug fracturing mode used in the adjacent wells.\u0000 Shale reservoir reconstruction has large construction displacement and high pressure, and it adopts fracturing technology of slickwater and linear glue1. In other blocks, Sand-slug mode causes large amounts of slickwater injecting into the formation. The role of water, in addition to carrying sand and making seams, will also cause \"water lock\" in the micro-fissure, reducing the gas permeability. Therefore, the large amount of liquid is not good to the reservoir.\u0000 The Sand-ramp modes using less fluid and higher sand content2-3, resulting in a greater height and length of the fractures. By using a small amount of proppant, Sand-ramp mode can also achieve high conductivity4, communicating the natural cracks5-7 at the same time. Two wells were designed for Sand-ramp mode in the test area.\u0000 Based on the understandings on geological characteristics and formation property, the sand-ramp fracturing pumping mode was designed. Two of six wells in the pad were selected to apply this mode. To maximize the stimulated reservoir volume, slickwater accounted for 40% to 60% of the total injected fluids. 100-mesh quartz sands were pumped in priority to improve the complexity of fracture. Then, the 40-70 mesh ceramsites was pumped with crosslinked gel to support the primary, secondary and natural fractures. The pumping rate is 12-13 cubic meters per minute and no acid is used throughout the whole pumping process.\u0000 The maximum proppant concentration of sand-ramp reached to 480 kilogram per cubic meters, which was much higher than that of sand-slugs. As a result, good propped fractures were obtained. Since no fluid sweep was used after the sand-slug, the average fluid injection per stage is declined by 27%, but the average sand injection volume was increased by 17%, which significantly reduced the cost and the possible influence to environment. With the sand-ramp mode, the highest test production of the block was up to 278500 cubic meters per day. This well produced 35 million cubic meters of shale gas in 270 days.\u0000 The practicability of the sand-ramp pumping mode used in unconventional shales is proven to be positive, especially in the formation with high horizontal stress difference. However, the development result needs to be continuously studied.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88909910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chaojie Zhao, Jun Li, Gong-hui Liu, Hui Zhang, Chao Wang, Kai Ren, Xin Zhang
Casing deformation turned out to be serious during hydraulic fracturing of shale gas wells in Weiyuan-Channing, where the ratio of casing deformation was more than 30%. Nevertheless, there were no such phenomenon in America and other shale gas producing areas. Why there were so many horizontal wells casing deformation in Weiyuan-Changning, China? There maybe kinds of factors. The authors mainly analyze the effect to casing deformation from operations factors during well drilling and completion, including dogleg angle, loss of cement sheath integrity and APD effect; as well as effect the geologic characteristics such as faults and natural fracture zones, lithologic interface, shale bedding. The results show that: Firstly, though the casing strength gradually decreased as the dogleg angle increasing, the casing collapsing strength drops off only 3.8% with average 2.7°/30m dogleg angle in the casing deformation zone, which showed that it can not lead casing deformation directly. Then, though the influence of temperature and loss of cement sheath integrity will significantly reduce the safety factor of the casing, it cannot be excluded that the local cement sheath can be always damaged after hydraulic fracturing, which suggested the APD effect was not the main factor leading to casing deformation. Finally, the original stress balance near wellbore can be destroyed during multistage hydraulic fracturing leading to non-uniform in-situ stress, which can active the fault, natural fractures, lithologic interface, shale bedding to slip. Therefore there were high probability of casing deformation in the formation with faults, natural fracture zones and strong heterogeneity. The above analysis can be used to explain why there is serious casing deformation in Weiyuan and Changning of China. Perforating far away from the point where casing deformation occurred easily and design the proper fracturing scheme can help us avoid casing deformation rather than simply raising steel grade and wall thickness of casing.
{"title":"The Casing Deformation During Shale Gas Hydraulic Fracturing: Why it is so Serious in Weiyuan-Changning, China?","authors":"Chaojie Zhao, Jun Li, Gong-hui Liu, Hui Zhang, Chao Wang, Kai Ren, Xin Zhang","doi":"10.2118/191273-MS","DOIUrl":"https://doi.org/10.2118/191273-MS","url":null,"abstract":"\u0000 Casing deformation turned out to be serious during hydraulic fracturing of shale gas wells in Weiyuan-Channing, where the ratio of casing deformation was more than 30%. Nevertheless, there were no such phenomenon in America and other shale gas producing areas. Why there were so many horizontal wells casing deformation in Weiyuan-Changning, China? There maybe kinds of factors.\u0000 The authors mainly analyze the effect to casing deformation from operations factors during well drilling and completion, including dogleg angle, loss of cement sheath integrity and APD effect; as well as effect the geologic characteristics such as faults and natural fracture zones, lithologic interface, shale bedding.\u0000 The results show that: Firstly, though the casing strength gradually decreased as the dogleg angle increasing, the casing collapsing strength drops off only 3.8% with average 2.7°/30m dogleg angle in the casing deformation zone, which showed that it can not lead casing deformation directly. Then, though the influence of temperature and loss of cement sheath integrity will significantly reduce the safety factor of the casing, it cannot be excluded that the local cement sheath can be always damaged after hydraulic fracturing, which suggested the APD effect was not the main factor leading to casing deformation. Finally, the original stress balance near wellbore can be destroyed during multistage hydraulic fracturing leading to non-uniform in-situ stress, which can active the fault, natural fractures, lithologic interface, shale bedding to slip. Therefore there were high probability of casing deformation in the formation with faults, natural fracture zones and strong heterogeneity.\u0000 The above analysis can be used to explain why there is serious casing deformation in Weiyuan and Changning of China. Perforating far away from the point where casing deformation occurred easily and design the proper fracturing scheme can help us avoid casing deformation rather than simply raising steel grade and wall thickness of casing.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75263301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Forecasting future production and estimating ultimate recovery (EUR) in supertight reservoirs and shale plays has long been problematic. Developing a reliable and more accurate production forecast have always been a main goal of any petroleum operation. Effectively assessing the reservoir volume and well producing life is instrumental for creation of development scenarios and strategies to maximize the value to the company. Different models have been introduced and used for reserves estimation and production forecast of unconventional reservoirs. This work is intended to review and compare the methods and models currently used in the industry. Reserves estimation is a process that is constantly updated during the life of a reservoir. Its accuracy depends on the amount of data available and the method of forecast. Analytical models or rate transient analysis (RTA) methods are widely used for history matching and production forecast of unconventional reservoirs. Numerical simulation is also used for estimating ultimate recovery. Different relations have been introduced to model the rate/time behavior in unconventional plays as an alternative to the Arps’ decline curve analysis to address shortcomings when matching production history. Modified hyperbolic decline, power-law exponential decline (PLED), stretched-exponential decline (SEPD), Duong's method, and logistic-growth model (LGM) are developed for forecasting the production in shale reservoirs, but all are based on empirical observations of a particular scenario. In this study, different methods of history matching the production of hydraulically fractured unconventional reservoirs were investigated by forecasting future production and predicting EUR's to quantify the differences between them. The traditional Arps’ decline for low permeability reservoirs over-forecasts reserves. PLED, SEPD, LGM, and Duong's method were intended to represent the character of rate/time production data for the standard well completion in a multiple-fractured horizontal well in a shale play. These methods provide different forecasts as they have different equation forms. Unfortunately, all of them are not satisfactorily sufficient to forecast production for all unconventional reservoirs. The RTA analytical models required certain modifications of the reservoir and fracture parameters to provide optimistic EUR when compared to the numerical simulation. Different methods for forecasting unconventional well data have been reviewed and compared in this work based on the production forecast and EUR prediction. Field case production data has been used to reveal the accuracy of the models, the similarity of reserves estimation, and the relationship to the reservoir theory.
{"title":"EUR Prediction for Unconventional Reservoirs: State of the Art and Field Case","authors":"O. Mahmoud, M. Ibrahim, C. Pieprzica, S. Larsen","doi":"10.2118/191160-MS","DOIUrl":"https://doi.org/10.2118/191160-MS","url":null,"abstract":"\u0000 Forecasting future production and estimating ultimate recovery (EUR) in supertight reservoirs and shale plays has long been problematic. Developing a reliable and more accurate production forecast have always been a main goal of any petroleum operation. Effectively assessing the reservoir volume and well producing life is instrumental for creation of development scenarios and strategies to maximize the value to the company. Different models have been introduced and used for reserves estimation and production forecast of unconventional reservoirs. This work is intended to review and compare the methods and models currently used in the industry.\u0000 Reserves estimation is a process that is constantly updated during the life of a reservoir. Its accuracy depends on the amount of data available and the method of forecast. Analytical models or rate transient analysis (RTA) methods are widely used for history matching and production forecast of unconventional reservoirs. Numerical simulation is also used for estimating ultimate recovery. Different relations have been introduced to model the rate/time behavior in unconventional plays as an alternative to the Arps’ decline curve analysis to address shortcomings when matching production history. Modified hyperbolic decline, power-law exponential decline (PLED), stretched-exponential decline (SEPD), Duong's method, and logistic-growth model (LGM) are developed for forecasting the production in shale reservoirs, but all are based on empirical observations of a particular scenario.\u0000 In this study, different methods of history matching the production of hydraulically fractured unconventional reservoirs were investigated by forecasting future production and predicting EUR's to quantify the differences between them. The traditional Arps’ decline for low permeability reservoirs over-forecasts reserves. PLED, SEPD, LGM, and Duong's method were intended to represent the character of rate/time production data for the standard well completion in a multiple-fractured horizontal well in a shale play. These methods provide different forecasts as they have different equation forms. Unfortunately, all of them are not satisfactorily sufficient to forecast production for all unconventional reservoirs. The RTA analytical models required certain modifications of the reservoir and fracture parameters to provide optimistic EUR when compared to the numerical simulation.\u0000 Different methods for forecasting unconventional well data have been reviewed and compared in this work based on the production forecast and EUR prediction. Field case production data has been used to reveal the accuracy of the models, the similarity of reserves estimation, and the relationship to the reservoir theory.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"34 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79785551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Royalty Lease Evaluation (RLE) distillation analysis was performed on six hundred (600) wells in Petrotrin's Soldado acreage. This data has been traditionally generated for use by Petrotrin's refinery to determine if the crude oil feedstock is compatible to the refinery configuration or if the crude oil could cause yield, quality and production problems. These made for refinery reports have become part of Petrotrin's legacy data. The authors decided to examine this dormant dataset to ascertain what hidden stories it may tell about the oilfields from which they came. In this investigation no data is generated, but an existing and dormant dataset will be analysed. Several components in a RLE distillation report on crude oil samples will be observed for trends, patterns and relationships. Ternary diagrams and cross-plots will be employed. Specific geochemical revelations from the RLE data will be validated by comparison to conventional gas chromatography data. This investigation will illustrate how evaporative fractionation, which is a later charge of light hydrocarbons mixing with an emplaced biodegraded oil is evidenced by a phenomenon called the" Gas Oil Anomaly", seen in the RLE data. Essentially this is the absence of any gas oil fraction combined with the presence of light hydrocarbons in the distillation data. It will also be demonstrated that presence of the later charge of light hydrocarbons has been the key factor in the prolific production from the Soldado reservoirs. Additional analysis of the light oil and gas oil fractions of a crude oil will reveal properties and characteristics that suggest there were different sources for both the originally emplaced oils and the later charge of light hydrocarbons. The data also shows that due to the evaporative fractionation phenomenon there is no correlation with API Gravity, oil viscosity, Sulphur content and depth of the reservoirs in Soldado. It will also be demonstrated that the data can be used as a qualitative tool leading to exploration plays in the Soldado acreage. Explorationists at Petrotrin will find the results of this investigation to be both useful and provocative as it directs their attention to specific Trinmar Soldado oilfields as deep exploration play areas in a manner that traditional geochemical analyses have not been able to. It also allows the practioners in the Petrotrin Soldado acreage to better understand the productivity and complex fluid distributions in the Soldado reservoirs.
{"title":"The Geochemistry and Exploration Plays Hidden in Royalty Lease Evaluation Distillation Data of Trinmar Oils","authors":"S. Paul, C. Archie, N. Gallai-Ragobar","doi":"10.2118/191267-MS","DOIUrl":"https://doi.org/10.2118/191267-MS","url":null,"abstract":"\u0000 Royalty Lease Evaluation (RLE) distillation analysis was performed on six hundred (600) wells in Petrotrin's Soldado acreage. This data has been traditionally generated for use by Petrotrin's refinery to determine if the crude oil feedstock is compatible to the refinery configuration or if the crude oil could cause yield, quality and production problems. These made for refinery reports have become part of Petrotrin's legacy data. The authors decided to examine this dormant dataset to ascertain what hidden stories it may tell about the oilfields from which they came.\u0000 In this investigation no data is generated, but an existing and dormant dataset will be analysed. Several components in a RLE distillation report on crude oil samples will be observed for trends, patterns and relationships. Ternary diagrams and cross-plots will be employed. Specific geochemical revelations from the RLE data will be validated by comparison to conventional gas chromatography data.\u0000 This investigation will illustrate how evaporative fractionation, which is a later charge of light hydrocarbons mixing with an emplaced biodegraded oil is evidenced by a phenomenon called the\" Gas Oil Anomaly\", seen in the RLE data. Essentially this is the absence of any gas oil fraction combined with the presence of light hydrocarbons in the distillation data. It will also be demonstrated that presence of the later charge of light hydrocarbons has been the key factor in the prolific production from the Soldado reservoirs.\u0000 Additional analysis of the light oil and gas oil fractions of a crude oil will reveal properties and characteristics that suggest there were different sources for both the originally emplaced oils and the later charge of light hydrocarbons. The data also shows that due to the evaporative fractionation phenomenon there is no correlation with API Gravity, oil viscosity, Sulphur content and depth of the reservoirs in Soldado. It will also be demonstrated that the data can be used as a qualitative tool leading to exploration plays in the Soldado acreage.\u0000 Explorationists at Petrotrin will find the results of this investigation to be both useful and provocative as it directs their attention to specific Trinmar Soldado oilfields as deep exploration play areas in a manner that traditional geochemical analyses have not been able to. It also allows the practioners in the Petrotrin Soldado acreage to better understand the productivity and complex fluid distributions in the Soldado reservoirs.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77502660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guangyue Liang, Shangqi Liu, Y. Liu, Yanyan Luo, B. Han, Jixin Huang, Yu Bao
Steam assisted gravity drainage (SAGD) process is widely used in super heavy oil and oil sands projects. These projects generally have higher steam to oil ratio and poor economy, partly because un-uniform steam chamber along the horizontal section forms and it is hard to adjust, affecting by reservoir heterogeneity including muddy interlayer and thief zones. Therefore, it is desirable to explore realistic and promising technology measures for SAGD projects at low oil price. In this paper, almost all the technology measures for SAGD projects were extensively and deeply investigated in terms of domestic and foreign reports, literatures and on-site experiences. The available research subjects include Xinjiang Fengcheng and Liaohe super heavy oil projects in China as well as ten oil sands project attached to eight corporations in Canada. Better yet, numerous statistics about technology application are reviewed well-by-well, and field application effects for some technologies were verified by deliberate numerical simulation. Many realistic and enforceable technology measures were systematically analyzed and recommended. Single or multiple stage dilation start-up process assisted by waste water or polymer injection enhanced start-up process significantly. Infilling well pairs or wedge well, and sidetracking horizontal well or fishbone well effectively tapped the unswept remaining oil by steam. The other technologies further improved steam chamber conformance including non-condensable gas co-injection, ICD/FCD technology, differentiated operating pressure strategy, nitrogen plus dispersant foam profile control and other remedial measures, etc. Besides, the present situation and foreground application were summarized and evaluated for several promising new technologies to be studied such as screening low cost mixed solvent to increase solvent recovery, warm solvent gravity drainage (Nsolv) process and in-situ upgrading process assisted by electrical heater or catalytic modification to reduce the capital cost of surface facility, etc. The paper contains some previously unpublished data of practical experiences, and the findings of this investigation add to the knowledge base information related to improving the SAGD performance and economy of super heavy oil or oil sands projects.
{"title":"Realistic and Promising Technology Measures for SAGD Projects at Low Oil Price","authors":"Guangyue Liang, Shangqi Liu, Y. Liu, Yanyan Luo, B. Han, Jixin Huang, Yu Bao","doi":"10.2118/191266-MS","DOIUrl":"https://doi.org/10.2118/191266-MS","url":null,"abstract":"\u0000 Steam assisted gravity drainage (SAGD) process is widely used in super heavy oil and oil sands projects. These projects generally have higher steam to oil ratio and poor economy, partly because un-uniform steam chamber along the horizontal section forms and it is hard to adjust, affecting by reservoir heterogeneity including muddy interlayer and thief zones. Therefore, it is desirable to explore realistic and promising technology measures for SAGD projects at low oil price.\u0000 In this paper, almost all the technology measures for SAGD projects were extensively and deeply investigated in terms of domestic and foreign reports, literatures and on-site experiences. The available research subjects include Xinjiang Fengcheng and Liaohe super heavy oil projects in China as well as ten oil sands project attached to eight corporations in Canada. Better yet, numerous statistics about technology application are reviewed well-by-well, and field application effects for some technologies were verified by deliberate numerical simulation.\u0000 Many realistic and enforceable technology measures were systematically analyzed and recommended. Single or multiple stage dilation start-up process assisted by waste water or polymer injection enhanced start-up process significantly. Infilling well pairs or wedge well, and sidetracking horizontal well or fishbone well effectively tapped the unswept remaining oil by steam. The other technologies further improved steam chamber conformance including non-condensable gas co-injection, ICD/FCD technology, differentiated operating pressure strategy, nitrogen plus dispersant foam profile control and other remedial measures, etc. Besides, the present situation and foreground application were summarized and evaluated for several promising new technologies to be studied such as screening low cost mixed solvent to increase solvent recovery, warm solvent gravity drainage (Nsolv) process and in-situ upgrading process assisted by electrical heater or catalytic modification to reduce the capital cost of surface facility, etc.\u0000 The paper contains some previously unpublished data of practical experiences, and the findings of this investigation add to the knowledge base information related to improving the SAGD performance and economy of super heavy oil or oil sands projects.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84560491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}