Donor-recipient proximity emerged as an important factor influencing the efficacy of COVID-19 convalescent plasma (CCP) treatment during the early stages of the COVID-19 pandemic. This relationship was uncovered while analyzing data collected in the collaborative Expanded Access Program (EAP) for CCP at Mayo Clinic, a project aimed to establish protocols for CCP use amid the uncertainty of the novel disease. Analysis of data from nearly 28,000 patients revealed a significant reduction in risk of 30-day mortality for those receiving near-sourced plasma when compared to those receiving distantly sourced plasma [pooled relative risk, 0.73 (95% CI 0.67-0.80)], prompting adjustments in treatment protocols at selected institutions, and highlighting the importance of proximity in optimizing CCP outcomes. Despite its significance, subsequent studies of CCP effectiveness in COVID-19 have often overlooked donor-recipient proximity. Our findings emphasize the importance of donor-recipient proximity in CCP treatment in the current pandemic, and we discuss potential methods for improving CCP efficacy in future pandemics. Our recommendations include prioritizing virus genotyping for vulnerable patients, establishing a robust testing infrastructure, and collecting additional donor data to enhance plasma selection. This chapter underscores the importance of comprehensive data collection and sharing to navigate the evolving landscape of newly emerging infectious diseases.
{"title":"The Importance of Geographic Proximity of Convalescent Plasma Donors.","authors":"Katie L Kunze, Patrick W Johnson","doi":"10.1007/82_2024_270","DOIUrl":"https://doi.org/10.1007/82_2024_270","url":null,"abstract":"<p><p>Donor-recipient proximity emerged as an important factor influencing the efficacy of COVID-19 convalescent plasma (CCP) treatment during the early stages of the COVID-19 pandemic. This relationship was uncovered while analyzing data collected in the collaborative Expanded Access Program (EAP) for CCP at Mayo Clinic, a project aimed to establish protocols for CCP use amid the uncertainty of the novel disease. Analysis of data from nearly 28,000 patients revealed a significant reduction in risk of 30-day mortality for those receiving near-sourced plasma when compared to those receiving distantly sourced plasma [pooled relative risk, 0.73 (95% CI 0.67-0.80)], prompting adjustments in treatment protocols at selected institutions, and highlighting the importance of proximity in optimizing CCP outcomes. Despite its significance, subsequent studies of CCP effectiveness in COVID-19 have often overlooked donor-recipient proximity. Our findings emphasize the importance of donor-recipient proximity in CCP treatment in the current pandemic, and we discuss potential methods for improving CCP efficacy in future pandemics. Our recommendations include prioritizing virus genotyping for vulnerable patients, establishing a robust testing infrastructure, and collecting additional donor data to enhance plasma selection. This chapter underscores the importance of comprehensive data collection and sharing to navigate the evolving landscape of newly emerging infectious diseases.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antiviral passive antibody therapy includes convalescent plasma, hyperimmune globulin, and monoclonal antibodies. Passive antibodies have proven effective in reducing morbidity and mortality for SARS-CoV-2 and other infectious diseases when given early in the disease course with sufficiently high specific total and neutralizing antibody levels. Convalescent plasma can be delivered to patients before vaccination implementation or novel drug production. Carefully designed and executed randomized controlled trials near the pandemic outset are important for regulatory bodies, healthcare workers, guideline committees, the public, and the government. Unfortunately, many otherwise well-designed antibody-based clinical trials in COVID-19 were futile, either because they intervened too late in the disease or provided plasma with insufficient antibodies. The need for early treatment mandates outpatient clinical trials in parallel with inpatient trials. Early outpatient COVID-19 convalescent plasma transfusion with high antibody content within 9 days of symptom onset has proven effective in blunting disease progression and reducing hospitalization, thus reducing hospital overcrowding in a pandemic. Convalescent plasma offers the opportunity for hope by enabling community participation in outpatient curative therapy while monoclonal therapies, vaccines, and drugs are being developed. Maintaining the appropriate infrastructure for antibody infusion in both outpatient and inpatient facilities is critical for future pandemic readiness.
{"title":"Convalescent Plasma and Other Antibody Therapies for Infectious Diseases-Lessons Learned from COVID-19 and Future Prospects.","authors":"David J Sullivan","doi":"10.1007/82_2024_273","DOIUrl":"10.1007/82_2024_273","url":null,"abstract":"<p><p>Antiviral passive antibody therapy includes convalescent plasma, hyperimmune globulin, and monoclonal antibodies. Passive antibodies have proven effective in reducing morbidity and mortality for SARS-CoV-2 and other infectious diseases when given early in the disease course with sufficiently high specific total and neutralizing antibody levels. Convalescent plasma can be delivered to patients before vaccination implementation or novel drug production. Carefully designed and executed randomized controlled trials near the pandemic outset are important for regulatory bodies, healthcare workers, guideline committees, the public, and the government. Unfortunately, many otherwise well-designed antibody-based clinical trials in COVID-19 were futile, either because they intervened too late in the disease or provided plasma with insufficient antibodies. The need for early treatment mandates outpatient clinical trials in parallel with inpatient trials. Early outpatient COVID-19 convalescent plasma transfusion with high antibody content within 9 days of symptom onset has proven effective in blunting disease progression and reducing hospitalization, thus reducing hospital overcrowding in a pandemic. Convalescent plasma offers the opportunity for hope by enabling community participation in outpatient curative therapy while monoclonal therapies, vaccines, and drugs are being developed. Maintaining the appropriate infrastructure for antibody infusion in both outpatient and inpatient facilities is critical for future pandemic readiness.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The onset of the COVID-19 pandemic confronted medicine with several difficulties, including a lack of specific therapeutic options, the absence of out-of-hospital testing facilities to diagnose the condition, and the sudden extraordinary need for intensive medical care that overwhelmed most hospitals. Early in the pandemic, many physicians recognized that using antibodies harvested from recovering patients was a treatment that had a proven track record for many diseases and that might be used to manage the disease at least as a stopgap until more specific medicines for COVID-19 were developed. But using convalescent plasma raised many additional complications, most especially the logistics that needed to be put in place to collect and distribute such plasma. Unlike drugs ordered from a pharmacy, plasma and other blood products are procured by a complex process that depends intensely on interaction with the public, the provider of all blood products that are directly provided to patients. Blood components such as convalescent plasma, intended to be used immediately without major processing, are entirely supplied by donations from the public. This form of treatment can therefore benefit from patient advocates, especially if they are experienced in solving problems of logistics and in the process of matching supply to demand that is more commonly encountered in the business world than in medicine. In this chapter, one patient advocate, Chaim Lebovits, describes the process of mobilizing the population, interacting with blood banks and hospitals, and successfully channeling thousands of units of plasma from volunteers recovering from COVID-19 to patients in hospitals. Starting in New York City in early 2020 and initially working with communities with which Mr. Lebovits was familiar, the efforts steadily spread across many parts of the US. The model described here, which uses patient advocates to serve as a link between patients, blood banks, and hospitals in the service of gathering and distributing high-titer convalescent plasma to patients is likely to be relevant to the next pandemic.
{"title":"The Role of the Patient Advocate During a Pandemic: The Case of Convalescent Plasma.","authors":"Chaim Lebovits","doi":"10.1007/82_2024_271","DOIUrl":"https://doi.org/10.1007/82_2024_271","url":null,"abstract":"<p><p>The onset of the COVID-19 pandemic confronted medicine with several difficulties, including a lack of specific therapeutic options, the absence of out-of-hospital testing facilities to diagnose the condition, and the sudden extraordinary need for intensive medical care that overwhelmed most hospitals. Early in the pandemic, many physicians recognized that using antibodies harvested from recovering patients was a treatment that had a proven track record for many diseases and that might be used to manage the disease at least as a stopgap until more specific medicines for COVID-19 were developed. But using convalescent plasma raised many additional complications, most especially the logistics that needed to be put in place to collect and distribute such plasma. Unlike drugs ordered from a pharmacy, plasma and other blood products are procured by a complex process that depends intensely on interaction with the public, the provider of all blood products that are directly provided to patients. Blood components such as convalescent plasma, intended to be used immediately without major processing, are entirely supplied by donations from the public. This form of treatment can therefore benefit from patient advocates, especially if they are experienced in solving problems of logistics and in the process of matching supply to demand that is more commonly encountered in the business world than in medicine. In this chapter, one patient advocate, Chaim Lebovits, describes the process of mobilizing the population, interacting with blood banks and hospitals, and successfully channeling thousands of units of plasma from volunteers recovering from COVID-19 to patients in hospitals. Starting in New York City in early 2020 and initially working with communities with which Mr. Lebovits was familiar, the efforts steadily spread across many parts of the US. The model described here, which uses patient advocates to serve as a link between patients, blood banks, and hospitals in the service of gathering and distributing high-titer convalescent plasma to patients is likely to be relevant to the next pandemic.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The COVID-19 pandemic, resulting from the emergence of the novel coronavirus SARS-CoV-2, posed unprecedented challenges to global health systems as no proven therapy was available. Initially, COVID-19 convalescent plasma (CCP) from recovered COVID-19 patients showed promise as a therapeutic option. However, the efficacy of this approach was closely correlated with the neutralizing antibody titer in the administered plasma and thus effectiveness was not always guaranteed. In response, hyperimmune immunoglobulins (hIG) derived from CCP obtained by apheresis from recovered or vaccinated individuals emerged as a potential alternative. hIG were purified through stringent chromatographic processing from CCP units and displayed varying results in clinical trials, although it seems likely that they improved outcomes compared to placebo or CCP at day 28, particularly in unvaccinated patients. The variability in the effect of hIG likely stems from factors such as the timing of outcome assessment, the administered dose of hIG, the patients' immunological background, and the matching between the variant infecting patients and the neutralization ability of the immunoglobulin batch, which depended on the timing of the CCP collection. Despite logistical challenges and high production costs, hIG showcase advantages over CCP, offering versatility in administration routes and eliminating the need for blood matching, thus facilitating administration in the community, and allowing for variant-specific preparations. hIG appear to be of particular importance in the treatment of immunocompromised patients and patients with persistent COVID-19, although studies in these populations are lacking. Non-human alternatives, such as equine-derived hIG and recombinant hIG, may provide a solution to the logistical challenges of large-scale hIG preparation. Further study is needed to explore these avenues. Establishing the infrastructure for large-scale hIG production independent of plasma donations emerges as a strategic approach for future pandemics, justifying exploration and promotion by health authorities.
{"title":"Hyperimmune Globulins in COVID-19.","authors":"Yasmin Maor, Oren Zimhony","doi":"10.1007/82_2024_277","DOIUrl":"https://doi.org/10.1007/82_2024_277","url":null,"abstract":"<p><p>The COVID-19 pandemic, resulting from the emergence of the novel coronavirus SARS-CoV-2, posed unprecedented challenges to global health systems as no proven therapy was available. Initially, COVID-19 convalescent plasma (CCP) from recovered COVID-19 patients showed promise as a therapeutic option. However, the efficacy of this approach was closely correlated with the neutralizing antibody titer in the administered plasma and thus effectiveness was not always guaranteed. In response, hyperimmune immunoglobulins (hIG) derived from CCP obtained by apheresis from recovered or vaccinated individuals emerged as a potential alternative. hIG were purified through stringent chromatographic processing from CCP units and displayed varying results in clinical trials, although it seems likely that they improved outcomes compared to placebo or CCP at day 28, particularly in unvaccinated patients. The variability in the effect of hIG likely stems from factors such as the timing of outcome assessment, the administered dose of hIG, the patients' immunological background, and the matching between the variant infecting patients and the neutralization ability of the immunoglobulin batch, which depended on the timing of the CCP collection. Despite logistical challenges and high production costs, hIG showcase advantages over CCP, offering versatility in administration routes and eliminating the need for blood matching, thus facilitating administration in the community, and allowing for variant-specific preparations. hIG appear to be of particular importance in the treatment of immunocompromised patients and patients with persistent COVID-19, although studies in these populations are lacking. Non-human alternatives, such as equine-derived hIG and recombinant hIG, may provide a solution to the logistical challenges of large-scale hIG preparation. Further study is needed to explore these avenues. Establishing the infrastructure for large-scale hIG production independent of plasma donations emerges as a strategic approach for future pandemics, justifying exploration and promotion by health authorities.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pandemics are highly unpredictable events that are generally caused by novel viruses. There is a high likelihood that such novel pathogens belong to entirely novel viral families for which no targeted small-molecule antivirals exist. In addition, small-molecule antivirals often have pharmacokinetic properties that make them contraindicated for the frail patients who are often the most susceptible to a novel virus. Passive immunotherapies-available from the first convalescent patients-can then play a key role in controlling pandemics. Convalescent plasma is immediately available, but if manufacturers have fast platforms to generate marketable drugs, other forms of passive antibody treatment can be produced. In this chapter, we will review the technological platforms for generating monoclonal antibodies and hyperimmune immunoglobulins, the current experience on their use for treatment of COVID-19, and the pipeline for pandemic candidates.
{"title":"Monoclonal Antibodies and Hyperimmune Immunoglobulins in the Next Pandemic.","authors":"Massimo Franchini, Daniele Focosi","doi":"10.1007/82_2024_274","DOIUrl":"https://doi.org/10.1007/82_2024_274","url":null,"abstract":"<p><p>Pandemics are highly unpredictable events that are generally caused by novel viruses. There is a high likelihood that such novel pathogens belong to entirely novel viral families for which no targeted small-molecule antivirals exist. In addition, small-molecule antivirals often have pharmacokinetic properties that make them contraindicated for the frail patients who are often the most susceptible to a novel virus. Passive immunotherapies-available from the first convalescent patients-can then play a key role in controlling pandemics. Convalescent plasma is immediately available, but if manufacturers have fast platforms to generate marketable drugs, other forms of passive antibody treatment can be produced. In this chapter, we will review the technological platforms for generating monoclonal antibodies and hyperimmune immunoglobulins, the current experience on their use for treatment of COVID-19, and the pipeline for pandemic candidates.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Between early April 2020 and late August 2020, nearly 100,000 patients hospitalized with SARS-CoV2 infections were treated with COVID-19 convalescent plasma (CCP) in the US under the auspices of an FDA-authorized Expanded Access Program (EAP) housed at the Mayo Clinic. Clinicians wishing to provide CCP to their patients during that 5-month period early in the COVID pandemic had to register their patients and provide clinical information to the EAP program. This program was utilized by some 2,200 US hospitals located in every state ranging from academic medical centers to small rural hospitals and facilitated the treatment of an ethnically and socio-economically diverse cross section of patients. Within 6 weeks of program initiation, the first signals of safety were found in 5,000 recipients of CCP, supported by a later analysis of 20,000 recipients (Joyner et al. in J Clin Invest 130:4791-4797, 2020a; Joyner et al. in Mayo Clin Proc 95:1888-1897, 2020b). By mid-summer of 2020, strong evidence was produced showing that high-titer CCP given early in the course of hospitalization could lower mortality by as much as a third (Joyner et al. in N Engl J Med 384:1015-1027, 2021; Senefeld et al. in PLoS Med 18, 2021a). These data were used by the FDA in its August decision to grant Emergency Use Authorization for CCP use in hospitals. This chapter provides a personal narrative by the principal investigator of the EAP that describes the events leading up to the program, some of its key outcomes, and some lessons learned that may be applicable to the next pandemic. This vast effort was a complete team response to a crisis and included an exceptional level of collaboration both inside and outside of the Mayo Clinic. Writing just 4 years after the initiation of the EAP, this intense professional effort, comprising many moving parts, remains hard to completely understand or fully explain in this brief narrative. As Nelson Mandela said of the perception of time during his decades in prison, "the days seemed like years, and the years seemed like days."
{"title":"Convalescent Plasma and the US Expanded Access Program: A Personal Narrative.","authors":"Michael J Joyner","doi":"10.1007/82_2024_269","DOIUrl":"https://doi.org/10.1007/82_2024_269","url":null,"abstract":"<p><p>Between early April 2020 and late August 2020, nearly 100,000 patients hospitalized with SARS-CoV2 infections were treated with COVID-19 convalescent plasma (CCP) in the US under the auspices of an FDA-authorized Expanded Access Program (EAP) housed at the Mayo Clinic. Clinicians wishing to provide CCP to their patients during that 5-month period early in the COVID pandemic had to register their patients and provide clinical information to the EAP program. This program was utilized by some 2,200 US hospitals located in every state ranging from academic medical centers to small rural hospitals and facilitated the treatment of an ethnically and socio-economically diverse cross section of patients. Within 6 weeks of program initiation, the first signals of safety were found in 5,000 recipients of CCP, supported by a later analysis of 20,000 recipients (Joyner et al. in J Clin Invest 130:4791-4797, 2020a; Joyner et al. in Mayo Clin Proc 95:1888-1897, 2020b). By mid-summer of 2020, strong evidence was produced showing that high-titer CCP given early in the course of hospitalization could lower mortality by as much as a third (Joyner et al. in N Engl J Med 384:1015-1027, 2021; Senefeld et al. in PLoS Med 18, 2021a). These data were used by the FDA in its August decision to grant Emergency Use Authorization for CCP use in hospitals. This chapter provides a personal narrative by the principal investigator of the EAP that describes the events leading up to the program, some of its key outcomes, and some lessons learned that may be applicable to the next pandemic. This vast effort was a complete team response to a crisis and included an exceptional level of collaboration both inside and outside of the Mayo Clinic. Writing just 4 years after the initiation of the EAP, this intense professional effort, comprising many moving parts, remains hard to completely understand or fully explain in this brief narrative. As Nelson Mandela said of the perception of time during his decades in prison, \"the days seemed like years, and the years seemed like days.\"</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141320676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In contrast to therapy in oncology and immune-related diseases, where dozens of monoclonal antibodies (mAbs) have been introduced, often in transformative fashion, the use of mAbs for infectious diseases is generally underdeveloped, with fewer than a dozen mAbs currently licensed for the treatment of microbial diseases. This situation is paradoxical given that antibodies are major products of the immune system for protecting against infectious diseases. The underdevelopment of mAbs for infectious diseases has several causes including the availability of effective therapy against many microbial diseases, the fact that many pathogenic microbes are antigenically diverse and thus all strains are not covered by a single mAb, and the high expense of mAb therapies. Despite these hurdles the number of mAbs licensed for infectious disease indications is slowly increasing and there are numerous opportunities for the development of mAbs in the prevention and treatment of microbial diseases.
在肿瘤和免疫相关疾病的治疗方面,已经有数十种单克隆抗体(mAbs)问世,而且往往是以变革性的方式问世,与此形成鲜明对比的是,mAbs 在感染性疾病方面的应用普遍欠发达,目前获得许可用于治疗微生物疾病的 mAbs 不到十种。鉴于抗体是免疫系统抵御传染病的主要产物,这种情况是自相矛盾的。用于治疗传染病的 mAb 开发不足有几个原因,包括许多微生物疾病都有有效的治疗方法,许多病原微生物的抗原多种多样,因此单一 mAb 无法覆盖所有菌株,以及 mAb 疗法的高昂费用。尽管存在这些障碍,获得传染病适应症许可的 mAb 数量仍在缓慢增加,而且 mAb 在预防和治疗微生物疾病方面的发展机会也很多。
{"title":"Monoclonal Antibody Therapies for Infectious Diseases.","authors":"Arturo Casadevall, Nigel Paneth","doi":"10.1007/82_2024_265","DOIUrl":"https://doi.org/10.1007/82_2024_265","url":null,"abstract":"<p><p>In contrast to therapy in oncology and immune-related diseases, where dozens of monoclonal antibodies (mAbs) have been introduced, often in transformative fashion, the use of mAbs for infectious diseases is generally underdeveloped, with fewer than a dozen mAbs currently licensed for the treatment of microbial diseases. This situation is paradoxical given that antibodies are major products of the immune system for protecting against infectious diseases. The underdevelopment of mAbs for infectious diseases has several causes including the availability of effective therapy against many microbial diseases, the fact that many pathogenic microbes are antigenically diverse and thus all strains are not covered by a single mAb, and the high expense of mAb therapies. Despite these hurdles the number of mAbs licensed for infectious disease indications is slowly increasing and there are numerous opportunities for the development of mAbs in the prevention and treatment of microbial diseases.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This volume takes a broad overview of antibody-based therapies prior to and during the COVID pandemic and examines their potential use in future pandemics. Passive antibody therapy was the first effective antimicrobial treatment and its development in the early twentieth century helped catalyze immunological and microbiological research. During the era of serum therapy (1890-1940) antibody-based therapies were developed against both viral and bacterial diseases. Effective treatment required an understanding of how to quantify antibodies, how to develop serotype-specific sera and recognition of the need to treat early in disease. Thus, although the era of serum therapy essentially ended with the development of small molecule antimicrobial therapy in the 1940s, antibody-based therapies led to important new scientific understanding, while remaining in use for some toxin and venom-caused diseases and in the prevention of outbreaks of viral hepatitis. A renewed interest in antibody-based therapies was seen in the widespread deployment of convalescent plasma and monoclonal antibodies during the COVID-19 pandemic. Convalescent plasma will likely be the first specific therapy during outbreaks with new pathogens for which there is no other therapy. For all forms of antibody-based therapies, effectiveness relies on the key principles of antibody therapy, namely, treatment early in disease with preparations containing sufficient antibody specific to the microbe in question.
{"title":"The Logic and History of Passive Immunity and Antibody Therapies.","authors":"Arturo Casadevall, Nigel Paneth","doi":"10.1007/82_2024_267","DOIUrl":"https://doi.org/10.1007/82_2024_267","url":null,"abstract":"<p><p>This volume takes a broad overview of antibody-based therapies prior to and during the COVID pandemic and examines their potential use in future pandemics. Passive antibody therapy was the first effective antimicrobial treatment and its development in the early twentieth century helped catalyze immunological and microbiological research. During the era of serum therapy (1890-1940) antibody-based therapies were developed against both viral and bacterial diseases. Effective treatment required an understanding of how to quantify antibodies, how to develop serotype-specific sera and recognition of the need to treat early in disease. Thus, although the era of serum therapy essentially ended with the development of small molecule antimicrobial therapy in the 1940s, antibody-based therapies led to important new scientific understanding, while remaining in use for some toxin and venom-caused diseases and in the prevention of outbreaks of viral hepatitis. A renewed interest in antibody-based therapies was seen in the widespread deployment of convalescent plasma and monoclonal antibodies during the COVID-19 pandemic. Convalescent plasma will likely be the first specific therapy during outbreaks with new pathogens for which there is no other therapy. For all forms of antibody-based therapies, effectiveness relies on the key principles of antibody therapy, namely, treatment early in disease with preparations containing sufficient antibody specific to the microbe in question.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blood transfusion capacity in low- and middle-income countries (LMICs), encompassing both the safety and adequacy of the blood supply, is limited. The challenges facing blood banks in LMICs include regulatory oversight, blood donor selection, collection procedures, laboratory testing, and post-transfusion surveillance. A high proportion of LMICs are unable to fully meet clinical demands for blood products, and many do not meet even the minimum threshold of collection (10 units per 1000 population). Suboptimal clinical transfusion practices, in large part due to a lack of training in transfusion medicine, contribute to blood wastage. During the COVID-19 pandemic, high- and LMICs alike experienced blood shortages, in large part due to quarantine and containment measures that impeded donor mobility. COVID-19 convalescent plasma (CCP) was particularly appealing for the treatment of patients with COVID-19 in LMICs, as it is a relatively inexpensive intervention and makes use of the existing blood collection infrastructure. Nonetheless, the challenges of using CCP in LMICs need to be contextualized among broad concerns surrounding blood safety and availability. Specifically, reliance on first time, family replacement and paid donors, coupled with deficient infectious disease testing and quality oversight, increase the risk of transfusion transmitted infections from CCP in LMICs. Furthermore, many LMICs are unable to meet general transfusion needs; therefore, CCP collection also risked exacerbation of pervasive blood shortages.
{"title":"Blood Banking Capacity in Low-and Middle-Income Countries: Covid-19 Convalescent Plasma in Context.","authors":"Evan M Bloch","doi":"10.1007/82_2024_266","DOIUrl":"https://doi.org/10.1007/82_2024_266","url":null,"abstract":"<p><p>Blood transfusion capacity in low- and middle-income countries (LMICs), encompassing both the safety and adequacy of the blood supply, is limited. The challenges facing blood banks in LMICs include regulatory oversight, blood donor selection, collection procedures, laboratory testing, and post-transfusion surveillance. A high proportion of LMICs are unable to fully meet clinical demands for blood products, and many do not meet even the minimum threshold of collection (10 units per 1000 population). Suboptimal clinical transfusion practices, in large part due to a lack of training in transfusion medicine, contribute to blood wastage. During the COVID-19 pandemic, high- and LMICs alike experienced blood shortages, in large part due to quarantine and containment measures that impeded donor mobility. COVID-19 convalescent plasma (CCP) was particularly appealing for the treatment of patients with COVID-19 in LMICs, as it is a relatively inexpensive intervention and makes use of the existing blood collection infrastructure. Nonetheless, the challenges of using CCP in LMICs need to be contextualized among broad concerns surrounding blood safety and availability. Specifically, reliance on first time, family replacement and paid donors, coupled with deficient infectious disease testing and quality oversight, increase the risk of transfusion transmitted infections from CCP in LMICs. Furthermore, many LMICs are unable to meet general transfusion needs; therefore, CCP collection also risked exacerbation of pervasive blood shortages.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nontyphoidal Salmonella (NTS) is responsible for a major global burden of disease and economic loss, particularly in low- and middle-income countries. It is designated a priority pathogen by the WHO for vaccine development and, with new impetus from vaccine developers, the establishment of an NTS controlled human infection model (CHIM) is timely and valuable. The broadly dichotomous clinical presentations of diarrhoea and invasive disease, commonly bacteraemia, present significant challenges to the development of an NTS CHIM. Nevertheless, if successful, such a CHIM will be invaluable for understanding the pathogenesis of NTS disease, identifying correlates of protection and advancing candidate vaccines towards licensure. This article describes the background case for a CHIM for NTS, the role of such a CHIM and outlines a potential approach to its development.
{"title":"The Background, Role and Approach for Development of a Controlled Human Infection Model for Nontyphoidal Salmonella.","authors":"Calman A MacLennan","doi":"10.1007/82_2021_246","DOIUrl":"10.1007/82_2021_246","url":null,"abstract":"<p><p>Nontyphoidal Salmonella (NTS) is responsible for a major global burden of disease and economic loss, particularly in low- and middle-income countries. It is designated a priority pathogen by the WHO for vaccine development and, with new impetus from vaccine developers, the establishment of an NTS controlled human infection model (CHIM) is timely and valuable. The broadly dichotomous clinical presentations of diarrhoea and invasive disease, commonly bacteraemia, present significant challenges to the development of an NTS CHIM. Nevertheless, if successful, such a CHIM will be invaluable for understanding the pathogenesis of NTS disease, identifying correlates of protection and advancing candidate vaccines towards licensure. This article describes the background case for a CHIM for NTS, the role of such a CHIM and outlines a potential approach to its development.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"315-335"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39767002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}