Pub Date : 2010-06-01DOI: 10.1358/dnp.2010.23.5.1429489
Parminder Singh, Dulal Panda
Staphylococcus causes a large number of animal and human diseases and has been considered as a major health concern. With the emergence of resistant strains of staphylococcus, like methicillin-resistant Staphylococcus aureus and vancomycin-resistant Staphylococcus aureus, the search for novel antibacterial targets has intensified. FtsZ, a bacterial cytoskeleton protein, is involved in cell division. FtsZ assembles into protofilaments in a GTP-dependent manner, and forms a dynamic Z-ring at the mid-cell position. The assembly dynamics of FtsZ in the Z-ring are regulated by the combined actions of several FtsZ-associated proteins. Furthermore, the interaction of FtsZ with accessory proteins is essential for their recruitment to the Zring. A disruption of this interaction perturbs the Z-ring formation. FtsZ inhibitors like PC-190723 have been suggested to inhibit the Staphylococcus cell division by perturbing the assembly and stability of FtsZ polymers. In this review, we discuss the assembly dynamics of Z-ring and its role in cell division. In addition, we highlight recent advances suggesting the potential of FtsZ as a drug target for antistaphylococcal therapy.
{"title":"FtsZ inhibition: a promising approach for antistaphylococcal therapy.","authors":"Parminder Singh, Dulal Panda","doi":"10.1358/dnp.2010.23.5.1429489","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.5.1429489","url":null,"abstract":"<p><p>Staphylococcus causes a large number of animal and human diseases and has been considered as a major health concern. With the emergence of resistant strains of staphylococcus, like methicillin-resistant Staphylococcus aureus and vancomycin-resistant Staphylococcus aureus, the search for novel antibacterial targets has intensified. FtsZ, a bacterial cytoskeleton protein, is involved in cell division. FtsZ assembles into protofilaments in a GTP-dependent manner, and forms a dynamic Z-ring at the mid-cell position. The assembly dynamics of FtsZ in the Z-ring are regulated by the combined actions of several FtsZ-associated proteins. Furthermore, the interaction of FtsZ with accessory proteins is essential for their recruitment to the Zring. A disruption of this interaction perturbs the Z-ring formation. FtsZ inhibitors like PC-190723 have been suggested to inhibit the Staphylococcus cell division by perturbing the assembly and stability of FtsZ polymers. In this review, we discuss the assembly dynamics of Z-ring and its role in cell division. In addition, we highlight recent advances suggesting the potential of FtsZ as a drug target for antistaphylococcal therapy.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 5","pages":"295-304"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29102083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1358/dnp.2010.23.5.1468393
Thomas J McCown
Adeno-associated virus (AAV) vectors support long-term, nontoxic gene expression in the central nervous system, and these AAV properties prove particularly applicable to the treatment of focal epilepsies, especially intractable temporal lobe epilepsy. A number of clinical studies have employed AAV vectors and to date, no known adverse effects have been directly associated with these treatments, particularly AAV serotype 2 (AAV2). Although other AAV serotypes may confer an advantage in the future, extensive studies on the inhibitory neuropeptides, galanin and neuropeptide Y, have generated enough preclinical evidence of efficacy to warrant AAV2-based clinical trials in the near future. Beyond these trials, emerging evidence suggests that AAV-mediated manipulation of adenosine can significantly impact limbic seizure activity. Thus, with appropriate nonhuman primate transduction patterns and favorable overall toxicology studies, AAV-based manipulation of adenosine could follow the AAV-neuropeptide clinical studies. Finally, recent findings using AAV capsid shuffling and directed evolution have identified a hybrid AAV vector that can selectively cross the seizure compromised blood-brain barrier and transduce cells after peripheral, intravenous administration. Thus, in the more distant future, AAV therapeutics for focal epilepsies may be delivered without any neurosurgical interventions.
{"title":"The future of epilepsy treatment: focus on adeno-associated virus vector gene therapy.","authors":"Thomas J McCown","doi":"10.1358/dnp.2010.23.5.1468393","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.5.1468393","url":null,"abstract":"<p><p>Adeno-associated virus (AAV) vectors support long-term, nontoxic gene expression in the central nervous system, and these AAV properties prove particularly applicable to the treatment of focal epilepsies, especially intractable temporal lobe epilepsy. A number of clinical studies have employed AAV vectors and to date, no known adverse effects have been directly associated with these treatments, particularly AAV serotype 2 (AAV2). Although other AAV serotypes may confer an advantage in the future, extensive studies on the inhibitory neuropeptides, galanin and neuropeptide Y, have generated enough preclinical evidence of efficacy to warrant AAV2-based clinical trials in the near future. Beyond these trials, emerging evidence suggests that AAV-mediated manipulation of adenosine can significantly impact limbic seizure activity. Thus, with appropriate nonhuman primate transduction patterns and favorable overall toxicology studies, AAV-based manipulation of adenosine could follow the AAV-neuropeptide clinical studies. Finally, recent findings using AAV capsid shuffling and directed evolution have identified a hybrid AAV vector that can selectively cross the seizure compromised blood-brain barrier and transduce cells after peripheral, intravenous administration. Thus, in the more distant future, AAV therapeutics for focal epilepsies may be delivered without any neurosurgical interventions.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 5","pages":"281-6"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29102918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1358/dnp.2010.23.5.1444206
Jeremy S Duffield, Mark L Lupher
Serum amyloid P or pentraxin 2 (PTX2) is a highly phylogenetically conserved, naturally circulating plasma protein and a soluble pattern recognition receptor of the innate immune system. The unique binding activities of PTX2 suggest that it may localize specifically to sites of injury and function to aid in the removal of damaged tissue. The recent discovery of its ability to regulate certain monocyte differentiation states has identified PTX2 as a novel and potentially powerful antifibrotic agent. A fully recombinant form of the human PTX2 protein, designated PRM-151, has recently initiated human clinical trials. Here we review the molecular, cellular and structural biology of PRM-151/PTX2 in vitro and in several in vivo preclinical models of fibrotic disease that demonstrate its potential as a first-in-class natural modulator of fibrotic pathology with significant potential to treat a wide variety of human diseases.
{"title":"PRM-151 (recombinant human serum amyloid P/pentraxin 2) for the treatment of fibrosis.","authors":"Jeremy S Duffield, Mark L Lupher","doi":"10.1358/dnp.2010.23.5.1444206","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.5.1444206","url":null,"abstract":"<p><p>Serum amyloid P or pentraxin 2 (PTX2) is a highly phylogenetically conserved, naturally circulating plasma protein and a soluble pattern recognition receptor of the innate immune system. The unique binding activities of PTX2 suggest that it may localize specifically to sites of injury and function to aid in the removal of damaged tissue. The recent discovery of its ability to regulate certain monocyte differentiation states has identified PTX2 as a novel and potentially powerful antifibrotic agent. A fully recombinant form of the human PTX2 protein, designated PRM-151, has recently initiated human clinical trials. Here we review the molecular, cellular and structural biology of PRM-151/PTX2 in vitro and in several in vivo preclinical models of fibrotic disease that demonstrate its potential as a first-in-class natural modulator of fibrotic pathology with significant potential to treat a wide variety of human diseases.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 5","pages":"305-15"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29102084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1358/dnp.2010.23.5.1437711
Maria U Moreno, Guillermo Zalba
Oxidative stress plays a key role in the pathophysiology of coronary artery disease, and constitutes a common mechanism behind the risk factors associated with this disease such as atherosclerosis, hypertension, diabetes and the metabolic syndrome. Oxidative stress is defined as an imbalance between the production of reactive oxygen and nitrogen species and the detoxification by the appropriate cellular systems. Reactive oxygen species induce cardiovascular dysfunction by modulating cell contraction/dilation, migration, growth/apoptosis and extracellular matrix protein turnover, which contribute to vascular and cardiac remodeling. In the last decade, the NADPH oxidase family has emerged as one of the most relevant sources of reactive oxygen species within the cardiovascular system. Recent data suggest a significant role of the genetic background in NADPH oxidase regulation. Common genetic polymorphisms within the promoter and exonic sequences of CYBA, the gene that encodes the p22phox subunit of the NADPH oxidase, have been characterized in the context of cardiovascular diseases. This review aims to present the current state of research into these polymorphisms with regards to their relationship to coronary artery disease.
{"title":"CYBA gene variants as biomarkers for coronary artery disease.","authors":"Maria U Moreno, Guillermo Zalba","doi":"10.1358/dnp.2010.23.5.1437711","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.5.1437711","url":null,"abstract":"<p><p>Oxidative stress plays a key role in the pathophysiology of coronary artery disease, and constitutes a common mechanism behind the risk factors associated with this disease such as atherosclerosis, hypertension, diabetes and the metabolic syndrome. Oxidative stress is defined as an imbalance between the production of reactive oxygen and nitrogen species and the detoxification by the appropriate cellular systems. Reactive oxygen species induce cardiovascular dysfunction by modulating cell contraction/dilation, migration, growth/apoptosis and extracellular matrix protein turnover, which contribute to vascular and cardiac remodeling. In the last decade, the NADPH oxidase family has emerged as one of the most relevant sources of reactive oxygen species within the cardiovascular system. Recent data suggest a significant role of the genetic background in NADPH oxidase regulation. Common genetic polymorphisms within the promoter and exonic sequences of CYBA, the gene that encodes the p22phox subunit of the NADPH oxidase, have been characterized in the context of cardiovascular diseases. This review aims to present the current state of research into these polymorphisms with regards to their relationship to coronary artery disease.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 5","pages":"316-24"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29102085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1358/dnp.2010.23.5.1447850
Gerd Meyer zu Hörste, Anne K Mausberg, Carsten Korth, Olaf Stüve, Bernd C Kieseier
Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease of the central nervous system. Different therapeutic options are available, but all require parenteral application and some expose patients to potentially lethal adverse effects. The response to treatment remains variable and often incomplete. Thus, the search for novel therapeutic agents is ongoing and relevant. The chimeric compound quinpramine-generated from its precursor substances imipramine and quinacrine-has recently demonstrated clinical efficacy in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mechanistic considerations and recent experimental data suggest that intracellular redistribution of antigen-presenting molecules and cholesterol-rich membrane domains may account for the clinical efficacy of this drug. This article summarizes available treatment options in MS and explains why the candidate compound quinpramine may transfer from bench to bedside in the near future.
{"title":"Quinpramine--a promising compound for treating immune-mediated demyelination of the nervous system.","authors":"Gerd Meyer zu Hörste, Anne K Mausberg, Carsten Korth, Olaf Stüve, Bernd C Kieseier","doi":"10.1358/dnp.2010.23.5.1447850","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.5.1447850","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease of the central nervous system. Different therapeutic options are available, but all require parenteral application and some expose patients to potentially lethal adverse effects. The response to treatment remains variable and often incomplete. Thus, the search for novel therapeutic agents is ongoing and relevant. The chimeric compound quinpramine-generated from its precursor substances imipramine and quinacrine-has recently demonstrated clinical efficacy in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mechanistic considerations and recent experimental data suggest that intracellular redistribution of antigen-presenting molecules and cholesterol-rich membrane domains may account for the clinical efficacy of this drug. This article summarizes available treatment options in MS and explains why the candidate compound quinpramine may transfer from bench to bedside in the near future.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 5","pages":"287-94"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29102920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-06-01DOI: 10.1358/dnp.2010.23.5.1499108
Elisa Ferrer
Creation and clearance of pharmaceutical trademarks continues to be one of the most difficult and challenging areas of trademark law. The Food and Drug Administration (FDA) recently initiated a 2-year Pilot Program under Prescription Drug User Fee Act (PDUFA) IV. The intent of the program is to enable participating pharmaceutical firms to evaluate proposed pharmaceutical marks and submit the data generated from those evaluations to the FDA for review. Submitting a trademark to the FDA warrants questions: What supporting data is needed and accepted when proposing a mark? What issues might arise, and how can they be averted? In a recent Thomson Reuters on-demand webinar (http://science.thomsonreuters.com/news/2010-02/8580404/), a group of renowned experts in the field of trademark development review the FDA pilot program, outline the requirements for submission and discuss what the changes will mean in clearing new pharmaceutical marks. They also present various approaches to trademark development and evaluation in light of the FDA's views.
{"title":"Pharmaceutical trademarks: navigating through the FDA's pilot program.","authors":"Elisa Ferrer","doi":"10.1358/dnp.2010.23.5.1499108","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.5.1499108","url":null,"abstract":"<p><p>Creation and clearance of pharmaceutical trademarks continues to be one of the most difficult and challenging areas of trademark law. The Food and Drug Administration (FDA) recently initiated a 2-year Pilot Program under Prescription Drug User Fee Act (PDUFA) IV. The intent of the program is to enable participating pharmaceutical firms to evaluate proposed pharmaceutical marks and submit the data generated from those evaluations to the FDA for review. Submitting a trademark to the FDA warrants questions: What supporting data is needed and accepted when proposing a mark? What issues might arise, and how can they be averted? In a recent Thomson Reuters on-demand webinar (http://science.thomsonreuters.com/news/2010-02/8580404/), a group of renowned experts in the field of trademark development review the FDA pilot program, outline the requirements for submission and discuss what the changes will mean in clearing new pharmaceutical marks. They also present various approaches to trademark development and evaluation in light of the FDA's views.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 5","pages":"333-6"},"PeriodicalIF":0.0,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29102087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-01DOI: 10.1358/dnp.2010.23.4.1416977
Thomas M Bridges, Evan P LeBois, Corey R Hopkins, Michael R Wood, Carrie K Jones, P Jeffrey Conn, Craig W Lindsley
The cholinergic hypothesis of schizophrenia emerged over 50 years ago based on clinical observations with both anticholinergics and pan-muscarinic agonists. Not until the 1990s did the cholinergic hypothesis of schizophrenia receive renewed enthusiasm based on clinical data with xanomeline, a muscarinic acetylcholine receptor M(1)/M(4)-preferring orthosteric agonist. In a clinical trial with Alzheimer's patients, xanomeline not only improved cognitive performance, but also reduced psychotic behaviors. This encouraging data spurred a second clinical trial in schizophrenic patients, wherein xanomeline significantly improved the positive, negative and cognitive symptom clusters. However, the question remained: Was the antipsychotic efficacy due to activation of M(1), M(4) or both M(1)/M(4)? Classical orthosteric ligands lacked the muscarinic receptor subtype selectivity required to address this key question. More recently, functional assays have allowed for the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric (acetylcholine) site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. Recently, allosteric ligands, with unprecedented selectivity for either M(1) or M(4), have been discovered and have demonstrated comparable efficacy to xanomeline in preclinical antipsychotic and cognition models. These data suggest that selective allosteric activation of either M(1) or M(4) has antipsychotic potential through distinct, yet complimentary mechanisms.
{"title":"The antipsychotic potential of muscarinic allosteric modulation.","authors":"Thomas M Bridges, Evan P LeBois, Corey R Hopkins, Michael R Wood, Carrie K Jones, P Jeffrey Conn, Craig W Lindsley","doi":"10.1358/dnp.2010.23.4.1416977","DOIUrl":"10.1358/dnp.2010.23.4.1416977","url":null,"abstract":"<p><p>The cholinergic hypothesis of schizophrenia emerged over 50 years ago based on clinical observations with both anticholinergics and pan-muscarinic agonists. Not until the 1990s did the cholinergic hypothesis of schizophrenia receive renewed enthusiasm based on clinical data with xanomeline, a muscarinic acetylcholine receptor M(1)/M(4)-preferring orthosteric agonist. In a clinical trial with Alzheimer's patients, xanomeline not only improved cognitive performance, but also reduced psychotic behaviors. This encouraging data spurred a second clinical trial in schizophrenic patients, wherein xanomeline significantly improved the positive, negative and cognitive symptom clusters. However, the question remained: Was the antipsychotic efficacy due to activation of M(1), M(4) or both M(1)/M(4)? Classical orthosteric ligands lacked the muscarinic receptor subtype selectivity required to address this key question. More recently, functional assays have allowed for the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric (acetylcholine) site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. Recently, allosteric ligands, with unprecedented selectivity for either M(1) or M(4), have been discovered and have demonstrated comparable efficacy to xanomeline in preclinical antipsychotic and cognition models. These data suggest that selective allosteric activation of either M(1) or M(4) has antipsychotic potential through distinct, yet complimentary mechanisms.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 4","pages":"229-40"},"PeriodicalIF":0.0,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780339/pdf/nihms761222.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29032149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-01DOI: 10.1358/dnp.2010.23.4.1437710
Ravinder K Kaundal, Shyam S Sharma
Peroxisome proliferator-activated receptor gamma (PPARgamma) has already been considered as an attractive therapeutic target for the treatment of metabolic disorders. Recently, PPARgamma agonists were shown to effectively attenuate oxidative stress, inflammation and apoptosis in the central nervous system. There are several preclinical and clinical studies indicating neuroprotective potential of PPARgamma agonists in the treatment of cerebral ischemia, Parkinson's disease, Alzheimer's disease, multiple sclerosis and amyotrophic lateral sclerosis. In these disorders, apart from inhibiting oxidative stress, inflammation and apoptosis, PPARgamma agonists have the potential to modulate various signaling molecules/pathways, including matrix metalloproteinase-9, mitogen-activated protein kinases, signal transducer and activator of transcription, mitochondrial uncoupling protein 2, mitoNEET expression, amyloid precursor protein degradation, beta-site amyloid precursor protein cleaving enzyme 1 and Wnt signaling. This article discusses evidence and mechanisms supporting the neuroprotective effects of PPARgamma agonists in central nervous system disorders.
{"title":"Peroxisome proliferator-activated receptor gamma agonists as neuroprotective agents.","authors":"Ravinder K Kaundal, Shyam S Sharma","doi":"10.1358/dnp.2010.23.4.1437710","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.4.1437710","url":null,"abstract":"<p><p>Peroxisome proliferator-activated receptor gamma (PPARgamma) has already been considered as an attractive therapeutic target for the treatment of metabolic disorders. Recently, PPARgamma agonists were shown to effectively attenuate oxidative stress, inflammation and apoptosis in the central nervous system. There are several preclinical and clinical studies indicating neuroprotective potential of PPARgamma agonists in the treatment of cerebral ischemia, Parkinson's disease, Alzheimer's disease, multiple sclerosis and amyotrophic lateral sclerosis. In these disorders, apart from inhibiting oxidative stress, inflammation and apoptosis, PPARgamma agonists have the potential to modulate various signaling molecules/pathways, including matrix metalloproteinase-9, mitogen-activated protein kinases, signal transducer and activator of transcription, mitochondrial uncoupling protein 2, mitoNEET expression, amyloid precursor protein degradation, beta-site amyloid precursor protein cleaving enzyme 1 and Wnt signaling. This article discusses evidence and mechanisms supporting the neuroprotective effects of PPARgamma agonists in central nervous system disorders.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 4","pages":"241-56"},"PeriodicalIF":0.0,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29032150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-01DOI: 10.1358/dnp.2010.23.4.1453629
Gerrit Grieb, Melanie Merk, Jürgen Bernhagen, Richard Bucala
Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine, the effect of which on arresting random immune cell movement was recognized several decades ago. Despite its historic name, MIF also has a direct chemokine-like function and promotes cell recruitment. Multiple clinical studies have indicated the utility of MIF as a biomarker for different diseases that have an inflammatory component; these include systemic infections and sepsis, autoimmune diseases, cancer, and metabolic disorders such as type 2 diabetes and obesity. The identification of functional promoter polymorphisms in the MIF gene (MIF) and their association with the susceptibility or severity of different diseases has not only served to validate MIF's role in disease development but also opened the possibility of using MIF genotype information to better predict risk and outcome. In this article, we review the clinical data of MIF and discuss its potential as a biomarker for different disease applications.
{"title":"Macrophage migration inhibitory factor (MIF): a promising biomarker.","authors":"Gerrit Grieb, Melanie Merk, Jürgen Bernhagen, Richard Bucala","doi":"10.1358/dnp.2010.23.4.1453629","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.4.1453629","url":null,"abstract":"<p><p>Macrophage migration inhibitory factor (MIF) is an immunoregulatory cytokine, the effect of which on arresting random immune cell movement was recognized several decades ago. Despite its historic name, MIF also has a direct chemokine-like function and promotes cell recruitment. Multiple clinical studies have indicated the utility of MIF as a biomarker for different diseases that have an inflammatory component; these include systemic infections and sepsis, autoimmune diseases, cancer, and metabolic disorders such as type 2 diabetes and obesity. The identification of functional promoter polymorphisms in the MIF gene (MIF) and their association with the susceptibility or severity of different diseases has not only served to validate MIF's role in disease development but also opened the possibility of using MIF genotype information to better predict risk and outcome. In this article, we review the clinical data of MIF and discuss its potential as a biomarker for different disease applications.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 4","pages":"257-64"},"PeriodicalIF":0.0,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1358/dnp.2010.23.4.1453629","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29032152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2010-05-01DOI: 10.1358/dnp.2010.23.4.1439500
Heather M Long, Gregory Parsonage, Christopher P Fox, Steven P Lee
Epstein-Barr virus (EBV) is present in the malignant cells of several human cancers including post-transplant lymphoproliferative disease (PTLD), Hodgkin's lymphoma, nasopharyngeal carcinoma, natural killer/T lymphomas and Burkitt's lymphoma. Yet in > 90% of the world's adult population, who carry EBV as a lifelong asymptomatic infection, the oncogenic potential of this virus is controlled by a strong virus-specific T-cell response. Accordingly, EBV-associated malignancies represent good candidates for a T-cell-based therapy and provide an important model for developing such therapies for other human cancers. This review summarizes the impressive results seen with T-cell therapy for PTLD and discusses, in the light of recent technological advances, the prospects for developing more effective approaches for other EBV-associated cancers.
{"title":"Immunotherapy for Epstein-Barr virus-associated malignancies.","authors":"Heather M Long, Gregory Parsonage, Christopher P Fox, Steven P Lee","doi":"10.1358/dnp.2010.23.4.1439500","DOIUrl":"https://doi.org/10.1358/dnp.2010.23.4.1439500","url":null,"abstract":"<p><p>Epstein-Barr virus (EBV) is present in the malignant cells of several human cancers including post-transplant lymphoproliferative disease (PTLD), Hodgkin's lymphoma, nasopharyngeal carcinoma, natural killer/T lymphomas and Burkitt's lymphoma. Yet in > 90% of the world's adult population, who carry EBV as a lifelong asymptomatic infection, the oncogenic potential of this virus is controlled by a strong virus-specific T-cell response. Accordingly, EBV-associated malignancies represent good candidates for a T-cell-based therapy and provide an important model for developing such therapies for other human cancers. This review summarizes the impressive results seen with T-cell therapy for PTLD and discusses, in the light of recent technological advances, the prospects for developing more effective approaches for other EBV-associated cancers.</p>","PeriodicalId":11325,"journal":{"name":"Drug news & perspectives","volume":"23 4","pages":"221-8"},"PeriodicalIF":0.0,"publicationDate":"2010-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"29032148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}