Chad K Porter, Kawsar R Talaat, Sandra D Isidean, Alwine Kardinaal, Subhra Chakraborty, Ramiro L Gutiérrez, David A Sack, A Louis Bourgeois
The controlled human infection model (CHIM) for enterotoxigenic Escherichia coli (ETEC) has been instrumental in defining ETEC as a causative agent of acute watery diarrhea, providing insights into disease pathogenesis and resistance to illness, and enabling preliminary efficacy evaluations for numerous products including vaccines, immunoprophylactics, and drugs. Over a dozen strains have been evaluated to date, with a spectrum of clinical signs and symptoms that appear to replicate the clinical illness seen with naturally occurring ETEC. Recent advancements in the ETEC CHIM have enhanced the characterization of clinical, immunological, and microbiological outcomes. It is anticipated that omics-based technologies applied to ETEC CHIMs will continue to broaden our understanding of host-pathogen interactions and facilitate the development of primary and secondary prevention strategies.
{"title":"The Controlled Human Infection Model for Enterotoxigenic Escherichia coli.","authors":"Chad K Porter, Kawsar R Talaat, Sandra D Isidean, Alwine Kardinaal, Subhra Chakraborty, Ramiro L Gutiérrez, David A Sack, A Louis Bourgeois","doi":"10.1007/82_2021_242","DOIUrl":"10.1007/82_2021_242","url":null,"abstract":"<p><p>The controlled human infection model (CHIM) for enterotoxigenic Escherichia coli (ETEC) has been instrumental in defining ETEC as a causative agent of acute watery diarrhea, providing insights into disease pathogenesis and resistance to illness, and enabling preliminary efficacy evaluations for numerous products including vaccines, immunoprophylactics, and drugs. Over a dozen strains have been evaluated to date, with a spectrum of clinical signs and symptoms that appear to replicate the clinical illness seen with naturally occurring ETEC. Recent advancements in the ETEC CHIM have enhanced the characterization of clinical, immunological, and microbiological outcomes. It is anticipated that omics-based technologies applied to ETEC CHIMs will continue to broaden our understanding of host-pathogen interactions and facilitate the development of primary and secondary prevention strategies.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"189-228"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39533404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bordetella pertussis, a slow-growing Gram-negative coccobacillus and the causative agent of whooping cough, is one of the leading causes of vaccine-preventable death and morbidity globally. A state of asymptomatic human carriage has not yet been demonstrated by population studies but is likely to be an important reservoir for community transmission of infection. Such a carriage state may be a target for future vaccine strategies. This chapter presents a short summary of the characteristics of B. pertussis, which should be taken into account when developing a human challenge model and any future experimental medicine interventions. Three studies involving deliberate infection with B. pertussis have been described to date. The first of these was a scientifically and ethically unacceptable paediatric challenge study involving four children in 1930. The second was an investigation of a putative live vaccine using a genetically modified and attenuated strain of B. pertussis. Finally, a systematically constructed human challenge model using a wild-type, potentially pathogenic strain has been established. The latter study has demonstrated that deliberate induction of asymptomatic colonisation in humans is safe and immunogenic, with colonised participants exhibiting seroconversion to pertussis antigens. It has also shown nasal wash to be a more sensitive method of detecting the presence of B. pertussis than either pernasal swab or throat swab, and that B. pertussis carriage can be cleared effectively with Azithromycin. The development of this wild-type B. pertussis human challenge model will allow the investigation of host-pathogen and facilitate future vaccine development.
{"title":"Controlled Human Infection with Bordetella pertussis.","authors":"H de Graaf, D Gbesemete, R C Read","doi":"10.1007/82_2022_260","DOIUrl":"10.1007/82_2022_260","url":null,"abstract":"<p><p>Bordetella pertussis, a slow-growing Gram-negative coccobacillus and the causative agent of whooping cough, is one of the leading causes of vaccine-preventable death and morbidity globally. A state of asymptomatic human carriage has not yet been demonstrated by population studies but is likely to be an important reservoir for community transmission of infection. Such a carriage state may be a target for future vaccine strategies. This chapter presents a short summary of the characteristics of B. pertussis, which should be taken into account when developing a human challenge model and any future experimental medicine interventions. Three studies involving deliberate infection with B. pertussis have been described to date. The first of these was a scientifically and ethically unacceptable paediatric challenge study involving four children in 1930. The second was an investigation of a putative live vaccine using a genetically modified and attenuated strain of B. pertussis. Finally, a systematically constructed human challenge model using a wild-type, potentially pathogenic strain has been established. The latter study has demonstrated that deliberate induction of asymptomatic colonisation in humans is safe and immunogenic, with colonised participants exhibiting seroconversion to pertussis antigens. It has also shown nasal wash to be a more sensitive method of detecting the presence of B. pertussis than either pernasal swab or throat swab, and that B. pertussis carriage can be cleared effectively with Azithromycin. The development of this wild-type B. pertussis human challenge model will allow the investigation of host-pathogen and facilitate future vaccine development.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"155-175"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9171875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreea Waltmann, Joseph A Duncan, Gerald B Pier, Colette Cywes-Bentley, Myron S Cohen, Marcia M Hobbs
Gonorrhea rates and antibiotic resistance are both increasing. Neisseria gonorrhoeae (Ng) is an exclusively human pathogen and is exquisitely adapted to its natural host. Ng can subvert immune responses and undergoes frequent antigenic variation, resulting in limited immunity and protection from reinfection. Previous gonococcal vaccine efforts have been largely unsuccessful, and the last vaccine to be tested in humans was more than 35 years ago. Advancing technologies and the threat of untreatable gonorrhea have fueled renewed pursuit of a vaccine as a long-term sustainable solution for gonorrhea control. Despite the development of a female mouse model of genital gonococcal infection two decades ago, correlates of immunity or protection remain largely unknown, making the gonococcus a challenging vaccine target. The controlled human urethral infection model of gonorrhea (Ng CHIM) has been used to study gonococcal pathogenesis and the basis of anti-gonococcal immunity. Over 200 participants have been inoculated without serious adverse events. The Ng CHIM replicates the early natural course of urethral infection. We are now at an inflexion point to pivot the use of the model for vaccine testing to address the urgency of improved gonorrhea control. Herein we discuss the need for gonorrhea vaccines, and the advantages and limitations of the Ng CHIM in accelerating the development of gonorrhea vaccines.
{"title":"Experimental Urethral Infection with Neisseria gonorrhoeae.","authors":"Andreea Waltmann, Joseph A Duncan, Gerald B Pier, Colette Cywes-Bentley, Myron S Cohen, Marcia M Hobbs","doi":"10.1007/82_2021_250","DOIUrl":"10.1007/82_2021_250","url":null,"abstract":"<p><p>Gonorrhea rates and antibiotic resistance are both increasing. Neisseria gonorrhoeae (Ng) is an exclusively human pathogen and is exquisitely adapted to its natural host. Ng can subvert immune responses and undergoes frequent antigenic variation, resulting in limited immunity and protection from reinfection. Previous gonococcal vaccine efforts have been largely unsuccessful, and the last vaccine to be tested in humans was more than 35 years ago. Advancing technologies and the threat of untreatable gonorrhea have fueled renewed pursuit of a vaccine as a long-term sustainable solution for gonorrhea control. Despite the development of a female mouse model of genital gonococcal infection two decades ago, correlates of immunity or protection remain largely unknown, making the gonococcus a challenging vaccine target. The controlled human urethral infection model of gonorrhea (Ng CHIM) has been used to study gonococcal pathogenesis and the basis of anti-gonococcal immunity. Over 200 participants have been inoculated without serious adverse events. The Ng CHIM replicates the early natural course of urethral infection. We are now at an inflexion point to pivot the use of the model for vaccine testing to address the urgency of improved gonorrhea control. Herein we discuss the need for gonorrhea vaccines, and the advantages and limitations of the Ng CHIM in accelerating the development of gonorrhea vaccines.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"109-125"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9441470/pdf/nihms-1806974.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10509930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lassa Fever (LF) is a viral hemorrhagic fever endemic in West Africa. LF begins with flu-like symptoms that are difficult to distinguish from other common endemic diseases such as malaria, dengue, and yellow fever making it hard to diagnose clinically. Availability of a rapid diagnostic test and other serological and molecular assays facilitates accurate diagnosis of LF. Lassa virus therapeutics are currently in different stages of preclinical development. Arevirumab, a cocktail of monoclonal antibodies, demonstrates a great safety and efficacy profile in non-human primates. Major efforts have been made in the development of a Lassa virus vaccine. Two vaccine candidates, MeV-NP and pLASV-GPC are undergoing evaluation in phase I clinical trials.
{"title":"Lassa Virus Countermeasures.","authors":"Lilia I Melnik","doi":"10.1007/82_2022_261","DOIUrl":"https://doi.org/10.1007/82_2022_261","url":null,"abstract":"<p><p>Lassa Fever (LF) is a viral hemorrhagic fever endemic in West Africa. LF begins with flu-like symptoms that are difficult to distinguish from other common endemic diseases such as malaria, dengue, and yellow fever making it hard to diagnose clinically. Availability of a rapid diagnostic test and other serological and molecular assays facilitates accurate diagnosis of LF. Lassa virus therapeutics are currently in different stages of preclinical development. Arevirumab, a cocktail of monoclonal antibodies, demonstrates a great safety and efficacy profile in non-human primates. Major efforts have been made in the development of a Lassa virus vaccine. Two vaccine candidates, MeV-NP and pLASV-GPC are undergoing evaluation in phase I clinical trials.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"440 ","pages":"111-145"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10187438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/978-3-031-15640-3_7
Andrea Galli, Jens Bukh
Chronic infection with hepatitis C virus (HCV) is an important contributor to the global incidence of liver diseases, including liver cirrhosis and hepatocellular carcinoma. Although common for single-stranded RNA viruses, HCV displays a remarkable high level of genetic diversity, produced primarily by the error-prone viral polymerase and host immune pressure. The high genetic heterogeneity of HCV has led to the evolution of several distinct genotypes and subtypes, with important consequences for pathogenesis, and clinical outcomes. Genetic variability constitutes an evasion mechanism against immune suppression, allowing the virus to evolve epitope escape mutants that avoid immune recognition. Thus, heterogeneity and variability of the HCV genome represent a great hindrance for the development of vaccines against HCV. In addition, the high genetic plasticity of HCV allows the virus to rapidly develop antiviral resistance mutations, leading to treatment failure and potentially representing a major hindrance for the cure of chronic HCV patients. In this chapter, we will present the central role that genetic diversity has in the viral life cycle and epidemiology of HCV. Incorporation errors and recombination, both the result of HCV polymerase activity, represent the main mechanisms of HCV evolution. The molecular details of both mechanisms have been only partially clarified and will be presented in the following sections. Finally, we will discuss the major consequences of HCV genetic diversity, namely its capacity to rapidly evolve antiviral and immunological escape variants that represent an important limitation for clearance of acute HCV, for treatment of chronic hepatitis C and for broadly protective vaccines.
{"title":"Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV).","authors":"Andrea Galli, Jens Bukh","doi":"10.1007/978-3-031-15640-3_7","DOIUrl":"https://doi.org/10.1007/978-3-031-15640-3_7","url":null,"abstract":"<p><p>Chronic infection with hepatitis C virus (HCV) is an important contributor to the global incidence of liver diseases, including liver cirrhosis and hepatocellular carcinoma. Although common for single-stranded RNA viruses, HCV displays a remarkable high level of genetic diversity, produced primarily by the error-prone viral polymerase and host immune pressure. The high genetic heterogeneity of HCV has led to the evolution of several distinct genotypes and subtypes, with important consequences for pathogenesis, and clinical outcomes. Genetic variability constitutes an evasion mechanism against immune suppression, allowing the virus to evolve epitope escape mutants that avoid immune recognition. Thus, heterogeneity and variability of the HCV genome represent a great hindrance for the development of vaccines against HCV. In addition, the high genetic plasticity of HCV allows the virus to rapidly develop antiviral resistance mutations, leading to treatment failure and potentially representing a major hindrance for the cure of chronic HCV patients. In this chapter, we will present the central role that genetic diversity has in the viral life cycle and epidemiology of HCV. Incorporation errors and recombination, both the result of HCV polymerase activity, represent the main mechanisms of HCV evolution. The molecular details of both mechanisms have been only partially clarified and will be presented in the following sections. Finally, we will discuss the major consequences of HCV genetic diversity, namely its capacity to rapidly evolve antiviral and immunological escape variants that represent an important limitation for clearance of acute HCV, for treatment of chronic hepatitis C and for broadly protective vaccines.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"439 ","pages":"237-264"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10467449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuroinvasive viral diseases are a considerable and growing burden on global public health. Despite this, these infections remain poorly understood, and the molecular mechanisms that govern protective versus pathological neuroinflammatory responses to infection are a matter of intense investigation. Recent evidence suggests that necroptosis, an immunogenic form of programmed cell death, may contribute to the pathogenesis of viral encephalitis. However, the receptor-interacting protein (RIP) kinases that coordinate necroptosis, RIPK1 and RIPK3, also appear to have unexpected, cell death-independent functions in the central nervous system (CNS) that promote beneficial neuroinflammation during neuroinvasive infection. Here, we review the emerging evidence in this field, with additional discussion of recent work examining roles for RIPK signaling and necroptosis during noninfectious pathologies of the CNS, as these studies provide important additional insight into the potential for specialized neuroimmune functions for the RIP kinases.
{"title":"Outcomes of RIP Kinase Signaling During Neuroinvasive Viral Infection.","authors":"Brian P Daniels, Andrew Oberst","doi":"10.1007/82_2020_204","DOIUrl":"10.1007/82_2020_204","url":null,"abstract":"<p><p>Neuroinvasive viral diseases are a considerable and growing burden on global public health. Despite this, these infections remain poorly understood, and the molecular mechanisms that govern protective versus pathological neuroinflammatory responses to infection are a matter of intense investigation. Recent evidence suggests that necroptosis, an immunogenic form of programmed cell death, may contribute to the pathogenesis of viral encephalitis. However, the receptor-interacting protein (RIP) kinases that coordinate necroptosis, RIPK1 and RIPK3, also appear to have unexpected, cell death-independent functions in the central nervous system (CNS) that promote beneficial neuroinflammation during neuroinvasive infection. Here, we review the emerging evidence in this field, with additional discussion of recent work examining roles for RIPK signaling and necroptosis during noninfectious pathologies of the CNS, as these studies provide important additional insight into the potential for specialized neuroimmune functions for the RIP kinases.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"155-174"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781604/pdf/nihms-1654936.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37807100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Infection of host cells by mammalian reovirus in culture or in tissues of infected animals results in cell death. Cell death of infected neurons and myocytes contributes to the pathogenesis of reovirus-induced encephalitis and myocarditis in a newborn mouse model. Thus, reovirus-induced cell death has been used to investigate the basis of viral disease. Depending on the cell type, infection of host cells by reovirus results in one of two forms of cell death-apoptosis and necroptosis. In addition to the obvious differences in how these two forms of cell death are executed, the mechanisms by which reovirus infection initiates and transduces signals that lead to each of these types of cell death are distinct. In this review, we discuss how apoptosis and necroptosis are triggered by events at different stages of infection. We also describe how innate immune recognition of reovirus genomic material and type I interferon signaling pathways connect with the core components of the apoptosis and necroptosis machinery. The impact of different cell death mediators on viral pathogenesis and the potential of reovirus as an oncolytic vector are also outlined.
哺乳动物雷诺病毒在培养液中或感染动物的组织中感染宿主细胞会导致细胞死亡。在新生小鼠模型中,受感染神经元和心肌细胞的细胞死亡是再病毒诱发脑炎和心肌炎的发病机制之一。因此,再病毒诱导的细胞死亡已被用于研究病毒性疾病的基础。根据细胞类型的不同,宿主细胞感染雷诺病毒后会导致两种形式的细胞死亡--细胞凋亡和坏死。除了这两种细胞死亡形式的执行方式存在明显差异外,重组病毒感染启动和传递导致这两种细胞死亡的信号的机制也各不相同。在本综述中,我们将讨论细胞凋亡和坏死是如何在感染的不同阶段被触发的。我们还描述了先天性免疫对重组病毒基因组材料的识别和 I 型干扰素信号通路如何与细胞凋亡和坏死机制的核心组成部分相联系。我们还概述了不同细胞死亡介质对病毒发病机制的影响,以及重组病毒作为溶瘤载体的潜力。
{"title":"Cell Killing by Reovirus: Mechanisms and Consequences.","authors":"Andrew McNamara, Katherine Roebke, Pranav Danthi","doi":"10.1007/82_2020_225","DOIUrl":"10.1007/82_2020_225","url":null,"abstract":"<p><p>Infection of host cells by mammalian reovirus in culture or in tissues of infected animals results in cell death. Cell death of infected neurons and myocytes contributes to the pathogenesis of reovirus-induced encephalitis and myocarditis in a newborn mouse model. Thus, reovirus-induced cell death has been used to investigate the basis of viral disease. Depending on the cell type, infection of host cells by reovirus results in one of two forms of cell death-apoptosis and necroptosis. In addition to the obvious differences in how these two forms of cell death are executed, the mechanisms by which reovirus infection initiates and transduces signals that lead to each of these types of cell death are distinct. In this review, we discuss how apoptosis and necroptosis are triggered by events at different stages of infection. We also describe how innate immune recognition of reovirus genomic material and type I interferon signaling pathways connect with the core components of the apoptosis and necroptosis machinery. The impact of different cell death mediators on viral pathogenesis and the potential of reovirus as an oncolytic vector are also outlined.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":" ","pages":"133-153"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/82_2020_225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38428771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/978-3-031-35139-6_7
Jessica Briggs, Margaret Murray, Jason Nideffer, Prasanna Jagannathan
Despite the high burden of malaria worldwide, there is surprisingly scarce research on sex-based differences in malaria outside of pregnancy. A more thorough understanding of sexual dimorphism in malaria, and what underlies these sex-based differences, could elucidate the underlying mechanisms driving malaria pathogenesis and has the potential to inform malaria control efforts, including new vaccines. This review summarizes our current understanding of sex-based differences in the epidemiology of malaria across the lifespan, potential sex- or gender-based mechanisms driving these differences, and the knowledge gaps that need to be addressed.
{"title":"Sex-Linked Differences in Malaria Risk Across the Lifespan.","authors":"Jessica Briggs, Margaret Murray, Jason Nideffer, Prasanna Jagannathan","doi":"10.1007/978-3-031-35139-6_7","DOIUrl":"10.1007/978-3-031-35139-6_7","url":null,"abstract":"<p><p>Despite the high burden of malaria worldwide, there is surprisingly scarce research on sex-based differences in malaria outside of pregnancy. A more thorough understanding of sexual dimorphism in malaria, and what underlies these sex-based differences, could elucidate the underlying mechanisms driving malaria pathogenesis and has the potential to inform malaria control efforts, including new vaccines. This review summarizes our current understanding of sex-based differences in the epidemiology of malaria across the lifespan, potential sex- or gender-based mechanisms driving these differences, and the knowledge gaps that need to be addressed.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"441 ","pages":"185-208"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10202945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/978-3-031-35139-6_9
Laura A St Clair, Sabal Chaulagain, Sabra L Klein, Christine Stabell Benn, Katie L Flanagan
Biological sex and age have profound effects on immune responses throughout the lifespan and impact vaccine acceptance, responses, and outcomes. Mounting evidence from epidemiological, clinical, and animal model studies show that males and females respond differentially to vaccination throughout the lifespan. Within age groups, females tend to produce greater vaccine-induced immune responses than males, with sex differences apparent across all age groups, but are most pronounced among reproductive aged individuals. Females report more adverse effects following vaccination than males. Females, especially among children under 5 years of age, also experience more non-specific effects of vaccination. Despite these known sex- and age-specific differences in vaccine-induced immune responses and outcomes, sex and age are often ignored in vaccine research. Herein, we review the known sex differences in the immunogenicity, effectiveness, reactogenicity, and non-specific effects of vaccination over the lifespan. Ways in which these data can be leveraged to improve vaccine research are described.
{"title":"Sex-Differential and Non-specific Effects of Vaccines Over the Life Course.","authors":"Laura A St Clair, Sabal Chaulagain, Sabra L Klein, Christine Stabell Benn, Katie L Flanagan","doi":"10.1007/978-3-031-35139-6_9","DOIUrl":"10.1007/978-3-031-35139-6_9","url":null,"abstract":"<p><p>Biological sex and age have profound effects on immune responses throughout the lifespan and impact vaccine acceptance, responses, and outcomes. Mounting evidence from epidemiological, clinical, and animal model studies show that males and females respond differentially to vaccination throughout the lifespan. Within age groups, females tend to produce greater vaccine-induced immune responses than males, with sex differences apparent across all age groups, but are most pronounced among reproductive aged individuals. Females report more adverse effects following vaccination than males. Females, especially among children under 5 years of age, also experience more non-specific effects of vaccination. Despite these known sex- and age-specific differences in vaccine-induced immune responses and outcomes, sex and age are often ignored in vaccine research. Herein, we review the known sex differences in the immunogenicity, effectiveness, reactogenicity, and non-specific effects of vaccination over the lifespan. Ways in which these data can be leveraged to improve vaccine research are described.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"441 ","pages":"225-251"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10211566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/978-3-031-35139-6_5
Patrick S Creisher, Kumba Seddu, Alice L Mueller, Sabra L Klein
Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
{"title":"Biological Sex and Pregnancy Affect Influenza Pathogenesis and Vaccination.","authors":"Patrick S Creisher, Kumba Seddu, Alice L Mueller, Sabra L Klein","doi":"10.1007/978-3-031-35139-6_5","DOIUrl":"10.1007/978-3-031-35139-6_5","url":null,"abstract":"<p><p>Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.</p>","PeriodicalId":11102,"journal":{"name":"Current topics in microbiology and immunology","volume":"441 ","pages":"111-137"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10202943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}