Miscible gas injection has become the most used enhanced oil recovery (EOR) method in the oil and gas industry. The deposition and precipitation of aspahltene during the gas injection process is one of the problems during the oil production process. The asphaltene can deposit and plug the pores, which reduces the permeability in a reservoir; thus, decreasing the oil recovery and increasing the production costs. This research investigates the nitrogen (N2) miscible and immiscible pressure injections on asphaltene instability in shale pore structures . First, a slim-tube was used to determine the minimum miscibility pressure (MMP) of N2to ensure that the effect of both miscible and immiscible gas injection was achievable. Second, filtration experiments were conducted using a specially designed filtration apparatus to investigate the effect of nano pore sizes on asphaltene deposition. Heterogeneous distribution of the filter paper membranes was used in all experiments. The factors studied include miscible/immiscible N2injection and pore size distribution. Visualization tests were conducted to highlight the asphaltene precipitation process over time. The results showed that increasing the pressure increased the asphaltene weight percentage. The miscible N2injection pressure had a significant effect on asphaltene instability. However, the immiscible N2injection pressure had a lower effect on the asphaltene deposition, which resulted in less asphaltene weight percentage. For both miscible/immiscible N2injection pressures, the asphaltene weight percentage increased as the pore size of the filter membranes decreased. Visualization tests showed that after one hour the asphaltene clusters were clearly noticed and suspended in the solvent of heptane, and the asphaltene was fully deposited after 12 hours. Microscopy imaging of filter membranes indicated significant pore plugging from asphaltene, especially for smaller pore sizes.
{"title":"An Experimental Study Investigating the Impact of Miscible and Immiscible Nitrogen Injection on Asphaltene Instability in Nano Shale Pore Structure","authors":"Mukhtar Elturki, Abdulmohsin Imqam","doi":"10.2118/204294-ms","DOIUrl":"https://doi.org/10.2118/204294-ms","url":null,"abstract":"\u0000 Miscible gas injection has become the most used enhanced oil recovery (EOR) method in the oil and gas industry. The deposition and precipitation of aspahltene during the gas injection process is one of the problems during the oil production process. The asphaltene can deposit and plug the pores, which reduces the permeability in a reservoir; thus, decreasing the oil recovery and increasing the production costs. This research investigates the nitrogen (N2) miscible and immiscible pressure injections on asphaltene instability in shale pore structures . First, a slim-tube was used to determine the minimum miscibility pressure (MMP) of N2to ensure that the effect of both miscible and immiscible gas injection was achievable. Second, filtration experiments were conducted using a specially designed filtration apparatus to investigate the effect of nano pore sizes on asphaltene deposition. Heterogeneous distribution of the filter paper membranes was used in all experiments. The factors studied include miscible/immiscible N2injection and pore size distribution. Visualization tests were conducted to highlight the asphaltene precipitation process over time. The results showed that increasing the pressure increased the asphaltene weight percentage. The miscible N2injection pressure had a significant effect on asphaltene instability. However, the immiscible N2injection pressure had a lower effect on the asphaltene deposition, which resulted in less asphaltene weight percentage. For both miscible/immiscible N2injection pressures, the asphaltene weight percentage increased as the pore size of the filter membranes decreased. Visualization tests showed that after one hour the asphaltene clusters were clearly noticed and suspended in the solvent of heptane, and the asphaltene was fully deposited after 12 hours. Microscopy imaging of filter membranes indicated significant pore plugging from asphaltene, especially for smaller pore sizes.","PeriodicalId":11099,"journal":{"name":"Day 1 Mon, December 06, 2021","volume":"105 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78515627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher S. Daeffler, Julia Fernandez del Valle, J. Elkhoury, M. Panga, Max Nikolaev, Bulat Kamaletdinov
Globally, dolomite formations are important reservoirs for oil and gas. Acid stimulation is commonly used to extend the life of carbonate reservoirs, and a good understanding of the fluid performance is essential for effective treatment design. Three acids, hydrochloric acid (HCl), emulsified HCl, and a single-phase retarded acid based on HCl, were assessed for their ability to create wormholes in Silurian dolomite under laboratory conditions using a standard core flow experiment. Select cores were imaged by X-ray computed tomography to visualize the wormhole morphology. Similar experiments in Indiana limestone was used as a control. The core flow experiments showed that the pore volume to break-through (PVbt) values for the retarded acids in Indiana limestone were less sensitive to changes in temperature overall than unmodified HCl. For Silurian dolomite though, the opposite is observed. HCl has uniformly high PVbt values at lower (200 °F) and higher (325 °F). The emulsified acid and the single-phase retarded acid are more efficient than HCl, but the difference is smaller at 325 °F. Core images revealed that all three fluids had some degree of wormhole branching at 200 °F and much less branching at 325 °F. By visual inspection, the single-phase retarded acid has less ramification than HCl and the emulsified acid. Overall, the results show that retarded acids should make effective stimulation fluids for dolomite reservoirs.
{"title":"Dolomite Stimulation with Retarded Acids","authors":"Christopher S. Daeffler, Julia Fernandez del Valle, J. Elkhoury, M. Panga, Max Nikolaev, Bulat Kamaletdinov","doi":"10.2118/204386-ms","DOIUrl":"https://doi.org/10.2118/204386-ms","url":null,"abstract":"\u0000 Globally, dolomite formations are important reservoirs for oil and gas. Acid stimulation is commonly used to extend the life of carbonate reservoirs, and a good understanding of the fluid performance is essential for effective treatment design. Three acids, hydrochloric acid (HCl), emulsified HCl, and a single-phase retarded acid based on HCl, were assessed for their ability to create wormholes in Silurian dolomite under laboratory conditions using a standard core flow experiment. Select cores were imaged by X-ray computed tomography to visualize the wormhole morphology. Similar experiments in Indiana limestone was used as a control. The core flow experiments showed that the pore volume to break-through (PVbt) values for the retarded acids in Indiana limestone were less sensitive to changes in temperature overall than unmodified HCl. For Silurian dolomite though, the opposite is observed. HCl has uniformly high PVbt values at lower (200 °F) and higher (325 °F). The emulsified acid and the single-phase retarded acid are more efficient than HCl, but the difference is smaller at 325 °F. Core images revealed that all three fluids had some degree of wormhole branching at 200 °F and much less branching at 325 °F. By visual inspection, the single-phase retarded acid has less ramification than HCl and the emulsified acid. Overall, the results show that retarded acids should make effective stimulation fluids for dolomite reservoirs.","PeriodicalId":11099,"journal":{"name":"Day 1 Mon, December 06, 2021","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84942411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Zhao, Z. Dai, Chong Dai, Samridhdi Paudyal, Xin Wang, Saebom Ko, Xuanzhu Yao, Cianna Leschied, A. Kan, M. Tomson
Mineral scale formation has always been a serious problem during production. Most scales can be treated by adding threshold scale inhibitors. Several crystallization and inhibition models have previously been reported to predict the minimum inhibitor concentration (MIC) needed to control the barite and calcite scale. Recently, more attentions have been paid to the formation of celestite scale in the oilfield. However, no related models have been developed to help determine the MIC needed for the celestite scale control. Therefore, in this study, the crystallization and inhibition kinetics data of celestite under a wide range of celestite saturation index (SI = 0.7 – 2.6), temperature (T = 25 – 90 °C), ionic strength (IS = 1.075 – 3.075 M) and pH (4 – 6.7) with one phosphonate inhibitor (diethylenetriamine penta(methylene phosphonic acid, DTPMP) and two polymeric inhibitors (phophinopolycarboxylate, PPCA and polyvinyl sulfonate, PVS) were measured by laser apparatus or collected from previous studies. Then, based on the results, the celestite crystallization and inhibition models were established accordingly. Good agreements between the experimental results and calculated results from the models can be found. By using these newly developed models, the MIC needed for three commonly seen inhibitors, DTPMP, PPCA and PVS on celestite scale control can be predicted under extensive production conditions. The developed models can fill in the blank in scaling management strategies for high Sr2+ and SO42- concentrations in the produced waters.
{"title":"A Semiempirical Model for Predicting Celestite Scale Formation and Inhibition in Oilfield Operating Conditions","authors":"Yue Zhao, Z. Dai, Chong Dai, Samridhdi Paudyal, Xin Wang, Saebom Ko, Xuanzhu Yao, Cianna Leschied, A. Kan, M. Tomson","doi":"10.2118/204372-ms","DOIUrl":"https://doi.org/10.2118/204372-ms","url":null,"abstract":"\u0000 Mineral scale formation has always been a serious problem during production. Most scales can be treated by adding threshold scale inhibitors. Several crystallization and inhibition models have previously been reported to predict the minimum inhibitor concentration (MIC) needed to control the barite and calcite scale. Recently, more attentions have been paid to the formation of celestite scale in the oilfield. However, no related models have been developed to help determine the MIC needed for the celestite scale control. Therefore, in this study, the crystallization and inhibition kinetics data of celestite under a wide range of celestite saturation index (SI = 0.7 – 2.6), temperature (T = 25 – 90 °C), ionic strength (IS = 1.075 – 3.075 M) and pH (4 – 6.7) with one phosphonate inhibitor (diethylenetriamine penta(methylene phosphonic acid, DTPMP) and two polymeric inhibitors (phophinopolycarboxylate, PPCA and polyvinyl sulfonate, PVS) were measured by laser apparatus or collected from previous studies. Then, based on the results, the celestite crystallization and inhibition models were established accordingly. Good agreements between the experimental results and calculated results from the models can be found. By using these newly developed models, the MIC needed for three commonly seen inhibitors, DTPMP, PPCA and PVS on celestite scale control can be predicted under extensive production conditions. The developed models can fill in the blank in scaling management strategies for high Sr2+ and SO42- concentrations in the produced waters.","PeriodicalId":11099,"journal":{"name":"Day 1 Mon, December 06, 2021","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83398205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The water channeling and excess water production led to the decreasing formation energy in the oilfield. Therefore, the combined flooding with dispersed particle gel (DPG) and surfactant was conducted for conformance control and enhanced oil recovery in a high temperature (100-110°C) high salinity (>2.1×105mg/L) channel reservoir of block X in Tahe oilfield. This paper reports the experimental results and pilot test for the combined flooding in a well group of Block X. In the experiment part, the interfacial tension, emulsifying capacity of the surfactant and the particle size during aging of DPG were measured, then, the conformance control and enhanced oil recovery performance of the combined flooding was evaluated by core flooding experiment. In the pilot test, the geological backgrounds and developing history of the block was introduced. Then, an integrated study of EOR and conformance control performance in the block X are analyzed by real-time monitoring and performance after treatment. In addition, the well selection criteria and flooding optimization were clarified. In this combined flooding, DPG is applied as in-depth conformance control agent to increase the sweep efficiency, and surfactant solution slug following is used for improve the displacement efficiency. The long term stability of DPG for 15 days ensures the efficiency of in-depth conformance control and its size can increase from its original 0.543μm to 35.5μm after aging for 7 days in the 2.17×105mg/L reservoir water and at 110°C. In the optimization, it is found that 0.35% NAC-1+ 0.25% NAC-2 surfactant solution with interfacial tension 3.2×10-2mN/m can form a relatively stable emulsion easily with the dehydrated crude oil. In the double core flooding, the conformance control performance is confirmed by the diversion of fluid after combined flooding and EOR increases by 21.3%. After exploitation of Block X for 14 years, the fast decreasing formation energy due to lack of large bottom water and water fingering resulted in a decreasing production rate and increasing watercut. After combined flooding in Y well group with 1 injector and 3 producers, the average dynamic liquid level, daily production, and tracing agent breakthrough time increased, while the watercut and infectivity index decreased. The distribution rate of injected fluid and real-time monitoring also assured the conformance control performance. The oil production of this well group was increased by over 3000 tons. Upon this throughout study of combined flooding from experiment to case study, adjusting the heterogeneity by DPG combined with increasing displacement efficiency of surfactant enhanced the oil recovery synergistically in this high salinity high temperature reservoir. The criteria for the selection and performance of combined flooding also provides practical experiences and principles for combined flooding.
{"title":"The Combined Flooding of Dispersed Particle Gel and Surfactant for Conformance Control and EOR: From Experiment to Pilot Test","authors":"Xia Yin, Tianyi Zhao, J. Yi","doi":"10.2118/204324-ms","DOIUrl":"https://doi.org/10.2118/204324-ms","url":null,"abstract":"\u0000 The water channeling and excess water production led to the decreasing formation energy in the oilfield. Therefore, the combined flooding with dispersed particle gel (DPG) and surfactant was conducted for conformance control and enhanced oil recovery in a high temperature (100-110°C) high salinity (>2.1×105mg/L) channel reservoir of block X in Tahe oilfield.\u0000 This paper reports the experimental results and pilot test for the combined flooding in a well group of Block X. In the experiment part, the interfacial tension, emulsifying capacity of the surfactant and the particle size during aging of DPG were measured, then, the conformance control and enhanced oil recovery performance of the combined flooding was evaluated by core flooding experiment. In the pilot test, the geological backgrounds and developing history of the block was introduced. Then, an integrated study of EOR and conformance control performance in the block X are analyzed by real-time monitoring and performance after treatment. In addition, the well selection criteria and flooding optimization were clarified.\u0000 In this combined flooding, DPG is applied as in-depth conformance control agent to increase the sweep efficiency, and surfactant solution slug following is used for improve the displacement efficiency. The long term stability of DPG for 15 days ensures the efficiency of in-depth conformance control and its size can increase from its original 0.543μm to 35.5μm after aging for 7 days in the 2.17×105mg/L reservoir water and at 110°C. In the optimization, it is found that 0.35% NAC-1+ 0.25% NAC-2 surfactant solution with interfacial tension 3.2×10-2mN/m can form a relatively stable emulsion easily with the dehydrated crude oil. In the double core flooding, the conformance control performance is confirmed by the diversion of fluid after combined flooding and EOR increases by 21.3%. After exploitation of Block X for 14 years, the fast decreasing formation energy due to lack of large bottom water and water fingering resulted in a decreasing production rate and increasing watercut. After combined flooding in Y well group with 1 injector and 3 producers, the average dynamic liquid level, daily production, and tracing agent breakthrough time increased, while the watercut and infectivity index decreased. The distribution rate of injected fluid and real-time monitoring also assured the conformance control performance. The oil production of this well group was increased by over 3000 tons.\u0000 Upon this throughout study of combined flooding from experiment to case study, adjusting the heterogeneity by DPG combined with increasing displacement efficiency of surfactant enhanced the oil recovery synergistically in this high salinity high temperature reservoir. The criteria for the selection and performance of combined flooding also provides practical experiences and principles for combined flooding.","PeriodicalId":11099,"journal":{"name":"Day 1 Mon, December 06, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79352829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Beteta, L. Boak, K. McIver, M. Jordan, R. Shields
With the current trend for application of Enhanced Oil Recovery (EOR) technologies, there has been much research into the possible upsets to production, from the nature of the produced fluids to changes in the scaling regime. The key question being addressed in this publication is the influence of EOR chemicals, such as hydrolyzed polyacrylamide (HPAM), on scale inhibitor (SI) squeeze lifetime for barium sulphate and calcium carbonate scale risk. Squeeze lifetime is defined as the duration of time (or produced water volume) before the minimum inhibitor concentration (MIC) is reached. This is controlled by the adsorption, and later release, of the inhibitor onto the reservoir rock and the MIC of the inhibitor selected for the produced brine. This paper builds on earlier published work investigating potential changes to inhibitor adsorption caused by polymer EOR produced and moves to the evaluation of the changes in MIC due to the presence of EOR chemical. In the static inhibitor performance bottle tests, the EOR polymer alone appeared to show some degree of inhibition performance against BaSO4, but below a level required for effective scale management. However, in combination with the inhibitor (DETPMP) at near MIC levels, the inhibition efficiency was negatively impacted by the presence of degraded HPAM EOR polymer. During dynamic tube blocking tests, the inclusion of even low levels of HPAM (2.5 ppm) were shown to reduce the differential pressure build up suggesting barite scale inhibition or reduced adhesion to the coil. Furthermore, the scale morphology produced in these tests, examined under a scanning electron microscope, was clearly impacted in the presence of HPAM. For the CaCO3 system there appears to be increasing positive impact from HPAM on CaCO3 morphology with HPAM concentration and, as observed for BaSO4, an improved performance in dynamic efficiency experiments. However, at higher HPAM concentrations (500 ppm) the precipitate was amorphous and only a minor pressure rise was observed during the tube blocking experiments. From these observations, it is clear that HPAM can impact the way both calcite and barite scale grow, especially at lower inhibitor concentrations (