Pub Date : 2024-06-01Epub Date: 2024-01-25DOI: 10.1097/MOL.0000000000000922
Benjamin Bay, Natalie Arnold, Christoph Waldeyer
Purpose of review: This article focuses on pharmacological agents as well as dietary changes aimed at the reduction of the inflammatory burden measured by circulating C-reactive protein concentrations.
Recent findings: Over the last years, repurposed as well as new anti-inflammatory agents have been investigated in outcome trials in the cardiovascular field. Currently, a specific inhibition of the inflammatory cascade via the interleukin-6 ligand antibody ziltivekimab is being explored in large-scale outcome trials, after the efficacy of this agent with regard to the reduction of inflammatory biomarkers was proven recently. Next to the investigated pharmacological agents, specific dietary patterns possess the ability to improve the inflammatory burden. This enables patients themselves to unlock a potential health benefit ahead of the initiation of a specific medication targeting the inflammatory pathway.
Summary: Both pharmacological agents as well as diet provide the opportunity to improve the inflammatory profile and thereby lower C-reactive protein concentrations. Whilst advances in the field of specific anti-inflammatory treatments have been made over the last years, their broad implementation is currently limited. Therefore, optimization of diet (and other lifestyle factors) could provide a cost effective and side-effect free intervention to target low-grade vascular inflammation.
综述目的:本文重点介绍了旨在减轻以循环 C 反应蛋白浓度为指标的炎症负担的药物和饮食改变:最近的研究结果:过去几年中,心血管领域的成果试验对重新使用的抗炎药物和新型抗炎药物进行了研究。目前,通过白细胞介素-6配体抗体 ziltivekimab 对炎症级联反应进行特异性抑制的方法正在大规模疗效试验中进行探索,因为这种药物在减少炎症生物标志物方面的疗效最近已得到证实。除了已研究过的药物外,特定的饮食模式也能改善炎症负担。小结:药物和饮食都能改善炎症状况,从而降低 C 反应蛋白浓度。虽然过去几年在特定抗炎治疗领域取得了进展,但目前其广泛实施还很有限。因此,优化饮食(及其他生活方式因素)可以提供一种经济有效且无副作用的干预措施,以治疗低度血管炎症。
{"title":"C-reactive protein, pharmacological treatments and diet: how to target your inflammatory burden.","authors":"Benjamin Bay, Natalie Arnold, Christoph Waldeyer","doi":"10.1097/MOL.0000000000000922","DOIUrl":"10.1097/MOL.0000000000000922","url":null,"abstract":"<p><strong>Purpose of review: </strong>This article focuses on pharmacological agents as well as dietary changes aimed at the reduction of the inflammatory burden measured by circulating C-reactive protein concentrations.</p><p><strong>Recent findings: </strong>Over the last years, repurposed as well as new anti-inflammatory agents have been investigated in outcome trials in the cardiovascular field. Currently, a specific inhibition of the inflammatory cascade via the interleukin-6 ligand antibody ziltivekimab is being explored in large-scale outcome trials, after the efficacy of this agent with regard to the reduction of inflammatory biomarkers was proven recently. Next to the investigated pharmacological agents, specific dietary patterns possess the ability to improve the inflammatory burden. This enables patients themselves to unlock a potential health benefit ahead of the initiation of a specific medication targeting the inflammatory pathway.</p><p><strong>Summary: </strong>Both pharmacological agents as well as diet provide the opportunity to improve the inflammatory profile and thereby lower C-reactive protein concentrations. Whilst advances in the field of specific anti-inflammatory treatments have been made over the last years, their broad implementation is currently limited. Therefore, optimization of diet (and other lifestyle factors) could provide a cost effective and side-effect free intervention to target low-grade vascular inflammation.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"141-148"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-21DOI: 10.1097/MOL.0000000000000927
Janneke W C M Mulder, D Meeike Kusters, Jeanine E Roeters van Lennep, Barbara A Hutten
Purpose of review: Accommodating fetal growth and development, women undergo multiple physiological changes during pregnancy. In recent years, several studies contributed to the accumulating evidence about the impact of gestational hyperlipidemia on cardiovascular risk for mother and child. This review aims to provide a comprehensive overview of the current research on lipid profile alterations during pregnancy and its associated (cardiovascular) outcomes for mother and child from a clinical perspective.
Recent findings: In a normal pregnancy, total and LDL-cholesterol levels increase by approximately 30-50%, HDL-cholesterol by 20-40%, and triglycerides by 50-100%. In some women, for example, with familial hypercholesterolemia (FH), a more atherogenic lipid profile is observed. Dyslipidemia during pregnancy is found to be associated with adverse (cardiovascular) outcomes for the mother (e.g. preeclampsia, gestational diabetes, metabolic syndrome, unfavorable lipid profile) and for the child (e.g. preterm birth, large for gestational age, preatherosclerotic lesions, unfavorable lipid profile).
Summary: The lipid profile of women during pregnancy provides a unique window of opportunity into the potential future cardiovascular risk for mother and child. Better knowledge about adverse outcomes and specific risk groups could lead to better risk assessment and earlier cardiovascular prevention. Future research should investigate implementation of gestational screening possibilities.
{"title":"Lipid metabolism during pregnancy: consequences for mother and child.","authors":"Janneke W C M Mulder, D Meeike Kusters, Jeanine E Roeters van Lennep, Barbara A Hutten","doi":"10.1097/MOL.0000000000000927","DOIUrl":"10.1097/MOL.0000000000000927","url":null,"abstract":"<p><strong>Purpose of review: </strong>Accommodating fetal growth and development, women undergo multiple physiological changes during pregnancy. In recent years, several studies contributed to the accumulating evidence about the impact of gestational hyperlipidemia on cardiovascular risk for mother and child. This review aims to provide a comprehensive overview of the current research on lipid profile alterations during pregnancy and its associated (cardiovascular) outcomes for mother and child from a clinical perspective.</p><p><strong>Recent findings: </strong>In a normal pregnancy, total and LDL-cholesterol levels increase by approximately 30-50%, HDL-cholesterol by 20-40%, and triglycerides by 50-100%. In some women, for example, with familial hypercholesterolemia (FH), a more atherogenic lipid profile is observed. Dyslipidemia during pregnancy is found to be associated with adverse (cardiovascular) outcomes for the mother (e.g. preeclampsia, gestational diabetes, metabolic syndrome, unfavorable lipid profile) and for the child (e.g. preterm birth, large for gestational age, preatherosclerotic lesions, unfavorable lipid profile).</p><p><strong>Summary: </strong>The lipid profile of women during pregnancy provides a unique window of opportunity into the potential future cardiovascular risk for mother and child. Better knowledge about adverse outcomes and specific risk groups could lead to better risk assessment and earlier cardiovascular prevention. Future research should investigate implementation of gestational screening possibilities.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"133-140"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064913/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-02-14DOI: 10.1097/MOL.0000000000000926
Sibbeliene E van den Bosch, Barbara A Hutten, Willemijn E Corpeleijn, D Meeike Kusters
Purpose of review: Familial hypercholesterolemia leads to elevated levels of low-density lipoprotein cholesterol (LDL-C) from birth onwards due to a pathogenetic variation in genes in cholesterol metabolism. Early screening to identify and subsequently treat children with familial hypercholesterolemia is crucial to reduce the risk of premature atherosclerotic cardiovascular disease (ASCVD). This review focuses on recent insights in the field of pediatric familial hypercholesterolemia.
Recent findings: Screening in childhood and early initiation of optimal lipid-lowering therapy (LLT) have shown promising outcomes in the prevention of ASCVD. In addition, cost-effectiveness research has demonstrated highly favorable results. With the availability of novel therapies, familial hypercholesterolemia has become a well treatable disease.
Summary: Children with familial hypercholesterolemia benefit from early detection and optimal treatment of their elevated LDL-C levels.
{"title":"Familial hypercholesterolemia in children and the importance of early treatment.","authors":"Sibbeliene E van den Bosch, Barbara A Hutten, Willemijn E Corpeleijn, D Meeike Kusters","doi":"10.1097/MOL.0000000000000926","DOIUrl":"10.1097/MOL.0000000000000926","url":null,"abstract":"<p><strong>Purpose of review: </strong>Familial hypercholesterolemia leads to elevated levels of low-density lipoprotein cholesterol (LDL-C) from birth onwards due to a pathogenetic variation in genes in cholesterol metabolism. Early screening to identify and subsequently treat children with familial hypercholesterolemia is crucial to reduce the risk of premature atherosclerotic cardiovascular disease (ASCVD). This review focuses on recent insights in the field of pediatric familial hypercholesterolemia.</p><p><strong>Recent findings: </strong>Screening in childhood and early initiation of optimal lipid-lowering therapy (LLT) have shown promising outcomes in the prevention of ASCVD. In addition, cost-effectiveness research has demonstrated highly favorable results. With the availability of novel therapies, familial hypercholesterolemia has become a well treatable disease.</p><p><strong>Summary: </strong>Children with familial hypercholesterolemia benefit from early detection and optimal treatment of their elevated LDL-C levels.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"126-132"},"PeriodicalIF":3.8,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188623/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139746287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-03-08DOI: 10.1097/MOL.0000000000000930
Jing Liu, Henry N Ginsberg, Gissette Reyes-Soffer
Purpose of review: Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest.
Recent findings: Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent.
Summary: The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.
{"title":"Basic and translational evidence supporting the role of TM6SF2 in VLDL metabolism.","authors":"Jing Liu, Henry N Ginsberg, Gissette Reyes-Soffer","doi":"10.1097/MOL.0000000000000930","DOIUrl":"10.1097/MOL.0000000000000930","url":null,"abstract":"<p><strong>Purpose of review: </strong>Transmembrane 6 superfamily member 2 ( TM6SF2 ) gene was identified through exome-wide studies in 2014. A genetic variant from glutamic acid to lysine substitution at amino acid position 167 (NM_001001524.3:c.499G> A) (p.Gln167Lys/p.E167K, rs58542926) was discovered (p.E167K) to be highly associated with increased hepatic fat content and reduced levels of plasma triglycerides and LDL cholesterol. In this review, we focus on the discovery of TM6SF2 and its role in VLDL secretion pathways. Human data suggest TM6SF2 is linked to hepatic steatosis and cardiovascular disease (CVD), hence understanding its metabolic pathways is of high scientific interest.</p><p><strong>Recent findings: </strong>Since its discovery, completed research studies in cell, rodent and human models have defined the role of TM6SF2 and its links to human disease. TM6SF2 resides in the endoplasmic reticulum (ER) and the ER-Golgi interface and helps with the lipidation of nascent VLDL, the main carrier of triglycerides from the liver to the periphery. Consistent results from cells and rodents indicated that the secretion of triglycerides is reduced in carriers of the p.E167K variant or when hepatic TM6SF2 is deleted. However, data for secretion of APOB, the main protein of VLDL particles responsible for triglycerides transport, are inconsistent.</p><p><strong>Summary: </strong>The identification of genetic variants that are highly associated with human disease presentation should be followed by the validation and investigation into the pathways that regulate disease mechanisms. In this review, we highlight the role of TM6SF2 and its role in processing of liver triglycerides.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"157-161"},"PeriodicalIF":4.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11168781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-22DOI: 10.1097/mol.0000000000000938
Liam R Brunham
The purpose of this review article was to describe recent advances in our knowledge about how diabetes and metabolic syndrome are changing the face of familial hypercholesterolemia.
这篇综述文章旨在描述我们对糖尿病和代谢综合征如何改变家族性高胆固醇血症面貌的最新认识进展。
{"title":"Familial hypercholesterolemia-Plus: is the metabolic syndrome changing the clinical picture of familial hypercholesterolemia?","authors":"Liam R Brunham","doi":"10.1097/mol.0000000000000938","DOIUrl":"https://doi.org/10.1097/mol.0000000000000938","url":null,"abstract":"The purpose of this review article was to describe recent advances in our knowledge about how diabetes and metabolic syndrome are changing the face of familial hypercholesterolemia.","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":"56 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-17DOI: 10.1097/mol.0000000000000937
Fernando Civeira, César Martín, Ana Cenarro
Autosomal dominant hypercholesterolemia is a common cause of cardiovascular disease. In addition to the classic genes that cause hypercholesterolemia, LDLR, APOB and PCSK9, a new locus has emerged as a candidate to be the cause of this hyperlipidemia, the p.(Leu167del) mutation in the APOE gene.
{"title":"APOE and familial hypercholesterolemia.","authors":"Fernando Civeira, César Martín, Ana Cenarro","doi":"10.1097/mol.0000000000000937","DOIUrl":"https://doi.org/10.1097/mol.0000000000000937","url":null,"abstract":"Autosomal dominant hypercholesterolemia is a common cause of cardiovascular disease. In addition to the classic genes that cause hypercholesterolemia, LDLR, APOB and PCSK9, a new locus has emerged as a candidate to be the cause of this hyperlipidemia, the p.(Leu167del) mutation in the APOE gene.","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":"112 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140624180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-11-14DOI: 10.1097/MOL.0000000000000910
Yi Wen, Yan Q Chen, Robert J Konrad
Purpose of review: The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities.
Recent findings: After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5).
Summary: ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.
{"title":"Angiopoietin-like protein 8: a multifaceted protein instrumental in regulating triglyceride metabolism.","authors":"Yi Wen, Yan Q Chen, Robert J Konrad","doi":"10.1097/MOL.0000000000000910","DOIUrl":"10.1097/MOL.0000000000000910","url":null,"abstract":"<p><strong>Purpose of review: </strong>The angiopoietin-like (ANGPTL) proteins ANGPTL3 and ANGPTL4 are critical lipoprotein lipase (LPL) inhibitors. This review discusses the unique ability of the insulin-responsive protein ANGPTL8 to regulate triglyceride (TG) metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that control tissue-specific LPL activities.</p><p><strong>Recent findings: </strong>After feeding, ANGPTL4/8 acts locally in adipose tissue, has decreased LPL-inhibitory activity compared to ANGPTL4, and binds tissue plasminogen activator (tPA) and plasminogen to generate plasmin, which cleaves ANGPTL4/8 and other LPL inhibitors. This enables LPL to be fully active postprandially to promote efficient fatty acid (FA) uptake and minimize ectopic fat deposition. In contrast, liver-derived ANGPTL3/8 acts in an endocrine manner, has markedly increased LPL-inhibitory activity compared to ANGPTL3, and potently inhibits LPL in oxidative tissues to direct TG toward adipose tissue for storage. Circulating ANGPTL3/8 levels are strongly correlated with serum TG, and the ANGPTL3/8 LPL-inhibitory epitope is blocked by the TG-lowering protein apolipoprotein A5 (ApoA5).</p><p><strong>Summary: </strong>ANGPTL8 plays a crucial role in TG metabolism by forming ANGPTL3/8 and ANGPTL4/8 complexes that differentially modulate LPL activities in oxidative and adipose tissues respectively. Selective ANGPTL8 inhibition in the context of the ANGPTL3/8 complex has the potential to be a promising strategy for treating dyslipidemia.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"58-65"},"PeriodicalIF":4.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92153105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2023-12-06DOI: 10.1097/MOL.0000000000000915
Katrine L Rasmussen, Ruth Frikke-Schmidt
Purpose of review: Apolipoprotein E (apoE) plays a pivotal role in lipid metabolism in the peripheral circulation and in the brain. This has been recognized for decades; however, the importance of the full spectrum of variation in the APOE gene has been less investigated. This review focusses on current progresses in this field with main focus on apoE in dyslipidemia and vascular disease.
Recent findings: Whereas ε4 is the risk increasing allele for Alzheimer disease, ε2 is associated with increased risk for age-related macular degeneration. Rare functional ε2-like variants in APOE have previously been reported to have protective associations for Alzheimer disease but recent findings suggest a simultaneous high risk of age-related macular degeneration, in line with observations for the ε2 allele.
Summary: ApoE plays an important and well established role in dyslipidemia, vascular disease, and dementia. Recent evidence from large general population studies now also suggests that apoE is involved in age-related macular degeneration. ApoE-targeted therapeutics are being developed for multiple purposes; this heralds a promising change in the approach to disease processes involving apoE. The different risk profile for dementia and age-related macular degeneration should, however, be kept in mind when developing drugs targeting mechanisms resembling these variants.
综述目的:载脂蛋白 E(apoE)在外周循环和大脑的脂质代谢中发挥着关键作用。人们认识到这一点已有几十年,但对载脂蛋白 E 基因全谱变异的重要性研究较少。本综述将重点介绍该领域的最新进展,主要关注载脂蛋白在血脂异常和血管疾病中的作用:ε4是增加阿尔茨海默病风险的等位基因,而ε2则与老年性黄斑变性的风险增加有关。以前曾有报道称,APOE 中罕见的功能性ε2 样变体对阿尔茨海默病具有保护作用,但最近的研究结果表明,与ε2 等位基因的观察结果一致,老年性黄斑变性的风险也很高。摘要:载脂蛋白E 在血脂异常、血管疾病和痴呆症中发挥着重要的、公认的作用。最近来自大规模普通人群研究的证据也表明,载脂蛋白E与老年性黄斑变性有关。目前正在开发以载脂蛋白E为靶点的多种治疗方法;这预示着在治疗涉及载脂蛋白E的疾病过程中,治疗方法将发生有希望的变化。然而,在开发针对类似这些变异机制的药物时,应牢记痴呆症和老年性黄斑变性的不同风险特征。
{"title":"The current state of apolipoprotein E in dyslipidemia.","authors":"Katrine L Rasmussen, Ruth Frikke-Schmidt","doi":"10.1097/MOL.0000000000000915","DOIUrl":"10.1097/MOL.0000000000000915","url":null,"abstract":"<p><strong>Purpose of review: </strong>Apolipoprotein E (apoE) plays a pivotal role in lipid metabolism in the peripheral circulation and in the brain. This has been recognized for decades; however, the importance of the full spectrum of variation in the APOE gene has been less investigated. This review focusses on current progresses in this field with main focus on apoE in dyslipidemia and vascular disease.</p><p><strong>Recent findings: </strong>Whereas ε4 is the risk increasing allele for Alzheimer disease, ε2 is associated with increased risk for age-related macular degeneration. Rare functional ε2-like variants in APOE have previously been reported to have protective associations for Alzheimer disease but recent findings suggest a simultaneous high risk of age-related macular degeneration, in line with observations for the ε2 allele.</p><p><strong>Summary: </strong>ApoE plays an important and well established role in dyslipidemia, vascular disease, and dementia. Recent evidence from large general population studies now also suggests that apoE is involved in age-related macular degeneration. ApoE-targeted therapeutics are being developed for multiple purposes; this heralds a promising change in the approach to disease processes involving apoE. The different risk profile for dementia and age-related macular degeneration should, however, be kept in mind when developing drugs targeting mechanisms resembling these variants.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"78-84"},"PeriodicalIF":4.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138486934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-02-15DOI: 10.1097/MOL.0000000000000918
Ainara G Cabodevilla, Ni Son, Ira J Goldberg
Purpose of review: Lipid droplets are increasingly recognized as distinct intracellular organelles that have functions exclusive to the storage of energetic lipids. Lipid droplets modulate macrophage inflammatory phenotype, control the availability of energy for muscle function, store excess lipid, sequester toxic lipids, modulate mitochondrial activity, and allow transfer of fatty acids between tissues.
Recent findings: There have been several major advances in our understanding of the formation, dissolution, and function of this organelle during the past two years. These include new information on movement and partition of amphipathic proteins between the cytosol and lipid droplet surface, molecular determinants of lipid droplet formation, and pathways leading to lipid droplet hydrophobic lipid formation. Rapid advances in mitochondrial biology have also begun to define differences in their function and partnering with lipid droplets to modulate lipid storage versus oxidation.
Summary: This relationship of lipid droplets biology and cellular function provides new understanding of an important cellular organelle that influences muscle function, adipose lipid storage, and diseases of lipotoxicity.
{"title":"Intracellular lipase and regulation of the lipid droplet.","authors":"Ainara G Cabodevilla, Ni Son, Ira J Goldberg","doi":"10.1097/MOL.0000000000000918","DOIUrl":"10.1097/MOL.0000000000000918","url":null,"abstract":"<p><strong>Purpose of review: </strong>Lipid droplets are increasingly recognized as distinct intracellular organelles that have functions exclusive to the storage of energetic lipids. Lipid droplets modulate macrophage inflammatory phenotype, control the availability of energy for muscle function, store excess lipid, sequester toxic lipids, modulate mitochondrial activity, and allow transfer of fatty acids between tissues.</p><p><strong>Recent findings: </strong>There have been several major advances in our understanding of the formation, dissolution, and function of this organelle during the past two years. These include new information on movement and partition of amphipathic proteins between the cytosol and lipid droplet surface, molecular determinants of lipid droplet formation, and pathways leading to lipid droplet hydrophobic lipid formation. Rapid advances in mitochondrial biology have also begun to define differences in their function and partnering with lipid droplets to modulate lipid storage versus oxidation.</p><p><strong>Summary: </strong>This relationship of lipid droplets biology and cellular function provides new understanding of an important cellular organelle that influences muscle function, adipose lipid storage, and diseases of lipotoxicity.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":"35 2","pages":"85-92"},"PeriodicalIF":4.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}