Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.06.001
Laura Neurath , Michael Sticherling , Georg Schett , Filippo Fagni
Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.
{"title":"Targeting cytokines in psoriatic arthritis","authors":"Laura Neurath , Michael Sticherling , Georg Schett , Filippo Fagni","doi":"10.1016/j.cytogfr.2024.06.001","DOIUrl":"10.1016/j.cytogfr.2024.06.001","url":null,"abstract":"<div><p>Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 1-13"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135961012400042X/pdfft?md5=adc6bfb36f1f954a114753ffae983ed3&pid=1-s2.0-S135961012400042X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.07.007
Tiffany Habelrih , Thalyssa-Lyn Augustin , Félix Mauffette-Whyte , Béatrice Ferri , Kevin Sawaya , France Côté , Mathilde Gallant , David M. Olson , Sylvain Chemtob
Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.
{"title":"Inflammatory mechanisms of preterm labor and emerging anti-inflammatory interventions","authors":"Tiffany Habelrih , Thalyssa-Lyn Augustin , Félix Mauffette-Whyte , Béatrice Ferri , Kevin Sawaya , France Côté , Mathilde Gallant , David M. Olson , Sylvain Chemtob","doi":"10.1016/j.cytogfr.2024.07.007","DOIUrl":"10.1016/j.cytogfr.2024.07.007","url":null,"abstract":"<div><p>Preterm birth is a major public health concern, requiring a deeper understanding of its underlying inflammatory mechanisms and to develop effective therapeutic strategies. This review explores the complex interaction between inflammation and preterm labor, highlighting the pivotal role of the dysregulation of inflammation in triggering premature delivery. The immunological environment of pregnancy, characterized by a fragile balance of immune tolerance and resistance, is disrupted in preterm labor, leading to a pathological inflammatory response. Feto-maternal infections, among other pro-inflammatory stimuli, trigger the activation of toll-like receptors and the production of pro-inflammatory mediators, promoting uterine contractility and cervical ripening. Emerging anti-inflammatory therapeutics offer promising approaches for the prevention of preterm birth by targeting key inflammatory pathways. From TLR-4 antagonists to chemokine and interleukin receptor antagonists, these interventions aim to modulate the inflammatory environment and prevent adverse pregnancy outcomes. In conclusion, a comprehensive understanding of the inflammatory mechanisms leading to preterm labor is crucial for the development of targeted interventions in hope of reducing the incidence of preterm birth and improving neonatal health outcomes.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 50-63"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610124000509/pdfft?md5=2403b9f286170e6cf880483df8910c29&pid=1-s2.0-S1359610124000509-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.07.003
Jingyi He , Leiliang Zhang
Stimulator of Interferon Genes (STING) serves as a pivotal mediator in the innate immune signaling pathway, transducing signals from various DNA receptors and playing a crucial role in natural immune processes. During cellular quiescence, STING protein resides in the endoplasmic reticulum (ER), and its activation typically occurs through the cGAS-STING signaling pathway. Upon activation, STING protein is transported to the Golgi apparatus, thereby initiating downstream signaling cascades. Vesicular transport serves as the primary mechanism for STING protein trafficking between the ER and Golgi apparatus, with COPII mediating anterograde transport from the ER to Golgi apparatus, while COPI is responsible for retrograde transport. Numerous factors influence these transport processes, thereby exerting either promoting or inhibitory effects on STING protein expression. Upon reaching the Golgi apparatus, to prevent over-activation, STING protein is transported to post-Golgi compartments for degradation. In addition to the conventional lysosomal degradation pathway, ESCRT has also been identified as one of the degradation pathways for STING protein. This review summarizes the recent findings on the membrane trafficking pathways of STING, highlighting their contributions to the regulation of cytokine production, the activation of immune cells, and the coordination of immune signaling pathways.
干扰素基因刺激器(STING)是先天性免疫信号通路中的关键介质,可传递来自各种 DNA 受体的信号,并在天然免疫过程中发挥关键作用。在细胞静止期,STING 蛋白位于内质网(ER)中,通常通过 cGAS-STING 信号途径激活。激活后,STING 蛋白被转运到高尔基体,从而启动下游信号级联。囊泡转运是 STING 蛋白在 ER 和高尔基体之间转运的主要机制,其中 COPII 介导从 ER 到高尔基体的前向转运,而 COPI 则负责逆向转运。影响这些运输过程的因素很多,从而对 STING 蛋白的表达产生促进或抑制作用。STING 蛋白到达高尔基体后,为防止过度激活,会被转运到高尔基体后区室进行降解。除了传统的溶酶体降解途径外,ESCRT 也被认为是 STING 蛋白的降解途径之一。这篇综述总结了 STING 膜转运途径的最新研究成果,重点介绍了它们在调节细胞因子的产生、激活免疫细胞和协调免疫信号途径方面的贡献。
{"title":"The journey of STING: Guiding immune signaling through membrane trafficking","authors":"Jingyi He , Leiliang Zhang","doi":"10.1016/j.cytogfr.2024.07.003","DOIUrl":"10.1016/j.cytogfr.2024.07.003","url":null,"abstract":"<div><p><span>Stimulator of Interferon Genes (STING) serves as a pivotal mediator in the innate immune </span>signaling pathway<span><span>, transducing signals from various DNA receptors and playing a crucial role in natural immune processes. During cellular quiescence<span>, STING protein resides in the endoplasmic reticulum<span><span> (ER), and its activation typically occurs through the cGAS-STING signaling pathway. Upon activation, STING protein is transported to the </span>Golgi apparatus<span><span>, thereby initiating downstream signaling cascades. Vesicular transport serves as the primary mechanism for STING protein trafficking between the ER and Golgi apparatus, with COPII mediating anterograde transport from the ER to Golgi apparatus, while </span>COPI<span><span> is responsible for retrograde transport. Numerous factors influence these transport processes, thereby exerting either promoting or inhibitory effects on STING protein expression. Upon reaching the Golgi apparatus, to prevent over-activation, STING protein is transported to post-Golgi compartments for degradation. In addition to the conventional lysosomal degradation pathway, </span>ESCRT has also been identified as one of the degradation pathways for STING protein. This review summarizes the recent findings on the membrane trafficking pathways of STING, highlighting their contributions to the regulation of </span></span></span></span></span>cytokine production<span>, the activation of immune cells, and the coordination of immune signaling pathways.</span></span></p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 25-36"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cytogfr.2023.12.002
Jennifer M. Messina , Minghao Luo , Md Shanewaz Hossan , Hadil A. Gadelrab , Xiguang Yang , Anna John , Joel R. Wilmore , Juntao Luo
Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.
{"title":"Unveiling cytokine charge disparity as a potential mechanism for immune regulation","authors":"Jennifer M. Messina , Minghao Luo , Md Shanewaz Hossan , Hadil A. Gadelrab , Xiguang Yang , Anna John , Joel R. Wilmore , Juntao Luo","doi":"10.1016/j.cytogfr.2023.12.002","DOIUrl":"10.1016/j.cytogfr.2023.12.002","url":null,"abstract":"<div><p>Cytokines are small signaling proteins that regulate the immune responses to infection and tissue damage. Surface charges of cytokines determine their in vivo fate in immune regulation, e.g., half-life and distribution. The overall negative charges in the extracellular microenvironment and the acidosis during inflammation and infection may differentially impact cytokines with different surface charges for fine-tuned immune regulation via controlling tissue residential properties. However, the trend and role of cytokine surface charges has yet to be elucidated in the literature. Interestingly, we have observed that most pro-inflammatory cytokines have a negative charge, while most anti-inflammatory cytokines and chemokines have a positive charge. In this review, we extensively examined the surface charges of all cytokines and chemokines, summarized the pharmacokinetics and tissue adhesion of major cytokines, and analyzed the link of surface charge with cytokine biodistribution, activation, and function in immune regulation. Additionally, we identified that the general trend of charge disparity between pro- and anti-inflammatory cytokines represents a unique opportunity to develop precise immune modulation approaches, which can be applied to many inflammation-associated diseases including solid tumors, chronic wounds, infection, and sepsis.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 1-14"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cytogfr.2024.03.004
Simran Takkar , Gunjan Sharma , Jyoti B. Kaushal , K.M. Abdullah , Surinder K. Batra , Jawed A. Siddiqui
G protein-coupled receptors (GPCRs) are well-studied and the most traceable cell surface receptors for drug discovery. One of the intriguing members of this family is G protein-coupled receptors 35 (GPR35), which belongs to the class A rhodopsin-like family of GPCRs identified over two decades ago. GPR35 presents interesting features such as ubiquitous expression and distinct isoforms. Moreover, functional and genome-wide association studies on its widespread expression have linked GPR35 with pathophysiological disease progression. Various pieces of evidence have been accumulated regarding the independent or endogenous ligand-dependent role of GPR35 in cancer progression and metastasis. In the current scenario, the relationship of this versatile receptor and its putative endogenous ligands for the activation of oncogenic signal transduction pathways at the cellular level is an active area of research. These intriguing features offered by GPR35 make it an oncological target, justifying its uniqueness at the physiological and pathophysiological levels concerning other GPCRs. For pharmacologically targeting receptor-induced signaling, few potential competitive antagonists have been discovered that offer high selectivity at a human level. In addition to its fascinating features, targeting GPR35 at rodent and human orthologue levels is distinct, thus contributing to the sub-species selectivity. Strategies to modulate these issues will help us understand and truly target GPR35 at the therapeutic level. In this article, we have provided prospects on each topic mentioned above and suggestions to overcome the challenges. This review discusses the molecular mechanism and signal transduction pathways activated by endogenous ligands or spontaneous auto-activation of GPR35 that contributes towards disease progression. Furthermore, we have highlighted the GPR35 structure, ubiquitous expression, its role in immunomodulation, and at the pathophysiological level, especially in cancer, indicating its status as a versatile receptor. Subsequently, we discussed the various proposed ligands and their mechanism of interaction with GPR35. Additionally, we have summarized the GPR35 antagonist that provides insights into the opportunities for therapeutically targeting this receptor.
G 蛋白偶联受体(GPCR)是研究得最透彻的细胞表面受体,也是药物发现中最容易追踪的细胞表面受体。二十多年前发现的 G 蛋白偶联受体 35(GPR35)属于 GPCR 的 A 类视黄醛样家族,是这一家族中引人入胜的成员之一。GPR35 具有无处不在的表达和不同的同工型等有趣特征。此外,对其广泛表达的功能性和全基因组关联研究表明,GPR35 与病理生理疾病的进展有关。关于 GPR35 在癌症进展和转移中的独立或内源性配体依赖性作用,已经积累了各种证据。在目前的情况下,这种多用途受体及其假定的内源性配体在细胞水平激活致癌信号转导通路的关系是一个活跃的研究领域。GPR35 所具有的这些引人入胜的特点使其成为肿瘤靶点,并证明了它在生理和病理生理学水平上相对于其他 GPCR 的独特性。在以受体诱导信号为药物靶点方面,已发现的潜在竞争性拮抗剂中,只有少数能在人体水平上提供高选择性。除了其引人入胜的特点外,靶向啮齿动物和人类同源物水平的 GPR35 也各不相同,因此造成了亚种选择性。调节这些问题的策略将有助于我们了解并真正在治疗层面上靶向 GPR35。在本文中,我们对上述每个主题进行了展望,并提出了克服挑战的建议。本综述讨论了由内源性配体激活或 GPR35 自发自动激活导致疾病进展的分子机制和信号转导途径。此外,我们还强调了 GPR35 的结构、泛在表达、在免疫调节中的作用以及在病理生理学水平上的作用,尤其是在癌症中的作用,这表明它是一种多功能受体。随后,我们讨论了各种拟议配体及其与 GPR35 的相互作用机制。此外,我们还总结了 GPR35 拮抗剂,为针对该受体的治疗提供了机会。
{"title":"From orphan to oncogene: The role of GPR35 in cancer and immune modulation","authors":"Simran Takkar , Gunjan Sharma , Jyoti B. Kaushal , K.M. Abdullah , Surinder K. Batra , Jawed A. Siddiqui","doi":"10.1016/j.cytogfr.2024.03.004","DOIUrl":"10.1016/j.cytogfr.2024.03.004","url":null,"abstract":"<div><p>G protein-coupled receptors (GPCRs) are well-studied and the most traceable cell surface receptors for drug discovery. One of the intriguing members of this family is G protein-coupled receptors 35 (GPR35), which belongs to the class A rhodopsin-like family of GPCRs identified over two decades ago. GPR35 presents interesting features such as ubiquitous expression and distinct isoforms. Moreover, functional and genome-wide association studies on its widespread expression have linked GPR35 with pathophysiological disease progression. Various pieces of evidence have been accumulated regarding the independent or endogenous ligand-dependent role of GPR35 in cancer progression and metastasis. In the current scenario, the relationship of this versatile receptor and its putative endogenous ligands for the activation of oncogenic signal transduction pathways at the cellular level is an active area of research. These intriguing features offered by GPR35 make it an oncological target, justifying its uniqueness at the physiological and pathophysiological levels concerning other GPCRs. For pharmacologically targeting receptor-induced signaling, few potential competitive antagonists have been discovered that offer high selectivity at a human level. In addition to its fascinating features, targeting GPR35 at rodent and human orthologue levels is distinct, thus contributing to the sub-species selectivity. Strategies to modulate these issues will help us understand and truly target GPR35 at the therapeutic level. In this article, we have provided prospects on each topic mentioned above and suggestions to overcome the challenges. This review discusses the molecular mechanism and signal transduction pathways activated by endogenous ligands or spontaneous auto-activation of GPR35 that contributes towards disease progression. Furthermore, we have highlighted the GPR35 structure, ubiquitous expression, its role in immunomodulation, and at the pathophysiological level, especially in cancer, indicating its status as a versatile receptor. Subsequently, we discussed the various proposed ligands and their mechanism of interaction with GPR35. Additionally, we have summarized the GPR35 antagonist that provides insights into the opportunities for therapeutically targeting this receptor.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 56-66"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cytogfr.2024.03.003
Lian Zeng , Pengchao Hu , Yu Zhang , Mingyue Li , Yilin Zhao , Shiyong Li , Ailin Luo
Macrophage migration inhibitory factor (MIF) is a cytokine in the immune system, participated in both innate and adaptive immune responses. Except from immune cells, MIF is also secreted by a variety of non-immune cells, including hematopoietic cells, endothelial cells (ECs), and neurons. MIF plays a crucial role in various diseases, such as sepsis, rheumatoid arthritis, acute kidney injury, and neurodegenerative diseases. The role of MIF in the neuropathogenesis of cognitive impairment disorders is emphasized, as it recruits multiple inflammatory mediators, leading to activating microglia or astrocyte-derived neuroinflammation. Furthermore, it contributes to the cell death of neurons and ECs with the binding of apoptosis-inducing factor (AIF) through parthanatos-associated apoptosis-inducing factor nuclease (PAAN) / MIF pathway. This review comprehensively delves into the relationship between MIF and the neuropathogenesis of cognitive impairment disorders, providing a series of emerging MIF-targeted pharmaceuticals as potential treatments for cognitive impairment disorders.
{"title":"Macrophage migration inhibitor factor (MIF): Potential role in cognitive impairment disorders","authors":"Lian Zeng , Pengchao Hu , Yu Zhang , Mingyue Li , Yilin Zhao , Shiyong Li , Ailin Luo","doi":"10.1016/j.cytogfr.2024.03.003","DOIUrl":"10.1016/j.cytogfr.2024.03.003","url":null,"abstract":"<div><p>Macrophage migration inhibitory factor (MIF) is a cytokine in the immune system, participated in both innate and adaptive immune responses. Except from immune cells, MIF is also secreted by a variety of non-immune cells, including hematopoietic cells, endothelial cells (ECs), and neurons. MIF plays a crucial role in various diseases, such as sepsis, rheumatoid arthritis, acute kidney injury, and neurodegenerative diseases. The role of MIF in the neuropathogenesis of cognitive impairment disorders is emphasized, as it recruits multiple inflammatory mediators, leading to activating microglia or astrocyte-derived neuroinflammation. Furthermore, it contributes to the cell death of neurons and ECs with the binding of apoptosis-inducing factor (AIF) through parthanatos-associated apoptosis-inducing factor nuclease (PAAN) / MIF pathway. This review comprehensively delves into the relationship between MIF and the neuropathogenesis of cognitive impairment disorders, providing a series of emerging MIF-targeted pharmaceuticals as potential treatments for cognitive impairment disorders.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 67-75"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140271342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cytogfr.2024.03.005
Qixiang Song , Yuhang Fan , Huali Zhang , Nian Wang
Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.
{"title":"Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death","authors":"Qixiang Song , Yuhang Fan , Huali Zhang , Nian Wang","doi":"10.1016/j.cytogfr.2024.03.005","DOIUrl":"10.1016/j.cytogfr.2024.03.005","url":null,"abstract":"<div><p>Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (<em>e.g.</em>, the production of IFN-I and pro-inflammatory cytokines) and -independent (<em>e.g.</em>, the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 15-29"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cytogfr.2024.01.003
Rou Zheng , Yan Ren , Xinyue Liu , Canxia He , Hua Liu , Yixuan Wang , Jianing Li , Shuya Xia , Zhifang Liu , Yizhao Ma , Dianchen Wang , Suling Xu , Geng Wang , Na Li
Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus. AD is harmful to both children and adults, but its pathogenic mechanism has yet to be fully elucidated. The development of mouse models for AD has greatly contributed to its study and treatment. Among these models, the exogenous drug-induced mouse model has shown promising results and significant advantages. Until now, a large amount of AD-related research has utilized exogenous drug-induced mouse models, leading to notable advancements in research. This indicates the crucial significance of applying such models in AD research. These models exhibit diverse characteristics and are highly complex. They involve the use of various strains of mice, diverse types of inducers, and different modeling effects. However, there is currently a lack of comprehensive comparative studies on exogenous drug-induced AD mouse models, which hinders researchers' ability to choose among these models. This paper provides a comprehensive review of the features and mechanisms associated with various exogenous drug-induced mouse models, including the important role of each cytokine in AD development. It aims to assist researchers in quickly understanding models and selecting the most suitable one for further investigation.
特应性皮炎(AD)是一种以剧烈瘙痒为特征的炎症性皮肤病。特应性皮炎对儿童和成人都有害,但其致病机制尚未完全阐明。小鼠皮炎模型的开发极大地促进了皮炎的研究和治疗。在这些模型中,外源性药物诱导小鼠模型显示出了良好的效果和显著的优势。迄今为止,大量与阿德相关的研究都采用了外源性药物诱导小鼠模型,从而取得了显著的研究进展。这表明将此类模型应用于注意力缺失症研究具有至关重要的意义。这些模型表现出多种多样的特点,而且非常复杂。它们涉及使用不同品系的小鼠、不同类型的诱导剂和不同的建模效果。然而,目前缺乏关于外源性药物诱导的 AD 小鼠模型的全面比较研究,这阻碍了研究人员在这些模型中进行选择。本文全面综述了各种外源性药物诱导的小鼠模型的特点和相关机制,包括每种细胞因子在AD发展过程中的重要作用。它旨在帮助研究人员快速了解模型,并选择最合适的模型进行进一步研究。
{"title":"Exogenous drug-induced mouse models of atopic dermatitis","authors":"Rou Zheng , Yan Ren , Xinyue Liu , Canxia He , Hua Liu , Yixuan Wang , Jianing Li , Shuya Xia , Zhifang Liu , Yizhao Ma , Dianchen Wang , Suling Xu , Geng Wang , Na Li","doi":"10.1016/j.cytogfr.2024.01.003","DOIUrl":"10.1016/j.cytogfr.2024.01.003","url":null,"abstract":"<div><p>Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus. AD is harmful to both children and adults, but its pathogenic mechanism has yet to be fully elucidated. The development of mouse models for AD has greatly contributed to its study and treatment. Among these models, the exogenous drug-induced mouse model has shown promising results and significant advantages. Until now, a large amount of AD-related research has utilized exogenous drug-induced mouse models, leading to notable advancements in research. This indicates the crucial significance of applying such models in AD research. These models exhibit diverse characteristics and are highly complex. They involve the use of various strains of mice, diverse types of inducers, and different modeling effects. However, there is currently a lack of comprehensive comparative studies on exogenous drug-induced AD mouse models, which hinders researchers' ability to choose among these models. This paper provides a comprehensive review of the features and mechanisms associated with various exogenous drug-induced mouse models, including the important role of each cytokine in AD development. It aims to assist researchers in quickly understanding models and selecting the most suitable one for further investigation.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 104-116"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139463027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01DOI: 10.1016/j.cytogfr.2024.03.001
Lu Jiang , Zirui Wang , Ting Xu , Leiliang Zhang
Pyroptosis, a programmed cell death process, is vital for the immune response against microbial infections and internal danger signals. Recent studies have highlighted the importance of protein palmitoylation, a modification that involves attaching palmitate to cysteine residues, in regulating key proteins involved in pyroptosis. Palmitoylation of cGAS at residue C474 by ZDHHC18 affects its enzymatic activity and DNA binding ability. Similarly, ZDHHC9 promotes cGAS activity through palmitoylation at residues C404/405. NLRP3 palmitoylation at residue C844, mediated by ZDHHC12, impacts its stability and interactions with other proteins, crucial for activating the NLRP3 inflammasome and triggering inflammation. However, the role of ZDHHC5 in NLRP3 palmitoylation remains uncertain due to conflicting findings. Palmitoylation at C88/91 is essential for STING activation and induction of type I interferons. It modulates the formation of multimeric complexes and downstream signaling pathways. GSDMD palmitoylation at C191 is necessary for pore formation and membrane translocation, while GSDME palmitoylation at C407/408 is associated with drug-induced pyroptosis. Moreover, palmitoylation of NOD1 and NOD2 influences their membrane recruitment and immune signaling pathways in response to bacterial peptidoglycans, acting as upstream regulators of pyroptosis. This review summarizes the important roles for palmitoylation in regulating the function of key pyroptosis-related proteins, shedding light on the intricate mechanisms governing immune responses and inflammation.
{"title":"When pyro(ptosis) meets palm(itoylation)","authors":"Lu Jiang , Zirui Wang , Ting Xu , Leiliang Zhang","doi":"10.1016/j.cytogfr.2024.03.001","DOIUrl":"10.1016/j.cytogfr.2024.03.001","url":null,"abstract":"<div><p>Pyroptosis, a programmed cell death process, is vital for the immune response against microbial infections and internal danger signals. Recent studies have highlighted the importance of protein palmitoylation, a modification that involves attaching palmitate to cysteine residues, in regulating key proteins involved in pyroptosis. Palmitoylation of cGAS at residue C474 by ZDHHC18 affects its enzymatic activity and DNA binding ability. Similarly, ZDHHC9 promotes cGAS activity through palmitoylation at residues C404/405. NLRP3 palmitoylation at residue C844, mediated by ZDHHC12, impacts its stability and interactions with other proteins, crucial for activating the NLRP3 inflammasome and triggering inflammation. However, the role of ZDHHC5 in NLRP3 palmitoylation remains uncertain due to conflicting findings. Palmitoylation at C88/91 is essential for STING activation and induction of type I interferons. It modulates the formation of multimeric complexes and downstream signaling pathways. GSDMD palmitoylation at C191 is necessary for pore formation and membrane translocation, while GSDME palmitoylation at C407/408 is associated with drug-induced pyroptosis. Moreover, palmitoylation of NOD1 and NOD2 influences their membrane recruitment and immune signaling pathways in response to bacterial peptidoglycans, acting as upstream regulators of pyroptosis. This review summarizes the important roles for palmitoylation in regulating the function of key pyroptosis-related proteins, shedding light on the intricate mechanisms governing immune responses and inflammation.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 30-38"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}