Pub Date : 2024-12-01Epub Date: 2024-07-30DOI: 10.1007/s00125-024-06232-2
Noura Aldous, Ahmed K Elsayed, Bushra Memon, Sadaf Ijaz, Sikander Hayat, Essam M Abdelalim
Aims/hypothesis: Homozygous mutations in RFX6 lead to neonatal diabetes accompanied by a hypoplastic pancreas, whereas heterozygous mutations cause MODY. Recent studies have also shown RFX6 variants to be linked with type 2 diabetes. Despite RFX6's known function in islet development, its specific role in diabetes pathogenesis remains unclear. Here, we aimed to understand the mechanisms underlying the impairment of pancreatic islet development and subsequent hypoplasia due to loss-of-function mutations in RFX6.
Methods: We examined regulatory factor X6 (RFX6) expression during human embryonic stem cell (hESC) differentiation into pancreatic islets and re-analysed a single-cell RNA-seq dataset to identify RFX6-specific cell populations during islet development. Furthermore, induced pluripotent stem cell (iPSC) lines lacking RFX6 were generated using CRISPR/Cas9. Various approaches were then employed to explore the consequences of RFX6 loss across different developmental stages. Subsequently, we evaluated transcriptional changes resulting from RFX6 loss through RNA-seq of pancreatic progenitors (PPs) and endocrine progenitors (EPs).
Results: RFX6 expression was detected in PDX1+ cells in the hESC-derived posterior foregut (PF). However, in the PPs, RFX6 did not co-localise with pancreatic and duodenal homeobox 1 (PDX1) or NK homeobox 1 (NKX6.1) but instead co-localised with neurogenin 3, NK2 homeobox 2 and islet hormones in the EPs and islets. Single-cell analysis revealed high RFX6 expression levels in endocrine clusters across various hESC-derived pancreatic differentiation stages. Upon differentiating iPSCs lacking RFX6 into pancreatic islets, a significant decrease in PDX1 expression at the PF stage was observed, although this did not affect PPs co-expressing PDX1 and NKX6.1. RNA-seq analysis showed the downregulation of essential genes involved in pancreatic endocrine differentiation, insulin secretion and ion transport due to RFX6 deficiency. Furthermore, RFX6 deficiency resulted in the formation of smaller islet organoids due to increased cellular apoptosis, linked to reduced catalase expression, implying a protective role for RFX6. Overexpression of RFX6 reversed defective phenotypes in RFX6-knockout PPs, EPs and islets.
Conclusions/interpretation: These findings suggest that pancreatic hypoplasia and reduced islet cell formation associated with RFX6 mutations are not due to alterations in PDX1+/NKX6.1+ PPs but instead result from cellular apoptosis and downregulation of pancreatic endocrine genes.
Data availability: RNA-seq datasets have been deposited in the Zenodo repository with accession link (DOI: https://doi.org/10.5281/zenodo.10656891 ).
{"title":"Deletion of RFX6 impairs iPSC-derived islet organoid development and survival, with no impact on PDX1<sup>+</sup>/NKX6.1<sup>+</sup> progenitors.","authors":"Noura Aldous, Ahmed K Elsayed, Bushra Memon, Sadaf Ijaz, Sikander Hayat, Essam M Abdelalim","doi":"10.1007/s00125-024-06232-2","DOIUrl":"10.1007/s00125-024-06232-2","url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Homozygous mutations in RFX6 lead to neonatal diabetes accompanied by a hypoplastic pancreas, whereas heterozygous mutations cause MODY. Recent studies have also shown RFX6 variants to be linked with type 2 diabetes. Despite RFX6's known function in islet development, its specific role in diabetes pathogenesis remains unclear. Here, we aimed to understand the mechanisms underlying the impairment of pancreatic islet development and subsequent hypoplasia due to loss-of-function mutations in RFX6.</p><p><strong>Methods: </strong>We examined regulatory factor X6 (RFX6) expression during human embryonic stem cell (hESC) differentiation into pancreatic islets and re-analysed a single-cell RNA-seq dataset to identify RFX6-specific cell populations during islet development. Furthermore, induced pluripotent stem cell (iPSC) lines lacking RFX6 were generated using CRISPR/Cas9. Various approaches were then employed to explore the consequences of RFX6 loss across different developmental stages. Subsequently, we evaluated transcriptional changes resulting from RFX6 loss through RNA-seq of pancreatic progenitors (PPs) and endocrine progenitors (EPs).</p><p><strong>Results: </strong>RFX6 expression was detected in PDX1<sup>+</sup> cells in the hESC-derived posterior foregut (PF). However, in the PPs, RFX6 did not co-localise with pancreatic and duodenal homeobox 1 (PDX1) or NK homeobox 1 (NKX6.1) but instead co-localised with neurogenin 3, NK2 homeobox 2 and islet hormones in the EPs and islets. Single-cell analysis revealed high RFX6 expression levels in endocrine clusters across various hESC-derived pancreatic differentiation stages. Upon differentiating iPSCs lacking RFX6 into pancreatic islets, a significant decrease in PDX1 expression at the PF stage was observed, although this did not affect PPs co-expressing PDX1 and NKX6.1. RNA-seq analysis showed the downregulation of essential genes involved in pancreatic endocrine differentiation, insulin secretion and ion transport due to RFX6 deficiency. Furthermore, RFX6 deficiency resulted in the formation of smaller islet organoids due to increased cellular apoptosis, linked to reduced catalase expression, implying a protective role for RFX6. Overexpression of RFX6 reversed defective phenotypes in RFX6-knockout PPs, EPs and islets.</p><p><strong>Conclusions/interpretation: </strong>These findings suggest that pancreatic hypoplasia and reduced islet cell formation associated with RFX6 mutations are not due to alterations in PDX1<sup>+</sup>/NKX6.1<sup>+</sup> PPs but instead result from cellular apoptosis and downregulation of pancreatic endocrine genes.</p><p><strong>Data availability: </strong>RNA-seq datasets have been deposited in the Zenodo repository with accession link (DOI: https://doi.org/10.5281/zenodo.10656891 ).</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":" ","pages":"2786-2803"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604831/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-09-30DOI: 10.1007/s00125-024-06282-6
Sapna Sharma, Qiuling Dong, Mark Haid, Jonathan Adam, Roberto Bizzotto, Juan J Fernandez-Tajes, Angus G Jones, Andrea Tura, Anna Artati, Cornelia Prehn, Gabi Kastenmüller, Robert W Koivula, Paul W Franks, Mark Walker, Ian M Forgie, Giuseppe Giordano, Imre Pavo, Hartmut Ruetten, Manolis Dermitzakis, Mark I McCarthy, Oluf Pedersen, Jochen M Schwenk, Konstantinos D Tsirigos, Federico De Masi, Soren Brunak, Ana Viñuela, Andrea Mari, Timothy J McDonald, Tarja Kokkola, Jerzy Adamski, Ewan R Pearson, Harald Grallert
<p><strong>Aims/hypothesis: </strong>Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and type 2 diabetes.</p><p><strong>Methods: </strong>As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consortium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statistical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively.</p><p><strong>Results: </strong>In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA<sub>1c</sub> progression rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate [fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially had a causal role in the development of type 2 diabetes.</p><p><strong>Conclusions/interpretation: </strong>Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabolites, signific
{"title":"Role of human plasma metabolites in prediabetes and type 2 diabetes from the IMI-DIRECT study.","authors":"Sapna Sharma, Qiuling Dong, Mark Haid, Jonathan Adam, Roberto Bizzotto, Juan J Fernandez-Tajes, Angus G Jones, Andrea Tura, Anna Artati, Cornelia Prehn, Gabi Kastenmüller, Robert W Koivula, Paul W Franks, Mark Walker, Ian M Forgie, Giuseppe Giordano, Imre Pavo, Hartmut Ruetten, Manolis Dermitzakis, Mark I McCarthy, Oluf Pedersen, Jochen M Schwenk, Konstantinos D Tsirigos, Federico De Masi, Soren Brunak, Ana Viñuela, Andrea Mari, Timothy J McDonald, Tarja Kokkola, Jerzy Adamski, Ewan R Pearson, Harald Grallert","doi":"10.1007/s00125-024-06282-6","DOIUrl":"10.1007/s00125-024-06282-6","url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Type 2 diabetes is a chronic condition that is caused by hyperglycaemia. Our aim was to characterise the metabolomics to find their association with the glycaemic spectrum and find a causal relationship between metabolites and type 2 diabetes.</p><p><strong>Methods: </strong>As part of the Innovative Medicines Initiative - Diabetes Research on Patient Stratification (IMI-DIRECT) consortium, 3000 plasma samples were measured with the Biocrates AbsoluteIDQ p150 Kit and Metabolon analytics. A total of 911 metabolites (132 targeted metabolomics, 779 untargeted metabolomics) passed the quality control. Multivariable linear and logistic regression analysis estimates were calculated from the concentration/peak areas of each metabolite as an explanatory variable and the glycaemic status as a dependent variable. This analysis was adjusted for age, sex, BMI, study centre in the basic model, and additionally for alcohol, smoking, BP, fasting HDL-cholesterol and fasting triacylglycerol in the full model. Statistical significance was Bonferroni corrected throughout. Beyond associations, we investigated the mediation effect and causal effects for which causal mediation test and two-sample Mendelian randomisation (2SMR) methods were used, respectively.</p><p><strong>Results: </strong>In the targeted metabolomics, we observed four (15), 34 (99) and 50 (108) metabolites (number of metabolites observed in untargeted metabolomics appear in parentheses) that were significantly different when comparing normal glucose regulation vs impaired glucose regulation/prediabetes, normal glucose regulation vs type 2 diabetes, and impaired glucose regulation vs type 2 diabetes, respectively. Significant metabolites were mainly branched-chain amino acids (BCAAs), with some derivatised BCAAs, lipids, xenobiotics and a few unknowns. Metabolites such as lysophosphatidylcholine a C17:0, sum of hexoses, amino acids from BCAA metabolism (including leucine, isoleucine, valine, N-lactoylvaline, N-lactoylleucine and formiminoglutamate) and lactate, as well as an unknown metabolite (X-24295), were associated with HbA<sub>1c</sub> progression rate and were significant mediators of type 2 diabetes from baseline to 18 and 48 months of follow-up. 2SMR was used to estimate the causal effect of an exposure on an outcome using summary statistics from UK Biobank genome-wide association studies. We found that type 2 diabetes had a causal effect on the levels of three metabolites (hexose, glutamate and caproate [fatty acid (FA) 6:0]), whereas lipids such as specific phosphatidylcholines (PCs) (namely PC aa C36:2, PC aa C36:5, PC ae C36:3 and PC ae C34:3) as well as the two n-3 fatty acids stearidonate (18:4n3) and docosapentaenoate (22:5n3) potentially had a causal role in the development of type 2 diabetes.</p><p><strong>Conclusions/interpretation: </strong>Our findings identify known BCAAs and lipids, along with novel N-lactoyl-amino acid metabolites, signific","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":" ","pages":"2804-2818"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-08-09DOI: 10.1007/s00125-024-06242-0
Aikaterini Eleftheriadou, Vincenza Spallone, Abd A Tahrani, Uazman Alam
Cardiovascular autonomic neuropathy (CAN) is an under-recognised yet highly prevalent microvascular complication of diabetes. CAN affects approximately 20% of people with diabetes, with recent studies highlighting the presence of CAN in prediabetes (impaired glucose tolerance and/or impaired fasting glucose), indicating early involvement of the autonomic nervous system. Understanding of the pathophysiology of CAN continues to evolve, with emerging evidence supporting a potential link between lipid metabolites, mitochondrial dysfunction and genetics. Recent advancements, such as streamlining CAN detection through wearable devices and monitoring of heart rate variability, present simplified and cost-effective approaches for early CAN detection. Further research on the optimal use of the extensive data provided by such devices is required. Despite the lack of specific pharmacological interventions targeting the underlying pathophysiology of autonomic neuropathy, several studies have suggested a favourable impact of newer glucose-lowering agents, such as sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, where there is a wealth of clinical trial data on the prevention of cardiovascular events. This review delves into recent developments in the area of CAN, with emphasis on practical guidance to recognise and manage this underdiagnosed condition, which significantly increases the risk of cardiovascular events and mortality in diabetes.
心血管自主神经病变(CAN)是一种未被充分认识但却非常普遍的糖尿病微血管并发症。约有 20% 的糖尿病患者会受到心血管自主神经病变的影响,最近的研究强调,糖尿病前期(糖耐量受损和/或空腹血糖受损)患者也会出现心血管自主神经病变,这表明自主神经系统已提前受到影响。人们对 CAN 病理生理学的认识在不断发展,新出现的证据支持脂质代谢物、线粒体功能障碍和遗传之间的潜在联系。最近的进步,如通过可穿戴设备和心率变异性监测简化 CAN 检测,为早期 CAN 检测提供了简化且具有成本效益的方法。我们需要进一步研究如何优化使用这些设备提供的大量数据。尽管缺乏针对自主神经病变潜在病理生理学的特异性药物干预措施,但一些研究表明,钠-葡萄糖共转运体 2 抑制剂和胰高血糖素样肽-1 受体激动剂等新型降糖药物对预防心血管事件有积极影响,这些药物在预防心血管事件方面有丰富的临床试验数据。本综述深入探讨了 CAN 领域的最新进展,重点是如何识别和管理这种未得到充分诊断的疾病的实用指南,这种疾病会显著增加糖尿病患者发生心血管事件和死亡的风险。
{"title":"Cardiovascular autonomic neuropathy in diabetes: an update with a focus on management.","authors":"Aikaterini Eleftheriadou, Vincenza Spallone, Abd A Tahrani, Uazman Alam","doi":"10.1007/s00125-024-06242-0","DOIUrl":"10.1007/s00125-024-06242-0","url":null,"abstract":"<p><p>Cardiovascular autonomic neuropathy (CAN) is an under-recognised yet highly prevalent microvascular complication of diabetes. CAN affects approximately 20% of people with diabetes, with recent studies highlighting the presence of CAN in prediabetes (impaired glucose tolerance and/or impaired fasting glucose), indicating early involvement of the autonomic nervous system. Understanding of the pathophysiology of CAN continues to evolve, with emerging evidence supporting a potential link between lipid metabolites, mitochondrial dysfunction and genetics. Recent advancements, such as streamlining CAN detection through wearable devices and monitoring of heart rate variability, present simplified and cost-effective approaches for early CAN detection. Further research on the optimal use of the extensive data provided by such devices is required. Despite the lack of specific pharmacological interventions targeting the underlying pathophysiology of autonomic neuropathy, several studies have suggested a favourable impact of newer glucose-lowering agents, such as sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, where there is a wealth of clinical trial data on the prevention of cardiovascular events. This review delves into recent developments in the area of CAN, with emphasis on practical guidance to recognise and manage this underdiagnosed condition, which significantly increases the risk of cardiovascular events and mortality in diabetes.</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":" ","pages":"2611-2625"},"PeriodicalIF":8.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141906203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1007/s00125-024-06328-9
Yingchai Zhang, Claudia H T Tam, Eric S H Lau, Noel Y H Ng, Aimin Yang, Baoqi Fan, Hongjiang Wu, Cadmon K P Lim, Elaine Y K Chow, Andrea O Y Luk, Alice P S Kong, Wing Hung Tam, Juliana C N Chan, Ronald C W Ma
Aims/hypothesis: Insulin requirements in the human body undergo continuous changes in response to growth and development. We assessed the life course relationships between insulin demand and insulin adequacy.
Methods: Three independent Chinese cohorts (204 children, aged [mean ± SD] 7.0 ± 0.5 years; 214 adolescents, aged 15.0 ± 1.8 years; 605 adults, aged 41.5 ± 9.3 years), recruited between 1998 and 2013, underwent OGTT tests. Indices of insulin sensitivity and insulin secretion were calculated based on paired glucose/insulin values during fasting, early phase and late phase of OGTT. Insulin demand and insulin adequacy were calculated by standardised major axis (SMA) regression from the paired insulin sensitivity and secretion indices. We derived the natural logarithm of ratio between the exponential functions of insulin adequacy and insulin demand (RAD) index for further evaluating the relationship between insulin demand and adequacy. The risk of abnormal glucose tolerance (AGT) was evaluated by logistic regression analyses. Area under the receiver-operating characteristic curve (AUC-ROC) analyses, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices were used to demonstrate the discriminative value of the RAD method model.
Results: Adolescents had the lowest insulin sensitivity and the highest insulin secretion in all phases (fasting, early and late phase) of the OGTT, as compared with children and adults in each phase (all p<0.001). Adolescents had the highest insulin demand in all phases and lowest insulin adequacy in the fasting phase (p<0.001). In general, adults had the lowest insulin adequacy in both the early phase (p>0.05) and late phase (p<0.001) of the OGTT. Adolescents had negative RAD values irrespective of overweight and obesity, while, in general, children and adults had positive RAD values (p<0.001 between age groups in each of the fasting, early and late phases of the OGTT). Participants with RAD values below the 25th percentile had a higher risk of AGT compared with those above the 25th percentile (fasting-phase OR 1.86 [95% CI 1.18, 2.91]; early-phase OR 1.99 [95% CI 1.24, 3.19]; late-phase OR 2.49 [95% CI 1.57, 3.97]). The late-phase RAD index had the best performance in evaluating the risk of AGT compared with the fasting- and early-phase RAD indices (late-phase AUC-ROC = 0.635 [95% CI 0.583, 0.687]; late-phase NRI = 0.350 [95% CI 0.190, 0.510]; late-phase IDI = 0.033 [95% CI 0.015, 0.050]).
Conclusions/interpretation: The relationship between insulin demand and insulin adequacy changed throughout the life course. Adolescents had an imbalanced relationship between insulin demand and insulin adequacy, while, in general, children and adults had a balanced relationship. RAD is a novel index that was used to efficiently describe this relationship and evaluate the risk of AGT.
{"title":"The relationship of changes in insulin demand and insulin adequacy over the life course.","authors":"Yingchai Zhang, Claudia H T Tam, Eric S H Lau, Noel Y H Ng, Aimin Yang, Baoqi Fan, Hongjiang Wu, Cadmon K P Lim, Elaine Y K Chow, Andrea O Y Luk, Alice P S Kong, Wing Hung Tam, Juliana C N Chan, Ronald C W Ma","doi":"10.1007/s00125-024-06328-9","DOIUrl":"https://doi.org/10.1007/s00125-024-06328-9","url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Insulin requirements in the human body undergo continuous changes in response to growth and development. We assessed the life course relationships between insulin demand and insulin adequacy.</p><p><strong>Methods: </strong>Three independent Chinese cohorts (204 children, aged [mean ± SD] 7.0 ± 0.5 years; 214 adolescents, aged 15.0 ± 1.8 years; 605 adults, aged 41.5 ± 9.3 years), recruited between 1998 and 2013, underwent OGTT tests. Indices of insulin sensitivity and insulin secretion were calculated based on paired glucose/insulin values during fasting, early phase and late phase of OGTT. Insulin demand and insulin adequacy were calculated by standardised major axis (SMA) regression from the paired insulin sensitivity and secretion indices. We derived the natural logarithm of ratio between the exponential functions of insulin adequacy and insulin demand (RAD) index for further evaluating the relationship between insulin demand and adequacy. The risk of abnormal glucose tolerance (AGT) was evaluated by logistic regression analyses. Area under the receiver-operating characteristic curve (AUC-ROC) analyses, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices were used to demonstrate the discriminative value of the RAD method model.</p><p><strong>Results: </strong>Adolescents had the lowest insulin sensitivity and the highest insulin secretion in all phases (fasting, early and late phase) of the OGTT, as compared with children and adults in each phase (all p<0.001). Adolescents had the highest insulin demand in all phases and lowest insulin adequacy in the fasting phase (p<0.001). In general, adults had the lowest insulin adequacy in both the early phase (p>0.05) and late phase (p<0.001) of the OGTT. Adolescents had negative RAD values irrespective of overweight and obesity, while, in general, children and adults had positive RAD values (p<0.001 between age groups in each of the fasting, early and late phases of the OGTT). Participants with RAD values below the 25th percentile had a higher risk of AGT compared with those above the 25th percentile (fasting-phase OR 1.86 [95% CI 1.18, 2.91]; early-phase OR 1.99 [95% CI 1.24, 3.19]; late-phase OR 2.49 [95% CI 1.57, 3.97]). The late-phase RAD index had the best performance in evaluating the risk of AGT compared with the fasting- and early-phase RAD indices (late-phase AUC-ROC = 0.635 [95% CI 0.583, 0.687]; late-phase NRI = 0.350 [95% CI 0.190, 0.510]; late-phase IDI = 0.033 [95% CI 0.015, 0.050]).</p><p><strong>Conclusions/interpretation: </strong>The relationship between insulin demand and insulin adequacy changed throughout the life course. Adolescents had an imbalanced relationship between insulin demand and insulin adequacy, while, in general, children and adults had a balanced relationship. RAD is a novel index that was used to efficiently describe this relationship and evaluate the risk of AGT.</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":" ","pages":""},"PeriodicalIF":8.4,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142750077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1007/s00125-024-06335-w
Alfonso Galderisi, Alice L. J. Carr, Mariangela Martino, Peter Taylor, Peter Senior, Colin Dayan
{"title":"Correction: Quantifying beta cell function in the preclinical stages of type 1 diabetes","authors":"Alfonso Galderisi, Alice L. J. Carr, Mariangela Martino, Peter Taylor, Peter Senior, Colin Dayan","doi":"10.1007/s00125-024-06335-w","DOIUrl":"https://doi.org/10.1007/s00125-024-06335-w","url":null,"abstract":"","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":"7 1","pages":""},"PeriodicalIF":8.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142718544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1007/s00125-024-06331-0
Desirae D. Morales, Jiyoon Ryu, Cong Wei, Jason T. Hadley, Maia R. Smith, Juli Bai, Juan C. Lopez-Alvarenga, Srinivas Mummidi, Ravindranath Duggirala, Jane L. Lynch, Feng Liu, Lily Q. Dong
Aims/hypothesis
Upregulation of serum leucine-rich α-2-glycoprotein 1 (LRG1) has been implicated in diet-induced obesity and metabolic disorders. However, its specific hormonal actions remain unclear. This study aimed to determine whether diet-enhanced serum LRG1 levels promote hyperinsulinaemia by directly stimulating insulin secretion from pancreatic beta cells.
Methods
Human serum samples were obtained from individuals (both male and female) undergoing plastic surgery. Male C57BL/6 wild-type and Lrg1 whole-body knockout (Lrg1KO) mice were fed a 45% high-fat diet, with serum samples collected every 2 weeks to monitor LRG1 and insulin levels throughout diet-induced obesity. MIN6 beta cells were used to investigate the effects of LRG1 on insulin secretion and intracellular Ca2+ release. Antibodies targeting various LRG1 epitopes were used to neutralise LRG1 stimulation in MIN6 cells, and their effectiveness was tested in vivo to assess their ability to prevent LRG1-induced hyperinsulinaemia.
Results
We observed a significant positive association between human serum LRG1 levels and both age and BMI, with elevated levels observed in individuals with vs without type 2 diabetes. In mice fed a high-fat diet, LRG1 upregulation in serum was associated with hyperinsulinaemia. Lrg1 knockout protected mice from diet-induced islet hyperplasia and the loss of beta cell mass. Furthermore, neutralising LRG1 activity prevented the onset of diet-induced hyperinsulinaemia and preserved glucose tolerance. Mechanistically, LRG1 induces inositol triphosphate (IP3) production and intracellular Ca2+ release from the endoplasmic reticulum (ER) in a phospholipase C (PLC)-dependent manner, leading to excessive insulin secretion and ER stress in MIN6 beta cells.
Conclusions/interpretation
In summary, this study identifies LRG1 as a significant contributor to hyperinsulinaemia and beta cell dysfunction. Targeting LRG1 activity emerges as a promising therapeutic approach for addressing diet-induced beta cell dysfunction and managing type 2 diabetes.