Pub Date : 2023-10-10DOI: 10.1186/s40623-023-01915-3
Koji Tamaribuchi, Shota Kudo, Kengo Shimojo, Fuyuki Hirose
Abstract After the 2011 M w 9.0 Tohoku earthquake, seismicity became extremely active throughout Japan. Despite enormous efforts to detect the large number of earthquakes, microearthquakes ( M < 2 inland, M < 3 offshore) were not always cataloged and many have remained undetected, making it difficult to understand the detailed seismicity after the 2011 Tohoku earthquake. We developed an automatic hypocenter determination method combined with machine learning to detect microearthquakes. Machine learning was used for phase classification with convolutional neural networks and ensemble learning to remove false detections. We detected > 920,000 earthquakes from March 2011 to February 2012, triple the number of the conventional earthquake catalog (~ 320,000). This represents a great improvement in earthquake detection, especially in and around the Tohoku region. Detailed analysis of our merged catalog more clearly revealed features such as (1) swarm migrations, (2) small foreshock activity, and (3) increased microseismicity preceding repeating earthquakes. This microseismic catalog provides a magnifying glass for understanding detailed seismicity. Graphical Abstract
{"title":"Detection of hidden earthquakes after the 2011 Tohoku earthquake by automatic hypocenter determination combined with machine learning","authors":"Koji Tamaribuchi, Shota Kudo, Kengo Shimojo, Fuyuki Hirose","doi":"10.1186/s40623-023-01915-3","DOIUrl":"https://doi.org/10.1186/s40623-023-01915-3","url":null,"abstract":"Abstract After the 2011 M w 9.0 Tohoku earthquake, seismicity became extremely active throughout Japan. Despite enormous efforts to detect the large number of earthquakes, microearthquakes ( M < 2 inland, M < 3 offshore) were not always cataloged and many have remained undetected, making it difficult to understand the detailed seismicity after the 2011 Tohoku earthquake. We developed an automatic hypocenter determination method combined with machine learning to detect microearthquakes. Machine learning was used for phase classification with convolutional neural networks and ensemble learning to remove false detections. We detected > 920,000 earthquakes from March 2011 to February 2012, triple the number of the conventional earthquake catalog (~ 320,000). This represents a great improvement in earthquake detection, especially in and around the Tohoku region. Detailed analysis of our merged catalog more clearly revealed features such as (1) swarm migrations, (2) small foreshock activity, and (3) increased microseismicity preceding repeating earthquakes. This microseismic catalog provides a magnifying glass for understanding detailed seismicity. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-10DOI: 10.1186/s40623-023-01902-8
Takayuki Umeda, Riku Ozaki
Abstract Advanced numerical techniques for solving the relativistic equations of motion for charged particles are provided. A new fourth-order integrator is developed by combining the Taylor series expansion of the numerical angle of relativistic gyration and the fourth-order Runge–Kutta method for integrating the Lorentz factor. The new integrator gives the exact relativistic E-cross-B drift velocity, but has a numerical accuracy much higher than the classic fourth-order Runge–Kutta integrator. Graphical Abstract
{"title":"Advanced numerical techniques for time integration of relativistic equations of motion for charged particles","authors":"Takayuki Umeda, Riku Ozaki","doi":"10.1186/s40623-023-01902-8","DOIUrl":"https://doi.org/10.1186/s40623-023-01902-8","url":null,"abstract":"Abstract Advanced numerical techniques for solving the relativistic equations of motion for charged particles are provided. A new fourth-order integrator is developed by combining the Taylor series expansion of the numerical angle of relativistic gyration and the fourth-order Runge–Kutta method for integrating the Lorentz factor. The new integrator gives the exact relativistic E-cross-B drift velocity, but has a numerical accuracy much higher than the classic fourth-order Runge–Kutta integrator. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"151 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136295385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We present a novel method for coastal tsunami prediction utilizing a denoising autoencoder (DAE) model, one of the deep learning algorithms. Our study focuses on the Tohoku coast, Japan, where dense offshore bottom pressure gauges (OBPGs), called S-net, are installed. To train the model, we generated 800 hypothetical tsunami scenarios by employing stochastic earthquake models (M7.0–8.8). We used synthetic tsunami waveforms at 44 OBPGs as input and the waveforms at four coastal tide gauges as output. Subsequently, we evaluated the model’s performance using 200 additional hypothetical and two real tsunami events: the 2016 Fukushima earthquake and 2022 Tonga volcanic tsunamis. Our DAE model demonstrated high accuracy in predicting coastal tsunami waveforms for hypothetical events, achieving an impressive quality index of approximately 90%. Furthermore, it accurately forecasted the maximum amplitude of the 2016 Fukushima tsunami, achieving a quality index of 91.4% at 15 min after the earthquake. However, the prediction of coastal waveforms for the 2022 Tonga volcanic tsunami was not satisfactory. We also assessed the impact of the forecast time window and found that it had limited effects on forecast accuracy. This suggests that our method is suitable for providing rapid forecasts soon after an earthquake occurs. Our research is the first application of an artificial neural network to tsunami prediction using real observations. In the future, we will use more tsunami scenarios for model training to enhance its robustness for different types of tsunamis. Graphical Abstract
{"title":"Coastal tsunami prediction in Tohoku region, Japan, based on S-net observations using artificial neural network","authors":"Yuchen Wang, Kentaro Imai, Takuya Miyashita, Keisuke Ariyoshi, Narumi Takahashi, Kenji Satake","doi":"10.1186/s40623-023-01912-6","DOIUrl":"https://doi.org/10.1186/s40623-023-01912-6","url":null,"abstract":"Abstract We present a novel method for coastal tsunami prediction utilizing a denoising autoencoder (DAE) model, one of the deep learning algorithms. Our study focuses on the Tohoku coast, Japan, where dense offshore bottom pressure gauges (OBPGs), called S-net, are installed. To train the model, we generated 800 hypothetical tsunami scenarios by employing stochastic earthquake models (M7.0–8.8). We used synthetic tsunami waveforms at 44 OBPGs as input and the waveforms at four coastal tide gauges as output. Subsequently, we evaluated the model’s performance using 200 additional hypothetical and two real tsunami events: the 2016 Fukushima earthquake and 2022 Tonga volcanic tsunamis. Our DAE model demonstrated high accuracy in predicting coastal tsunami waveforms for hypothetical events, achieving an impressive quality index of approximately 90%. Furthermore, it accurately forecasted the maximum amplitude of the 2016 Fukushima tsunami, achieving a quality index of 91.4% at 15 min after the earthquake. However, the prediction of coastal waveforms for the 2022 Tonga volcanic tsunami was not satisfactory. We also assessed the impact of the forecast time window and found that it had limited effects on forecast accuracy. This suggests that our method is suitable for providing rapid forecasts soon after an earthquake occurs. Our research is the first application of an artificial neural network to tsunami prediction using real observations. In the future, we will use more tsunami scenarios for model training to enhance its robustness for different types of tsunamis. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135197956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-07DOI: 10.1186/s40623-023-01910-8
Chenxiang Wang, Pengfei Zhang
Abstract Earth rotation parameters (ERPs) are essential for transforming between the celestial and terrestrial reference frames, and for high-precision space navigation and positioning. Among the ERPs, polar motion (PM) is a critical parameter for analyzing and understanding the dynamic interaction between the solid Earth, atmosphere, ocean, and other geophysical fluids. Traditional methods for predicting the change in ERPs rely heavily on linear models, such as the least squares (LS) and the autoregressive (AR) model (LS + AR). However, variations in ERP partly reflect non-linear effects in the Earth system, such that the predictive accuracy of linear models is not always optimal. In this paper, long short-term memory (LSTM), a non-linear neural network, is employed to improve the prediction of ERPs. Polar motion prediction experiments in this study are conducted using the LSTM model and a hybrid method LS + LSTM model based on the IERS EOP14C04 time series. Compared with Bulletin A, the PMX and PMY prediction accuracy can reach a maximum of 33.7% and 31.9%, respectively, with the LS + LSTM model. The experimental results show that the proposed hybrid model displays a better performance in mid- and long-term (120–365 days) prediction of polar motion. Graphical Abstract
{"title":"Improving the accuracy of polar motion prediction using a hybrid least squares and long short-term memory model","authors":"Chenxiang Wang, Pengfei Zhang","doi":"10.1186/s40623-023-01910-8","DOIUrl":"https://doi.org/10.1186/s40623-023-01910-8","url":null,"abstract":"Abstract Earth rotation parameters (ERPs) are essential for transforming between the celestial and terrestrial reference frames, and for high-precision space navigation and positioning. Among the ERPs, polar motion (PM) is a critical parameter for analyzing and understanding the dynamic interaction between the solid Earth, atmosphere, ocean, and other geophysical fluids. Traditional methods for predicting the change in ERPs rely heavily on linear models, such as the least squares (LS) and the autoregressive (AR) model (LS + AR). However, variations in ERP partly reflect non-linear effects in the Earth system, such that the predictive accuracy of linear models is not always optimal. In this paper, long short-term memory (LSTM), a non-linear neural network, is employed to improve the prediction of ERPs. Polar motion prediction experiments in this study are conducted using the LSTM model and a hybrid method LS + LSTM model based on the IERS EOP14C04 time series. Compared with Bulletin A, the PMX and PMY prediction accuracy can reach a maximum of 33.7% and 31.9%, respectively, with the LS + LSTM model. The experimental results show that the proposed hybrid model displays a better performance in mid- and long-term (120–365 days) prediction of polar motion. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135252735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract It has long been known that field-aligned irregularities within equatorial plasma bubbles (EPBs) can cause long-range propagation of radio waves in the VHF frequencies such as those used for TV broadcasting through the so-called forward scattering process. However, no attempt has been made to use such anomalous propagations of VHF radio waves for wide-area monitoring of EPBs. In this study, we investigated the feasibility of monitoring of EPBs using VHF radio waves used for aeronautical navigation systems such as VHF Omnidirectional radio Range (VOR). There are 370 VOR stations in the Eastern and Southeastern Asian region that can be potentially used as Tx stations for the observations of anomalous propagation. We have examined the forward scattering conditions of VHF waves using the magnetic field model and confirmed that it is possible to observe the EPB-related anomalous propagation if we set up Rx stations in Okinawa (Japan), Taiwan, and Thailand. During test observations conducted in Okinawa since 2021, no signal has been received that was clearly caused by anomalous propagation due to EPBs. This is simply because EPBs have not developed to high latitudes during the observation period due to the low solar activity. In March 2023, however, possible indications of EPB-related scattering were detected in Okinawa which implies the feasibility of observing EPBs with the current observation system. We plan to conduct pilot observations in Taiwan and Thailand in future to further evaluate the feasibility of this monitoring technique. Graphical Abstract
{"title":"Monitoring of equatorial plasma bubbles using aeronautical navigation system: a feasibility study","authors":"Keisuke Hosokawa, Susumu Saito, Hiroyuki Nakata, Chien-Hung Lin, Jia-Ting Lin, Pornchai Supnithi, Ichiro Tomizawa, Jun Sakai, Toru Takahashi, Takuya Tsugawa, Michi Nishioka, Mamoru Ishii","doi":"10.1186/s40623-023-01911-7","DOIUrl":"https://doi.org/10.1186/s40623-023-01911-7","url":null,"abstract":"Abstract It has long been known that field-aligned irregularities within equatorial plasma bubbles (EPBs) can cause long-range propagation of radio waves in the VHF frequencies such as those used for TV broadcasting through the so-called forward scattering process. However, no attempt has been made to use such anomalous propagations of VHF radio waves for wide-area monitoring of EPBs. In this study, we investigated the feasibility of monitoring of EPBs using VHF radio waves used for aeronautical navigation systems such as VHF Omnidirectional radio Range (VOR). There are 370 VOR stations in the Eastern and Southeastern Asian region that can be potentially used as Tx stations for the observations of anomalous propagation. We have examined the forward scattering conditions of VHF waves using the magnetic field model and confirmed that it is possible to observe the EPB-related anomalous propagation if we set up Rx stations in Okinawa (Japan), Taiwan, and Thailand. During test observations conducted in Okinawa since 2021, no signal has been received that was clearly caused by anomalous propagation due to EPBs. This is simply because EPBs have not developed to high latitudes during the observation period due to the low solar activity. In March 2023, however, possible indications of EPB-related scattering were detected in Okinawa which implies the feasibility of observing EPBs with the current observation system. We plan to conduct pilot observations in Taiwan and Thailand in future to further evaluate the feasibility of this monitoring technique. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135738705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1186/s40623-023-01909-1
Lixin Gu, Yangting Lin, Yongjin Chen, Yuchen Xu, Xu Tang, Sen Hu, Ho-kwang Mao, Jinhua Li
Abstract The lunar surface and interior are highly reducing, resulting in the virtually absence of ferric ion. However, recent studies suggest the presence of ferric iron in lunar samples, and in most cases they were found in amorphous silicates (e.g., glass beads) measured by TEM–EELS. In this work, we conducted a systematic TEM–EELS analysis on the iron valence states of Chang’e-5 impact glass beads. The Fe 3+ /ΣFe ratio of each silicate glass sample was determined from integral intensity of Fe L 3 and L 2 edge. The measurements show a positive correlation between the dwell time and Fe 3+ /ΣFe ratio, which reveals that ferric iron can be significantly produced by electron beam bombardment under routine analytical condition. The calculated Fe 3+ /ΣFe with short dwell times (≤ 20 ms) in our Chang’e-5 impact glass beads show no detectable inherent ferric iron, suggesting that the ferric iron is not ubiquitous as previously reported. It is obvious that a careful control of experiment conditions is critical to determine the inherent redox state of other beam-sensitive terrestrial and extraterrestrial samples. Graphical Abstract
{"title":"Measurement of ferric iron in Chang’e-5 impact glass beads","authors":"Lixin Gu, Yangting Lin, Yongjin Chen, Yuchen Xu, Xu Tang, Sen Hu, Ho-kwang Mao, Jinhua Li","doi":"10.1186/s40623-023-01909-1","DOIUrl":"https://doi.org/10.1186/s40623-023-01909-1","url":null,"abstract":"Abstract The lunar surface and interior are highly reducing, resulting in the virtually absence of ferric ion. However, recent studies suggest the presence of ferric iron in lunar samples, and in most cases they were found in amorphous silicates (e.g., glass beads) measured by TEM–EELS. In this work, we conducted a systematic TEM–EELS analysis on the iron valence states of Chang’e-5 impact glass beads. The Fe 3+ /ΣFe ratio of each silicate glass sample was determined from integral intensity of Fe L 3 and L 2 edge. The measurements show a positive correlation between the dwell time and Fe 3+ /ΣFe ratio, which reveals that ferric iron can be significantly produced by electron beam bombardment under routine analytical condition. The calculated Fe 3+ /ΣFe with short dwell times (≤ 20 ms) in our Chang’e-5 impact glass beads show no detectable inherent ferric iron, suggesting that the ferric iron is not ubiquitous as previously reported. It is obvious that a careful control of experiment conditions is critical to determine the inherent redox state of other beam-sensitive terrestrial and extraterrestrial samples. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135406782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-28DOI: 10.1186/s40623-023-01905-5
Ujjal K. Borah, Prasanta K. Patro, Khasi Raju, K. Chinna Reddy, Narendra Babu, P. Rama Rao, N. Purnachandra Rao
Abstract The magnetotelluric (MT) investigation carried out in Koyna Seismogenic Zone (KSZ), an intra-plate earthquake region in Western India, along an E–W profile brings out moderately conductive (~ 700–1000 Ωm) near vertical features within the very high resistive (> 20,000 Ωm) granite/granite-gneiss basement. Occurrences of these anomalous moderate conductors are corroborated with sensitivity analysis. The alignment of earthquake hypocenters along the resistive–conductive boundary signifies the moderate conductor as basement fault. The conversion of resistivity values to the ratio of seismic P- to S-wave velocity ( v p / v s ) suggests that the moderate conductivity of the fault zone (as compared to the surrounding basement) appears due to the presence of fluid in the fault zone. Geophysical evidences reveal ~ 2.5–3.6 vol% fluid in the fault zone with ~ 1.8–2.6% interconnected porosity, which migrates along the structural boundary and invades the mechanically strong basement to nucleate the brittle failure within it. The present study proposes two mechanisms for the seismicity in the Koyna region. First: the meteoric water circulation due to the loading–unloading of nearby Koyna reservoir acts as potential fluid source for this triggered seismicity, which has also been suggested by previous studies. Second: the fluid circulation due to a deep-seated source. The present MT study brings out a conductive feature below 20 km depth which is thought to be emerged due to the dehydration of amphibole bearing rocks. The fluid generated from dehydration might act as a probable source to the triggered seismicity; since the conductive feature has a linkage to the upper crust. Graphical Abstract
在印度西部板块内地震带Koyna地震带(KSZ)沿东西向剖面进行的大地电磁(MT)调查显示,在极高电阻率(>20000 Ωm)花岗岩/花岗片麻岩基底。用灵敏度分析证实了这些异常中等导体的出现。震源沿电阻-导电边界的排列表明中导体为基底断层。将电阻率值转换为地震纵波与横波速度之比(v P / v s)表明,与周围基底相比,断裂带的中等导电性是由于断裂带中存在流体所致。地球物理证据显示,断裂带内流体含量为~ 2.5 ~ 3.6 vol%,孔隙度为~ 1.8 ~ 2.6%,流体沿构造边界运移,侵入力学强度强的基底,使断裂内部脆性破坏成核。本研究提出了Koyna地区地震活动性的两种机制。首先,由于附近Koyna水库的装卸引起的大气水循环是这次触发地震活动的潜在流体来源,这也是先前研究提出的。第二:由于流体循环有深层根源。本次MT研究发现了20 km以下的导电特征,认为这是由于含角闪孔岩石脱水而产生的。脱水产生的流体可能是触发地震活动的可能来源;因为导电特征与上地壳有联系。图形抽象
{"title":"Role of fluid on seismicity of an intra-plate earthquake zone in Western India: an electrical fingerprint from magnetotelluric study","authors":"Ujjal K. Borah, Prasanta K. Patro, Khasi Raju, K. Chinna Reddy, Narendra Babu, P. Rama Rao, N. Purnachandra Rao","doi":"10.1186/s40623-023-01905-5","DOIUrl":"https://doi.org/10.1186/s40623-023-01905-5","url":null,"abstract":"Abstract The magnetotelluric (MT) investigation carried out in Koyna Seismogenic Zone (KSZ), an intra-plate earthquake region in Western India, along an E–W profile brings out moderately conductive (~ 700–1000 Ωm) near vertical features within the very high resistive (> 20,000 Ωm) granite/granite-gneiss basement. Occurrences of these anomalous moderate conductors are corroborated with sensitivity analysis. The alignment of earthquake hypocenters along the resistive–conductive boundary signifies the moderate conductor as basement fault. The conversion of resistivity values to the ratio of seismic P- to S-wave velocity ( v p / v s ) suggests that the moderate conductivity of the fault zone (as compared to the surrounding basement) appears due to the presence of fluid in the fault zone. Geophysical evidences reveal ~ 2.5–3.6 vol% fluid in the fault zone with ~ 1.8–2.6% interconnected porosity, which migrates along the structural boundary and invades the mechanically strong basement to nucleate the brittle failure within it. The present study proposes two mechanisms for the seismicity in the Koyna region. First: the meteoric water circulation due to the loading–unloading of nearby Koyna reservoir acts as potential fluid source for this triggered seismicity, which has also been suggested by previous studies. Second: the fluid circulation due to a deep-seated source. The present MT study brings out a conductive feature below 20 km depth which is thought to be emerged due to the dehydration of amphibole bearing rocks. The fluid generated from dehydration might act as a probable source to the triggered seismicity; since the conductive feature has a linkage to the upper crust. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135386802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract In the tenuous atmospheric bodies of our solar system, space weathering on the celestial surface is an important process for its chemical and physical evolution and ambient environment on timescales of celestial evolution. Space plasma is a dominant energy and material source for space weathering. Plasma irradiation experiment in the laboratory is an effective method for modeling space weathering driven by space plasma. However, comprehensive modeling of plasma space weathering has not yet been conducted because the capabilities of the earlier facilities were not optimized for realistic space weathering; for example, the incident electron and ion were not irradiated in the same condition. Here, we developed a plasma irradiation system, Plasma Irradiation Emulator for Celestial Environments (PIECE) of the solar system bodies, which reproduces plasma space weathering in tenuous atmospheric bodies by the electron and ion irradiations in the same condition. We successfully developed a system with high electron and ion number fluxes of $$sim 10^{13} - 10^{16} {text{ particles cm}}^{{ - {2}}} {text{s}}^{{ - {1}}}$$ ∼1013-1016particles cm-2s-1 at any acceleration energy in the range of 1–30 keV, which leads to a fluence of e.g., $$sim 10^{18} - 10^{21} {text{ particles cm}}^{{ - {2}}} {text{s}}^{{ - {1}}}$$ ∼1018-1021particles cm-2s-1 , with a 1-day irradiation time. This fluence corresponds to a plasma irradiation time of ~ 10 3 –10 6 years on Europa. Graphical Abstract
{"title":"A plasma irradiation system optimized for space weathering of solar system bodies","authors":"Tomoki Kimura, Misako Otsuki, Tomohiro Kitano, Ryo Hoshino, Yusuke Nakauchi, Shunsuke Haganuma, Ryu Haganuma, Tetsuo Haganuma, Fuminori Tsuchiya, Toru Tamagawa, Asami Hayato, Jun Kimura, Naoki Terada, Hideyuki Usui, Masaki N. Nishino, Shoichiro Yokota, Yohei Miyake","doi":"10.1186/s40623-023-01900-w","DOIUrl":"https://doi.org/10.1186/s40623-023-01900-w","url":null,"abstract":"Abstract In the tenuous atmospheric bodies of our solar system, space weathering on the celestial surface is an important process for its chemical and physical evolution and ambient environment on timescales of celestial evolution. Space plasma is a dominant energy and material source for space weathering. Plasma irradiation experiment in the laboratory is an effective method for modeling space weathering driven by space plasma. However, comprehensive modeling of plasma space weathering has not yet been conducted because the capabilities of the earlier facilities were not optimized for realistic space weathering; for example, the incident electron and ion were not irradiated in the same condition. Here, we developed a plasma irradiation system, Plasma Irradiation Emulator for Celestial Environments (PIECE) of the solar system bodies, which reproduces plasma space weathering in tenuous atmospheric bodies by the electron and ion irradiations in the same condition. We successfully developed a system with high electron and ion number fluxes of $$sim 10^{13} - 10^{16} {text{ particles cm}}^{{ - {2}}} {text{s}}^{{ - {1}}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>∼</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>13</mml:mn> </mml:msup> <mml:mo>-</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>16</mml:mn> </mml:msup> <mml:msup> <mml:mrow> <mml:mspace /> <mml:mtext>particles cm</mml:mtext> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mtext>s</mml:mtext> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> at any acceleration energy in the range of 1–30 keV, which leads to a fluence of e.g., $$sim 10^{18} - 10^{21} {text{ particles cm}}^{{ - {2}}} {text{s}}^{{ - {1}}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>∼</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>18</mml:mn> </mml:msup> <mml:mo>-</mml:mo> <mml:msup> <mml:mn>10</mml:mn> <mml:mn>21</mml:mn> </mml:msup> <mml:msup> <mml:mrow> <mml:mspace /> <mml:mtext>particles cm</mml:mtext> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mrow> <mml:mtext>s</mml:mtext> </mml:mrow> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , with a 1-day irradiation time. This fluence corresponds to a plasma irradiation time of ~ 10 3 –10 6 years on Europa. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135421118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Estimates of heat flow can contribute to our understanding of geological structures in plate convergent zones that produce great earthquakes. We applied automated velocity analysis to obtain the accurate seismic profiles needed for precise heat flow estimates using six new seismic profiles acquired during R/V Kaimei KM18-10 voyage in 2018. We calculated heat flow values in the accretionary wedge of the Nankai Trough off the Kii Peninsula, Japan, from the positions of widespread bottom-simulating reflectors (BSRs) in seismic reflection profiles. Calculated conductive heat flow values from the depth of the BSR agree with previous studies where a regional trend is observed from ~ 50 mW/m 2 to < 40 mW/m 2 60 km landward from the deformation front. This trend is caused by thickening of accretionary sediments and the subduction of the Philippines Sea plate. Segments of profiles are marked by anomalous high heat flow values. Such anomalies represent alterations of the shallow crustal thermal structure caused either by a combination of topographic affects, surface erosion of the seafloor, or by fluid flow that transports heat by advection. We interpret heat flow anomalies (~ 100 mW/m 2 ) as indicators of active faulting, which correspond to low seismic velocity zones along faults. Our results also showed relatively high heat flow at the landward end of several survey lines close to the Kii Peninsula, which we interpret to the possible presence of plutonic rocks that underlie the Kii Peninsula and extend offshore and may be the cause of geothermal springs, steep geothermal gradients, and high heat flow. Graphical abstract
{"title":"Identification of active faults and tectonic features through heat flow distribution in the Nankai Trough, Japan, based on high-resolution velocity-estimated bottom-simulating reflector depths","authors":"Shuto Takenouchi, Takeshi Tsuji, Kazuya Shiraishi, Yasuyuki Nakamura, Shuichi Kodaira, Gou Fujie, Kota Mukumoto","doi":"10.1186/s40623-023-01890-9","DOIUrl":"https://doi.org/10.1186/s40623-023-01890-9","url":null,"abstract":"Abstract Estimates of heat flow can contribute to our understanding of geological structures in plate convergent zones that produce great earthquakes. We applied automated velocity analysis to obtain the accurate seismic profiles needed for precise heat flow estimates using six new seismic profiles acquired during R/V Kaimei KM18-10 voyage in 2018. We calculated heat flow values in the accretionary wedge of the Nankai Trough off the Kii Peninsula, Japan, from the positions of widespread bottom-simulating reflectors (BSRs) in seismic reflection profiles. Calculated conductive heat flow values from the depth of the BSR agree with previous studies where a regional trend is observed from ~ 50 mW/m 2 to < 40 mW/m 2 60 km landward from the deformation front. This trend is caused by thickening of accretionary sediments and the subduction of the Philippines Sea plate. Segments of profiles are marked by anomalous high heat flow values. Such anomalies represent alterations of the shallow crustal thermal structure caused either by a combination of topographic affects, surface erosion of the seafloor, or by fluid flow that transports heat by advection. We interpret heat flow anomalies (~ 100 mW/m 2 ) as indicators of active faulting, which correspond to low seismic velocity zones along faults. Our results also showed relatively high heat flow at the landward end of several survey lines close to the Kii Peninsula, which we interpret to the possible presence of plutonic rocks that underlie the Kii Peninsula and extend offshore and may be the cause of geothermal springs, steep geothermal gradients, and high heat flow. Graphical abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135817479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1186/s40623-023-01898-1
Claudia Martinez-Calderon, Tomoka Oonishi, Kazuo Shiokawa, Jyrki K. Manninen, Alexey Oinats, Mitsunori Ozaki
Abstract Quasi-periodic (QP) emissions are a type of magnetospheric ELF/VLF waves characterized by a periodic intensity modulation ranging from tens of seconds to several minutes. Here, we present 63 QP events observed between January 2017 and December 2018. Initially detected at the VLF receiver in Kannuslehto, Finland (KAN, MLAT = 67.7°N, L = 5.5), we proceeded to check whether these events were simultaneously observed at other subauroral receivers. To do so we used the following PWING stations: Athabasca (ATH, MLAT = 61.2°N, L = 4.3, Canada), Gakona (GAK, MLAT = 63.6°N, L = 4.9, Alaska), Husafell (HUS, MLAT = 64.9°N, L = 5.6, Iceland), Istok (IST, MLAT = 60.6°N, L = 6.0, Russia), Kapuskasing (KAP, MLAT = 58.7°N, L = 3.8, Canada), Maimaga (MAM, MLAT = 58.0°N, L = 3.6, Russia), and Nain (NAI, MLAT = 65.8°N, L = 5.0, Canada). We found that: (1) QP emissions detected at KAN had a relatively longer observation time (1–10 h) than other stations, (2) 11.3% of the emissions at KAN were observed showing one-to-one correspondence at IST, and (3) no station other than IST simultaneously observed the same QP emission as KAN. Since KAN and IST are longitudinally separated by 60.6°, we estimate that the maximum meridional spread of conjugated QP emissions should be close to 60° or 4 MLT. Comparison with geomagnetic data shows half of the events are categorized as type II, while the rest are mixed (type I and II). This study is the first to clarify the longitudinal spread of QP waves observed on the ground by analyzing simultaneous observations over 2 years using multiple ground stations. Graphical Abstract
准周期(QP)发射是一种以几十秒到几分钟的周期性强度调制为特征的磁层ELF/VLF波。在这里,我们展示了2017年1月至2018年12月期间观测到的63个QP事件。最初在芬兰Kannuslehto的VLF接收器上检测到(KAN, MLAT = 67.7°N, L = 5.5),我们继续检查这些事件是否同时在其他亚极光接收器上观察到。为此,我们使用了以下PWING站点:Athabasca (ATH, MLAT = 61.2°N, L = 4.3,加拿大)、Gakona (GAK, MLAT = 63.6°N, L = 4.9,阿拉斯加)、Husafell (HUS, MLAT = 64.9°N, L = 5.6,冰岛)、Istok (IST, MLAT = 60.6°N, L = 6.0,俄罗斯)、Kapuskasing (KAP, MLAT = 58.7°N, L = 3.8,加拿大)、Maimaga (MAM, MLAT = 58.0°N, L = 3.6,俄罗斯)和Nain (NAI, MLAT = 65.8°N, L = 5.0,加拿大)。研究发现:(1)KAN观测QP的时间较其他站点长(1 ~ 10 h), (2) KAN观测到的QP排放量与IST观测到的QP排放量有11.3%的对应关系,(3)除了IST以外没有其他站点与KAN同时观测到相同的QP排放量。由于KAN和IST在纵向上相距60.6°,我们估计共轭QP辐射的最大经向传播应该接近60°或4 MLT。与地磁数据的比较表明,一半的事件被归类为II型,而其余的事件则是混合(I型和II型)。本研究首次通过分析多个地面站2年来同时观测的数据,阐明了地面观测到的QP波的纵向传播。图形抽象
{"title":"Characteristics and longitudinal extent of VLF quasi-periodic emissions using multi-point ground-based observations","authors":"Claudia Martinez-Calderon, Tomoka Oonishi, Kazuo Shiokawa, Jyrki K. Manninen, Alexey Oinats, Mitsunori Ozaki","doi":"10.1186/s40623-023-01898-1","DOIUrl":"https://doi.org/10.1186/s40623-023-01898-1","url":null,"abstract":"Abstract Quasi-periodic (QP) emissions are a type of magnetospheric ELF/VLF waves characterized by a periodic intensity modulation ranging from tens of seconds to several minutes. Here, we present 63 QP events observed between January 2017 and December 2018. Initially detected at the VLF receiver in Kannuslehto, Finland (KAN, MLAT = 67.7°N, L = 5.5), we proceeded to check whether these events were simultaneously observed at other subauroral receivers. To do so we used the following PWING stations: Athabasca (ATH, MLAT = 61.2°N, L = 4.3, Canada), Gakona (GAK, MLAT = 63.6°N, L = 4.9, Alaska), Husafell (HUS, MLAT = 64.9°N, L = 5.6, Iceland), Istok (IST, MLAT = 60.6°N, L = 6.0, Russia), Kapuskasing (KAP, MLAT = 58.7°N, L = 3.8, Canada), Maimaga (MAM, MLAT = 58.0°N, L = 3.6, Russia), and Nain (NAI, MLAT = 65.8°N, L = 5.0, Canada). We found that: (1) QP emissions detected at KAN had a relatively longer observation time (1–10 h) than other stations, (2) 11.3% of the emissions at KAN were observed showing one-to-one correspondence at IST, and (3) no station other than IST simultaneously observed the same QP emission as KAN. Since KAN and IST are longitudinally separated by 60.6°, we estimate that the maximum meridional spread of conjugated QP emissions should be close to 60° or 4 MLT. Comparison with geomagnetic data shows half of the events are categorized as type II, while the rest are mixed (type I and II). This study is the first to clarify the longitudinal spread of QP waves observed on the ground by analyzing simultaneous observations over 2 years using multiple ground stations. Graphical Abstract","PeriodicalId":11409,"journal":{"name":"Earth, Planets and Space","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}