Pub Date : 2024-08-10DOI: 10.1016/j.cytogfr.2024.08.001
Songyu Shen , Yihan Hong , Jiajun Huang , Xiaosheng Qu , Suren Rao Sooranna , Sheng Lu , Tian Li , Bing Niu
Tumor immunotherapy has garnered considerable attention, emerging as a new standard of care in cancer treatment. The conventional targets, such as VEGF and EGFR, have been extended to others including BRAF and PD-1/PD-L1, which have shown significant potential in recent cancer treatments. This review aims to succinctly overview the impact and mechanisms of therapies that modulate PD-1/PD-L1 expression by targeting VEGF, EGFR, LAG-3, CTLA-4 and BRAF. We investigated how modulation of PD-1/PD-L1 expression impacts growth factor signaling, shedding light on the interplay between immunomodulatory pathways and growth factor networks within the tumor microenvironment. By elucidating these interactions, we aim to provide insights into novel potential synergistic therapeutic strategies for cancer immunotherapy.
{"title":"Targeting PD-1/PD-L1 in tumor immunotherapy: Mechanisms and interactions with host growth regulatory pathways","authors":"Songyu Shen , Yihan Hong , Jiajun Huang , Xiaosheng Qu , Suren Rao Sooranna , Sheng Lu , Tian Li , Bing Niu","doi":"10.1016/j.cytogfr.2024.08.001","DOIUrl":"10.1016/j.cytogfr.2024.08.001","url":null,"abstract":"<div><p>Tumor immunotherapy has garnered considerable attention, emerging as a new standard of care in cancer treatment. The conventional targets, such as VEGF and EGFR, have been extended to others including BRAF and PD-1/PD-L1, which have shown significant potential in recent cancer treatments. This review aims to succinctly overview the impact and mechanisms of therapies that modulate PD-1/PD-L1 expression by targeting VEGF, EGFR, LAG-3, CTLA-4 and BRAF. We investigated how modulation of PD-1/PD-L1 expression impacts growth factor signaling, shedding light on the interplay between immunomodulatory pathways and growth factor networks within the tumor microenvironment. By elucidating these interactions, we aim to provide insights into novel potential synergistic therapeutic strategies for cancer immunotherapy.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"79 ","pages":"Pages 16-28"},"PeriodicalIF":9.3,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.cytogfr.2024.07.009
Yuqin Zhang , Lin Liu , Lixia Yue , Yongzhuo Huang , Bing Wang , Peifeng Liu
Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.
{"title":"Uncovering key mechanisms and intervention therapies in aging skin","authors":"Yuqin Zhang , Lin Liu , Lixia Yue , Yongzhuo Huang , Bing Wang , Peifeng Liu","doi":"10.1016/j.cytogfr.2024.07.009","DOIUrl":"10.1016/j.cytogfr.2024.07.009","url":null,"abstract":"<div><p>Advancements in understanding skin aging mechanisms, which encompass both external and internal aging processes, have spurred the development of innovative treatments primarily aimed at improving cosmetic appearance. These findings offer the potential for the development of novel therapeutic strategies aimed at achieving long-term, non-therapy-dependent clinical benefits, including the reversal of aging and the mitigation of associated health conditions. Realizing this goal requires further research to establish the safety and efficacy of targeting aging-related skin changes, such as pigmentation, wrinkling, and collagen loss. Systematic investigation is needed to identify the most effective interventions and determine optimal anti-aging treatment strategies. These reviews highlight the features and possible mechanisms of skin aging, as well as the latest progress and future direction of skin aging research, to provide a theoretical basis for new practical anti-skin aging strategies.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"79 ","pages":"Pages 66-80"},"PeriodicalIF":9.3,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-03DOI: 10.1016/j.cytogfr.2024.07.008
Zihan Chen , Ping Jiang , Dan Su , Yu Zhao , Mingming Zhang
Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.
{"title":"Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease","authors":"Zihan Chen , Ping Jiang , Dan Su , Yu Zhao , Mingming Zhang","doi":"10.1016/j.cytogfr.2024.07.008","DOIUrl":"10.1016/j.cytogfr.2024.07.008","url":null,"abstract":"<div><p>Inflammatory bowel disease (IBD) encompasses a group of non-specific chronic intestinal inflammatory conditions of unclear etiology. The current treatment and long-term management primarily involve biologics. Nevertheless, some patients experience treatment failure or intolerance to biologics [1], making these patients a primary focus of IBD research. The Janus kinase (JAK)-Signal Transducers and Activator of Transcription (STAT) signal transduction pathway is crucial to the regulation of immune and inflammatory responses [2], and plays an important role in the pathogenesis of IBD. JAK inhibitors alleviate IBD by suppressing the transmission of JAK-STAT signaling pathway. As the first small-molecule oral inhibitor for IBD, JAK inhibitors greatly improved the treatment of IBD and have demonstrated significant efficacy, with tofacitinib and upadacitinib being approved for the treatment of ulcerative colitis (UC) [3]. JAK inhibitors can effectively alleviate intestinal inflammation in IBD patients who have failed to receive biologics, which may bring new treatment opportunities for refractory IBD patients. This review aims to elucidate the crucial roles of JAK-STAT signal transduction pathway in IBD pathogenesis, examine its role in various cell types within IBD, and explore the research progress of JAK inhibitors as therapeutic agents, paving the road for new IBD treatment strategies.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"79 ","pages":"Pages 1-15"},"PeriodicalIF":9.3,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.07.005
Fahad Hassan Shah, Heon-Woo Lee
The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.
{"title":"Endothelial and macrophage interactions in the angiogenic niche","authors":"Fahad Hassan Shah, Heon-Woo Lee","doi":"10.1016/j.cytogfr.2024.07.005","DOIUrl":"10.1016/j.cytogfr.2024.07.005","url":null,"abstract":"<div><p>The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 64-76"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.07.006
Gustav van Niekerk, Lotte Coelmont, Yeranddy A. Alpizar, Lara Kelchtermans, Elias Broeckhoven, Kai Dallmeier
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as semaglutide (Ozempic®), have emerged as effective treatments for diabetes and weight management. However, recent evidence indicates that GLP-1R signalling influences various tissues, including the immune system. Notably, GLP-1 has a short half-life (< 5 minutes) and exists in the picomolar range, while GLP-1RAs like semaglutide have extended half-lives of several days and are administered at supraphysiological doses. This review explores the potential impact of these medications on vaccine efficacy. We examine evidence suggesting that GLP-1RAs may attenuate vaccine responses through direct effects on immune cells and modulation of other tissues. Additionally, we discuss how GLP-1R signalling may create a tolerogenic environment, potentially reducing vaccine immunogenicity. Given the widespread use of GLP-1RAs, it is crucial to understand their impact on immune responses and the translational implications for vaccination outcomes.
{"title":"GLP-1R agonist therapy and vaccine response: Neglected implications","authors":"Gustav van Niekerk, Lotte Coelmont, Yeranddy A. Alpizar, Lara Kelchtermans, Elias Broeckhoven, Kai Dallmeier","doi":"10.1016/j.cytogfr.2024.07.006","DOIUrl":"10.1016/j.cytogfr.2024.07.006","url":null,"abstract":"<div><p>Glucagon-like peptide-1 receptor agonists (GLP-1RAs), such as semaglutide (Ozempic®), have emerged as effective treatments for diabetes and weight management. However, recent evidence indicates that GLP-1R signalling influences various tissues, including the immune system. Notably, GLP-1 has a short half-life (< 5 minutes) and exists in the picomolar range, while GLP-1RAs like semaglutide have extended half-lives of several days and are administered at supraphysiological doses. This review explores the potential impact of these medications on vaccine efficacy. We examine evidence suggesting that GLP-1RAs may attenuate vaccine responses through direct effects on immune cells and modulation of other tissues. Additionally, we discuss how GLP-1R signalling may create a tolerogenic environment, potentially reducing vaccine immunogenicity. Given the widespread use of GLP-1RAs, it is crucial to understand their impact on immune responses and the translational implications for vaccination outcomes.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 14-24"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610124000492/pdfft?md5=134da4eb9801a43d1cd7946efec687b5&pid=1-s2.0-S1359610124000492-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141711587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.
{"title":"The impact of cytokines in neuroinflammation-mediated stroke","authors":"Sneha Kumari , Rishika Dhapola , Prajjwal Sharma , Pushank Nagar , Bikash Medhi , Dibbanti HariKrishnaReddy","doi":"10.1016/j.cytogfr.2024.06.002","DOIUrl":"10.1016/j.cytogfr.2024.06.002","url":null,"abstract":"<div><p>Cerebral stroke is ranked as the third most common contributor to global mortality and disability. The involvement of inflammatory mechanisms, both peripherally and within the CNS, holds significance in the pathophysiological cascades following the initiation of stroke. After the onset of acute stroke, predominantly ischemic, a subsequent phase of neuroinflammation ensues. It is a dual-effect process that not only exacerbates injury, leading to cell death, but paradoxically, it also serves a shielding role in facilitating recovery. Cytokines serve as pivotal mediators within the inflammatory cascade, actively contributing to the progression of ischemic damage. Stroke is followed by increased expression of pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, etc. leading to the recruitment and stimulation of glial cells and peripheral leukocytes at the site of injury, promoting neuroinflammation. Cytokines can directly induce neuronal injury and death through various mechanisms, including excitotoxicity, oxidative stress, HPA-axis activation, secretion of matrix metalloproteinase and apoptosis. They can also amplify the inflammatory response, leading to further neuronal damage. Therapeutic strategies aimed at modulating cytokine release, immune response and cytokine signalling or activity are being explored as potential interventions to mitigate neuroinflammation and its detrimental effects in stroke. In this review, we have given a concise summary of our current knowledge of the function of various cytokines, brain inflammation and various signalling and molecular pathways including JAK/STAT3, TGF-β/Smad, MAPK, HMGB1/TLR and NF-κB modulated cytokines regulation in stroke. Therapeutic agents such as MCC950, genistein, edaravone, minocycline, etc. targeting various cytokines-associated signalling pathways have shown efficacy in preclinical and clinical trials reducing the pathophysiology of the illness were also addressed in this study.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 105-119"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.07.001
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
{"title":"The anti-inflammatory effects of itaconate and its derivatives in neurological disorders","authors":"","doi":"10.1016/j.cytogfr.2024.07.001","DOIUrl":"10.1016/j.cytogfr.2024.07.001","url":null,"abstract":"<div><p>Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 37-49"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610124000455/pdfft?md5=18df5660e3fcec7871f71ba6e83ec6ce&pid=1-s2.0-S1359610124000455-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.07.002
Mateusz A. Krzyscik , Kelly Karl , Pooja Dudeja , Pavel Krejci , Kalina Hristova
The FGF system is the most complex of all receptor tyrosine kinase signaling networks with 18 FGF ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability in vivo.
{"title":"Quantitative and qualitative differences in the activation of a fibroblast growth factor receptor by different FGF ligands","authors":"Mateusz A. Krzyscik , Kelly Karl , Pooja Dudeja , Pavel Krejci , Kalina Hristova","doi":"10.1016/j.cytogfr.2024.07.002","DOIUrl":"10.1016/j.cytogfr.2024.07.002","url":null,"abstract":"<div><p><span><span>The FGF<span> system is the most complex of all receptor tyrosine kinase signaling networks with </span></span>18 FGF<span><span> ligands and four FGFRs that deliver morphogenic signals to pattern most embryonic structures. Even when a single FGFR is expressed in the tissue, different FGFs can trigger dramatically different biological responses via this receptor. Here we show both quantitative and qualitative differences in the signaling of one of the FGF receptors, FGFR1c, in response to different FGFs. We provide an overview of the recent discovery that FGFs engage in biased signaling via FGFR1c. We discuss the concept of ligand bias, which represents qualitative differences in signaling as it is a measure of differential ligand preferences for different downstream responses. We show how FGF ligand bias manifests in functional data in cultured </span>chondrocyte cells. We argue that FGF-ligand bias contributes substantially to FGF-driven developmental processes, along with known differences in FGF expression levels, FGF-FGFR binding coefficients and differences in FGF stability </span></span><em>in vivo</em>.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 77-84"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141710964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.07.004
Junqing Jiang , Mengyu Sun , Yufei Wang , Wenjie Huang , Limin Xia
The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.
高迁移率基团框(HMGB)家族由四种 DNA 结合蛋白组成,可调节染色质的结构和功能。除了细胞内功能外,最近的研究还揭示了它们作为细胞外损伤相关分子模式(DAMPs)的参与,有助于免疫反应和肿瘤发生。HMGB 家族通过调节增殖、代谢重编程、转移、免疫逃避和耐药性等多个过程促进肿瘤发生。由于文献主要关注 HMGB1,因此对该家族的其他成员知之甚少。本综述总结了 HMGB 家族成员在结构、分布以及功能上的相似性和区别,然后全面探讨了它们在肿瘤发生发展中的作用。我们强调了 HMGB 家族在组织和亚细胞水平上的分布和功能层次,重点研究了它们与肿瘤免疫微环境(TIME)的关系,旨在展望抗癌治疗的潜在策略。
{"title":"Deciphering the roles of the HMGB family in cancer: Insights from subcellular localization dynamics","authors":"Junqing Jiang , Mengyu Sun , Yufei Wang , Wenjie Huang , Limin Xia","doi":"10.1016/j.cytogfr.2024.07.004","DOIUrl":"10.1016/j.cytogfr.2024.07.004","url":null,"abstract":"<div><p>The high-mobility group box (HMGB) family consists of four DNA-binding proteins that regulate chromatin structure and function. In addition to their intracellular functions, recent studies have revealed their involvement as extracellular damage-associated molecular patterns (DAMPs), contributing to immune responses and tumor development. The HMGB family promotes tumorigenesis by modulating multiple processes including proliferation, metabolic reprogramming, metastasis, immune evasion, and drug resistance. Due to the predominant focus on HMGB1 in the literature, little is known about the remaining members of this family. This review summarizes the structural, distributional, as well as functional similarities and distinctions among members of the HMGB family, followed by a comprehensive exploration of their roles in tumor development. We emphasize the distributional and functional hierarchy of the HMGB family at both the organizational and subcellular levels, with a focus on their relationship with the tumor immune microenvironment (TIME), aiming to prospect potential strategies for anticancer therapy.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 85-104"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610124000479/pdfft?md5=a65551c1464936b1783919a088e2ab79&pid=1-s2.0-S1359610124000479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.cytogfr.2024.06.001
Laura Neurath , Michael Sticherling , Georg Schett , Filippo Fagni
Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.
{"title":"Targeting cytokines in psoriatic arthritis","authors":"Laura Neurath , Michael Sticherling , Georg Schett , Filippo Fagni","doi":"10.1016/j.cytogfr.2024.06.001","DOIUrl":"10.1016/j.cytogfr.2024.06.001","url":null,"abstract":"<div><p>Psoriatic arthritis (PsA) is part of the psoriatic disease spectrum and is characterized by a chronic inflammatory process that affects entheses, tendons and joints. Cytokines produced by immune and non-immune cells play a central role in the pathogenesis of PsA by orchestrating key aspects of the inflammatory response. Pro-inflammatory cytokines such as TNF, IL-23 and IL-17 have been shown to regulate the initiation and progression of PsA, ultimately leading to the destruction of the architecture of the local tissues such as soft tissue, cartilage and bone. The important role of cytokines in PsA has been underscored by the clinical success of antibodies that neutralize their function. In addition to biologic agents targeting individual pro-inflammatory cytokines, signaling inhibitors that block multiple cytokines simultaneously such as JAK inhibitors have been approved for PsA therapy. In this review, we will focus on our current understanding of the role of cytokines in the disease process of PsA and discuss potential new treatment options based on modulation of cytokine function.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"78 ","pages":"Pages 1-13"},"PeriodicalIF":9.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135961012400042X/pdfft?md5=adc6bfb36f1f954a114753ffae983ed3&pid=1-s2.0-S135961012400042X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}