Pectoral fins, the anterior paired fins in fish, have enhanced maneuvering abilities due to morphological changes. Teleosts have fewer radial bones in their pectoral fins than basal species, resulting in more-elaborate fins. The mechanism behind this radial constraint change in teleosts is unclear. Here, we found that mutations in hhip, which encodes an antagonist of Hedgehog signaling, led to an increase in radial bones in a localized region. Expression of the Shh genes, encoding ligands of Hedgehog signaling, coincided with notable hhip expression specifically during early development. We suggest that a negative feedback effect of Hedgehog signaling by hhip regulates the constraint of the pectoral fin in zebrafish. Additionally, re-analysis of hhip-related gene expression data in zebrafish and basal species revealed that the notable hhip expression during early development is a characteristic of zebrafish that is not observed in basal species. Region-specific expression of Hox13 genes in the zebrafish pectoral fin indicated that the median region, analogous to the region with abundant radials in basal species, is expanded in hhip-/- zebrafish. These data underscore potential morphological evolution through constrained diversity.
{"title":"Anterior-posterior constraint on Hedgehog signaling by hhip in teleost fin elaboration.","authors":"Yoshitaka Tanaka, Shun Okayama, Kohei Urakawa, Hidehiro Kudoh, Satoshi Ansai, Gembu Abe, Koji Tamura","doi":"10.1242/dev.202526","DOIUrl":"10.1242/dev.202526","url":null,"abstract":"<p><p>Pectoral fins, the anterior paired fins in fish, have enhanced maneuvering abilities due to morphological changes. Teleosts have fewer radial bones in their pectoral fins than basal species, resulting in more-elaborate fins. The mechanism behind this radial constraint change in teleosts is unclear. Here, we found that mutations in hhip, which encodes an antagonist of Hedgehog signaling, led to an increase in radial bones in a localized region. Expression of the Shh genes, encoding ligands of Hedgehog signaling, coincided with notable hhip expression specifically during early development. We suggest that a negative feedback effect of Hedgehog signaling by hhip regulates the constraint of the pectoral fin in zebrafish. Additionally, re-analysis of hhip-related gene expression data in zebrafish and basal species revealed that the notable hhip expression during early development is a characteristic of zebrafish that is not observed in basal species. Region-specific expression of Hox13 genes in the zebrafish pectoral fin indicated that the median region, analogous to the region with abundant radials in basal species, is expanded in hhip-/- zebrafish. These data underscore potential morphological evolution through constrained diversity.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607692/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-26DOI: 10.1242/dev.204293
Rebecca E James, Natalie R Hamilton, Lola Nicole Huffman, Matthew P Brown, Victoria N Neckles, R Jeroen Pasterkamp, Loyal A Goff, Alex L Kolodkin
To form functional circuits, neurons must settle in their appropriate cellular locations, and then project and elaborate neurites to contact their target synaptic neuropils. Laminar organization within the vertebrate retinal inner plexiform layer (IPL) facilitates pre- and postsynaptic neurite targeting, yet the precise mechanisms underlying establishment of functional IPL subdomains are not well understood. Here, we explore mechanisms defining the compartmentalization of OFF and ON neurites generally, and OFF and ON direction-selective neurites specifically, within the developing mouse IPL. We show that semaphorin 6A (Sema6A), a repulsive axon guidance cue, is required for delineation of OFF versus ON circuits within the IPL: in the Sema6a null IPL, the boundary between OFF and ON domains is blurred. Furthermore, Sema6A expressed by retinal ganglion cells (RGCs) directs laminar segregation of OFF and ON starburst amacrine cell dendritic scaffolds, which themselves serve as a substrate upon which other retinal neurites elaborate. These results demonstrate that RGCs, the first type of neuron born within the retina, play an active role in functional specialization of the IPL.
{"title":"Retinal ganglion cell-derived semaphorin 6A segregates starburst amacrine cell dendritic scaffolds to organize the mouse inner retina.","authors":"Rebecca E James, Natalie R Hamilton, Lola Nicole Huffman, Matthew P Brown, Victoria N Neckles, R Jeroen Pasterkamp, Loyal A Goff, Alex L Kolodkin","doi":"10.1242/dev.204293","DOIUrl":"10.1242/dev.204293","url":null,"abstract":"<p><p>To form functional circuits, neurons must settle in their appropriate cellular locations, and then project and elaborate neurites to contact their target synaptic neuropils. Laminar organization within the vertebrate retinal inner plexiform layer (IPL) facilitates pre- and postsynaptic neurite targeting, yet the precise mechanisms underlying establishment of functional IPL subdomains are not well understood. Here, we explore mechanisms defining the compartmentalization of OFF and ON neurites generally, and OFF and ON direction-selective neurites specifically, within the developing mouse IPL. We show that semaphorin 6A (Sema6A), a repulsive axon guidance cue, is required for delineation of OFF versus ON circuits within the IPL: in the Sema6a null IPL, the boundary between OFF and ON domains is blurred. Furthermore, Sema6A expressed by retinal ganglion cells (RGCs) directs laminar segregation of OFF and ON starburst amacrine cell dendritic scaffolds, which themselves serve as a substrate upon which other retinal neurites elaborate. These results demonstrate that RGCs, the first type of neuron born within the retina, play an active role in functional specialization of the IPL.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-13DOI: 10.1242/dev.204219
Samuel D Jones, Jack E B Miller, Madilynn M Amos, Julianna M Hernández, Katherine M Piaszynski, Pamela K Geyer
Drosophila female germline stem cells (GSCs) complete asymmetric mitosis in the presence of an intact, but permeable, nuclear envelope and nuclear lamina (NL). This asymmetric division requires a modified centrosome cycle, wherein mitotic centrosomes with mature pericentriolar material (PCM) embed in the NL and interphase centrosomes with reduced PCM leave the NL. This centrosome cycle requires Emerin, an NL protein required for GSC survival and germ cell differentiation. In emerin mutants, interphase GSC centrosomes retain excess PCM, remain embedded in the NL and nucleate microtubule asters at positions of NL distortion. Here, we investigate the contributions of abnormal interphase centrosomes to GSC loss. Remarkably, reducing interphase PCM in emerin mutants rescues GSC survival and partially restores germ cell differentiation. Direct tests of the effects of abnormal centrosomes were achieved by expression of constitutively active Polo kinase to drive enlargement of interphase centrosomes in wild-type GSCs. Notably, these conditions failed to alter NL structure or decrease GSC survival. However, coupling enlarged interphase centrosomes with nuclear distortion promoted GSC loss. These studies establish that Emerin maintains centrosome structure to preserve stem cell survival.
{"title":"Emerin preserves stem cell survival through maintenance of centrosome and nuclear lamina structure.","authors":"Samuel D Jones, Jack E B Miller, Madilynn M Amos, Julianna M Hernández, Katherine M Piaszynski, Pamela K Geyer","doi":"10.1242/dev.204219","DOIUrl":"10.1242/dev.204219","url":null,"abstract":"<p><p>Drosophila female germline stem cells (GSCs) complete asymmetric mitosis in the presence of an intact, but permeable, nuclear envelope and nuclear lamina (NL). This asymmetric division requires a modified centrosome cycle, wherein mitotic centrosomes with mature pericentriolar material (PCM) embed in the NL and interphase centrosomes with reduced PCM leave the NL. This centrosome cycle requires Emerin, an NL protein required for GSC survival and germ cell differentiation. In emerin mutants, interphase GSC centrosomes retain excess PCM, remain embedded in the NL and nucleate microtubule asters at positions of NL distortion. Here, we investigate the contributions of abnormal interphase centrosomes to GSC loss. Remarkably, reducing interphase PCM in emerin mutants rescues GSC survival and partially restores germ cell differentiation. Direct tests of the effects of abnormal centrosomes were achieved by expression of constitutively active Polo kinase to drive enlargement of interphase centrosomes in wild-type GSCs. Notably, these conditions failed to alter NL structure or decrease GSC survival. However, coupling enlarged interphase centrosomes with nuclear distortion promoted GSC loss. These studies establish that Emerin maintains centrosome structure to preserve stem cell survival.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11586520/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-19DOI: 10.1242/dev.204319
Andrea L Sposato, Hailey L Hollins, Darren R Llewellyn, Jenna M Weber, Madison N Schrock, Jeffrey A Farrell, James A Gagnon
Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal, but fertility declines with age. Although morphological studies have informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying the maintenance and decline of spermatogenesis are not yet understood. We used single-cell RNA sequencing to generate a developmental atlas of the aging zebrafish testis. All testes contained spermatogonia, but we observed a progressive decline in spermatogenesis that correlated with age. Testes from some older males only contained spermatogonia and a reduced population of spermatocytes. Spermatogonia in older males were transcriptionally distinct from spermatogonia in testes capable of robust spermatogenesis. Immune cells including macrophages and lymphocytes drastically increased in abundance in testes that could not complete spermatogenesis. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of spermatogenesis.
{"title":"Germ cell progression through zebrafish spermatogenesis declines with age.","authors":"Andrea L Sposato, Hailey L Hollins, Darren R Llewellyn, Jenna M Weber, Madison N Schrock, Jeffrey A Farrell, James A Gagnon","doi":"10.1242/dev.204319","DOIUrl":"10.1242/dev.204319","url":null,"abstract":"<p><p>Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal, but fertility declines with age. Although morphological studies have informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying the maintenance and decline of spermatogenesis are not yet understood. We used single-cell RNA sequencing to generate a developmental atlas of the aging zebrafish testis. All testes contained spermatogonia, but we observed a progressive decline in spermatogenesis that correlated with age. Testes from some older males only contained spermatogonia and a reduced population of spermatocytes. Spermatogonia in older males were transcriptionally distinct from spermatogonia in testes capable of robust spermatogenesis. Immune cells including macrophages and lymphocytes drastically increased in abundance in testes that could not complete spermatogenesis. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of spermatogenesis.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-20DOI: 10.1242/dev.203142
Yang Yang, Yinan Zhou, Gary Wessel, Weihua Hu, Dongdong Xu
Seasonal spermatogenesis in fish is driven by spermatogonial stem cells (SSCs), which undergo a complex cellular process to differentiate into mature sperm. In this study, we characterized spermatogenesis in the large yellow croaker (Larimichthys crocea), a marine fish of significant commercial value, based on a high-resolution single-cell RNA-sequencing atlas of testicular cells from three distinct developmental stages: juvenile, adult differentiating and regressed testes. We detailed a continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, elucidating the molecular events involved in spermatogenesis. We uncovered dynamic heterogeneity in cellular compositions throughout the annual reproductive cycle, accompanied by strong molecular signatures within specific testicular cells. Notably, we identified a distinct population of SSCs and observed a critical metabolic transition from glycolysis to oxidative phosphorylation, enhancing our understanding of the biochemical and molecular characteristics of SSCs. Additionally, we elucidated the interactions between somatic cells and spermatogonia, illuminating the mechanisms that regulate SSC development. Overall, this work enhances our understanding of spermatogenesis in seasonal breeding teleosts and provides essential insights for the further conservation and culture of SSCs.
{"title":"Single-cell transcriptomes reveal spermatogonial stem cells and the dynamic heterogeneity of spermatogenesis in a seasonal breeding teleost.","authors":"Yang Yang, Yinan Zhou, Gary Wessel, Weihua Hu, Dongdong Xu","doi":"10.1242/dev.203142","DOIUrl":"https://doi.org/10.1242/dev.203142","url":null,"abstract":"<p><p>Seasonal spermatogenesis in fish is driven by spermatogonial stem cells (SSCs), which undergo a complex cellular process to differentiate into mature sperm. In this study, we characterized spermatogenesis in the large yellow croaker (Larimichthys crocea), a marine fish of significant commercial value, based on a high-resolution single-cell RNA-sequencing atlas of testicular cells from three distinct developmental stages: juvenile, adult differentiating and regressed testes. We detailed a continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, elucidating the molecular events involved in spermatogenesis. We uncovered dynamic heterogeneity in cellular compositions throughout the annual reproductive cycle, accompanied by strong molecular signatures within specific testicular cells. Notably, we identified a distinct population of SSCs and observed a critical metabolic transition from glycolysis to oxidative phosphorylation, enhancing our understanding of the biochemical and molecular characteristics of SSCs. Additionally, we elucidated the interactions between somatic cells and spermatogonia, illuminating the mechanisms that regulate SSC development. Overall, this work enhances our understanding of spermatogenesis in seasonal breeding teleosts and provides essential insights for the further conservation and culture of SSCs.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 22","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ednrb is specifically required to develop neural crest (NC) stem cell-derived lineages. However, it is still unknown why Ednrb signaling is only needed for the early development of melanoblasts in the skin and eye. We show that Ednrb is required for the proliferation of melanoblasts during early mouse development. To understand the mechanism of melanoblast proliferation, we found that the gene absent in melanoma 2 (Aim2) is upregulated in Ednrb-deficient NC cells by RNA-sequencing analysis. Consequently, the knockdown or knockout of Aim2 partially rescued the proliferation of Ednrb-deficient melanoblasts. Conversely, the overexpression of Aim2 in melanoblasts suppressed their proliferation. We further show that Ednrb signaling could act through the microRNA miR-196b to block the suppression of melanoblast proliferation by Aim2 in primary NC cell cultures. These results reveal the Ednrb-Aim2-AKT axis in regulating melanocyte development and suggest that Ednrb signaling functions as a negative regulator of Aim2, which inhibits the proliferation of melanoblasts in early development. These findings uncover a previously unreported role for Aim2 outside the inflammasome, showing that it is a significant regulator controlling NC stem cell-derived lineage development.
{"title":"The Ednrb-Aim2-AKT axis regulates neural crest-derived melanoblast proliferation during early development.","authors":"Yu Chen, Huirong Li, Jing Wang, Shanshan Yang, Zhongyuan Su, Wanxiao Wang, Chunbao Rao, Ling Hou","doi":"10.1242/dev.202444","DOIUrl":"10.1242/dev.202444","url":null,"abstract":"<p><p>Ednrb is specifically required to develop neural crest (NC) stem cell-derived lineages. However, it is still unknown why Ednrb signaling is only needed for the early development of melanoblasts in the skin and eye. We show that Ednrb is required for the proliferation of melanoblasts during early mouse development. To understand the mechanism of melanoblast proliferation, we found that the gene absent in melanoma 2 (Aim2) is upregulated in Ednrb-deficient NC cells by RNA-sequencing analysis. Consequently, the knockdown or knockout of Aim2 partially rescued the proliferation of Ednrb-deficient melanoblasts. Conversely, the overexpression of Aim2 in melanoblasts suppressed their proliferation. We further show that Ednrb signaling could act through the microRNA miR-196b to block the suppression of melanoblast proliferation by Aim2 in primary NC cell cultures. These results reveal the Ednrb-Aim2-AKT axis in regulating melanocyte development and suggest that Ednrb signaling functions as a negative regulator of Aim2, which inhibits the proliferation of melanoblasts in early development. These findings uncover a previously unreported role for Aim2 outside the inflammasome, showing that it is a significant regulator controlling NC stem cell-derived lineage development.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 22","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-21DOI: 10.1242/dev.202777
Maarten P Bebelman, Lenka Belicova, Elzbieta Gralinska, Tobias Jumel, Aparajita Lahree, Sarah Sommer, Andrej Shevchenko, Timofei Zatsepin, Yannis Kalaidzidis, Martin Vingron, Marino Zerial
During liver development, bipotential progenitor cells called hepatoblasts differentiate into hepatocytes or cholangiocytes. Hepatocyte differentiation is uniquely associated with multi-axial polarity, enabling the anisotropic expansion of apical lumina between adjacent cells and formation of a three-dimensional network of bile canaliculi. Cholangiocytes, the cells forming the bile ducts, exhibit the vectorial polarity characteristic of epithelial cells. Whether cell polarization feeds back on the gene regulatory pathways governing hepatoblast differentiation is unknown. Here, we used primary mouse hepatoblasts to investigate the contribution of anisotropic apical expansion to hepatocyte differentiation. Silencing of the small GTPase Rab35 caused isotropic lumen expansion and formation of multicellular cysts with the vectorial polarity of cholangiocytes. Gene expression profiling revealed that these cells express reduced levels of hepatocyte markers and upregulate genes associated with cholangiocyte identity. Timecourse RNA sequencing demonstrated that loss of lumen anisotropy precedes these transcriptional changes. Independent alterations in apical lumen morphology induced either by modulation of the subapical actomyosin cortex or by increased intraluminal pressure caused similar transcriptional changes. These findings suggest that cell polarity and lumen morphogenesis feed back to hepatoblast-to-hepatocyte differentiation.
{"title":"Hepatocyte differentiation requires anisotropic expansion of bile canaliculi.","authors":"Maarten P Bebelman, Lenka Belicova, Elzbieta Gralinska, Tobias Jumel, Aparajita Lahree, Sarah Sommer, Andrej Shevchenko, Timofei Zatsepin, Yannis Kalaidzidis, Martin Vingron, Marino Zerial","doi":"10.1242/dev.202777","DOIUrl":"10.1242/dev.202777","url":null,"abstract":"<p><p>During liver development, bipotential progenitor cells called hepatoblasts differentiate into hepatocytes or cholangiocytes. Hepatocyte differentiation is uniquely associated with multi-axial polarity, enabling the anisotropic expansion of apical lumina between adjacent cells and formation of a three-dimensional network of bile canaliculi. Cholangiocytes, the cells forming the bile ducts, exhibit the vectorial polarity characteristic of epithelial cells. Whether cell polarization feeds back on the gene regulatory pathways governing hepatoblast differentiation is unknown. Here, we used primary mouse hepatoblasts to investigate the contribution of anisotropic apical expansion to hepatocyte differentiation. Silencing of the small GTPase Rab35 caused isotropic lumen expansion and formation of multicellular cysts with the vectorial polarity of cholangiocytes. Gene expression profiling revealed that these cells express reduced levels of hepatocyte markers and upregulate genes associated with cholangiocyte identity. Timecourse RNA sequencing demonstrated that loss of lumen anisotropy precedes these transcriptional changes. Independent alterations in apical lumen morphology induced either by modulation of the subapical actomyosin cortex or by increased intraluminal pressure caused similar transcriptional changes. These findings suggest that cell polarity and lumen morphogenesis feed back to hepatoblast-to-hepatocyte differentiation.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607689/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-20DOI: 10.1242/dev.204381
Frédéric Rosa, Nicolas Dray, Sébastien Bedu, Laure Bally-Cuif
Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.
{"title":"Non-apoptotic caspase events and Atf3 expression underlie direct neuronal differentiation of adult neural stem cells.","authors":"Frédéric Rosa, Nicolas Dray, Sébastien Bedu, Laure Bally-Cuif","doi":"10.1242/dev.204381","DOIUrl":"10.1242/dev.204381","url":null,"abstract":"<p><p>Neural stem cells (NSCs) generate neurons over a lifetime in adult vertebrate brains. In the adult zebrafish pallium, NSCs persist long term through balanced fate decisions. These decisions include direct neuronal conversions, i.e. delamination and neurogenesis without a division. To characterize this process, we reanalyze intravital imaging data of adult pallial NSCs, and observe shared delamination dynamics between NSCs and committed neuronal progenitors. Searching for mechanisms predicting direct NSC conversions, we build an NSC-specific genetic tracer of Caspase3/7 activation (Cas3*/Cas7*) in vivo. We show that non-apoptotic Cas3*/7* events occur in adult NSCs and are biased towards lineage termination under physiological conditions, with a predominant generation of single neurons. We further identify the transcription factor Atf3 as necessary for this bias. Finally, we show that the Cas3*/7* pathway is engaged by NSCs upon parenchymal lesion and correlates with NSCs more prone to lineage termination and neuron formation. These results provide evidence for non-apoptotic caspase events occurring in vertebrate adult NSCs and link these events with the NSC fate decision of direct conversion, which is important for long-term NSC population homeostasis.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 22","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-26DOI: 10.1242/dev.202901
Long Nguyen Hoang Do, Esteban Delgado, Casey G Lim, Meriem Bkhache, Amanda M Peluzzo, Yiming Hua, Manisha Oza, Sadia Mohsin, Hong Chen, Michael V Autieri, Seonhee Kim, Xiaolei Liu
Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development. We show that LEC-specific Cxcr4-deficient mouse embryos and CXCL12 mutant embryos exhibit severe defects in lymphatic sprouting, migration and lymphatic valve formation. We also discovered that CXCL12, originating from peripheral nerves, directs the migration of dermal lymphatic vessels to align with nerves in developing skin. Deletion of Cxcr4 or blockage of CXCL12 and CXCR4 activity results in reduced VEGFR3 levels on the LEC surface. This, in turn, impairs VEGFC-mediated VEGFR3 signaling and downstream PI3K and AKT activities. Taken together, these data identify previously unknown chemokine signaling originating from peripheral nerves that guides dermal lymphatic sprouting and patterning. Our work identifies for the first time a neuro-lymphatics communication during mouse development and reveals a previously unreported mechanism by which CXCR4 modulates VEGFC, VEGFR3 and AKT signaling.
{"title":"A neuro-lymphatic communication guides lymphatic development by CXCL12 and CXCR4 signaling.","authors":"Long Nguyen Hoang Do, Esteban Delgado, Casey G Lim, Meriem Bkhache, Amanda M Peluzzo, Yiming Hua, Manisha Oza, Sadia Mohsin, Hong Chen, Michael V Autieri, Seonhee Kim, Xiaolei Liu","doi":"10.1242/dev.202901","DOIUrl":"10.1242/dev.202901","url":null,"abstract":"<p><p>Lymphatic vessels grow through active sprouting and mature into a vascular complex that includes lymphatic capillaries and collecting vessels that ensure fluid transport. However, the signaling cues that direct lymphatic sprouting and patterning remain unclear. In this study, we demonstrate that chemokine signaling, specifically through CXCL12 and CXCR4, plays crucial roles in regulating lymphatic development. We show that LEC-specific Cxcr4-deficient mouse embryos and CXCL12 mutant embryos exhibit severe defects in lymphatic sprouting, migration and lymphatic valve formation. We also discovered that CXCL12, originating from peripheral nerves, directs the migration of dermal lymphatic vessels to align with nerves in developing skin. Deletion of Cxcr4 or blockage of CXCL12 and CXCR4 activity results in reduced VEGFR3 levels on the LEC surface. This, in turn, impairs VEGFC-mediated VEGFR3 signaling and downstream PI3K and AKT activities. Taken together, these data identify previously unknown chemokine signaling originating from peripheral nerves that guides dermal lymphatic sprouting and patterning. Our work identifies for the first time a neuro-lymphatics communication during mouse development and reveals a previously unreported mechanism by which CXCR4 modulates VEGFC, VEGFR3 and AKT signaling.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15Epub Date: 2024-11-19DOI: 10.1242/dev.204212
Ameya Khandekar, Stephanie J Ellis
Cell competition arises in heterogeneous tissues when neighbouring cells sense their relative fitness and undergo selection. It has been a challenge to define contexts in which cell competition is a physiologically relevant phenomenon and to understand the cellular features that underlie fitness and fitness sensing. Drawing on examples across a range of contexts and length scales, we illuminate molecular and cellular features that could underlie fitness in diverse tissue types and processes to promote and reinforce long-term maintenance of tissue function. We propose that by broadening the scope of how fitness is defined and the circumstances in which cell competition can occur, the field can unlock the potential of cell competition as a lens through which heterogeneity and its role in the fundamental principles of complex tissue organisation can be understood.
{"title":"An expanded view of cell competition.","authors":"Ameya Khandekar, Stephanie J Ellis","doi":"10.1242/dev.204212","DOIUrl":"10.1242/dev.204212","url":null,"abstract":"<p><p>Cell competition arises in heterogeneous tissues when neighbouring cells sense their relative fitness and undergo selection. It has been a challenge to define contexts in which cell competition is a physiologically relevant phenomenon and to understand the cellular features that underlie fitness and fitness sensing. Drawing on examples across a range of contexts and length scales, we illuminate molecular and cellular features that could underlie fitness in diverse tissue types and processes to promote and reinforce long-term maintenance of tissue function. We propose that by broadening the scope of how fitness is defined and the circumstances in which cell competition can occur, the field can unlock the potential of cell competition as a lens through which heterogeneity and its role in the fundamental principles of complex tissue organisation can be understood.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":"151 22","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}