Pub Date : 2024-10-03DOI: 10.1177/00131644241281053
Hotaka Maeda
Field-testing is an essential yet often resource-intensive step in the development of high-quality educational assessments. I introduce an innovative method for field-testing newly written exam items by substituting human examinees with artificially intelligent (AI) examinees. The proposed approach is demonstrated using 466 four-option multiple-choice English grammar questions. Pre-trained transformer language models are fine-tuned based on the 2-parameter logistic (2PL) item response model to respond like human test-takers. Each AI examinee is associated with a latent ability θ, and the item text is used to predict response selection probabilities for each of the four response options. For the best modeling approach identified, the overall correlation between the true and predicted 2PL correct response probabilities was .82 (bias = 0.00, root mean squared error = 0.18). The study results were promising, showing that item response data generated from AI can be used to calculate item proportion correct, item discrimination, conduct item calibration with anchors, distractor analysis, dimensionality analysis, and latent trait scoring. However, the proposed approach did not achieve the level of accuracy obtainable with human examinee response data. If further refined, potential resource savings in transitioning from human to AI field-testing could be enormous. AI could shorten the field-testing timeline, prevent examinees from seeing low-quality field-test items in real exams, shorten test lengths, eliminate test security, item exposure, and sample size concerns, reduce overall cost, and help expand the item bank. Example Python code from this study is available on Github: https://github.com/hotakamaeda/ai_field_testing1.
{"title":"Field-Testing Multiple-Choice Questions With AI Examinees: English Grammar Items.","authors":"Hotaka Maeda","doi":"10.1177/00131644241281053","DOIUrl":"10.1177/00131644241281053","url":null,"abstract":"<p><p>Field-testing is an essential yet often resource-intensive step in the development of high-quality educational assessments. I introduce an innovative method for field-testing newly written exam items by substituting human examinees with artificially intelligent (AI) examinees. The proposed approach is demonstrated using 466 four-option multiple-choice English grammar questions. Pre-trained transformer language models are fine-tuned based on the 2-parameter logistic (2PL) item response model to respond like human test-takers. Each AI examinee is associated with a latent ability θ, and the item text is used to predict response selection probabilities for each of the four response options. For the best modeling approach identified, the overall correlation between the true and predicted 2PL correct response probabilities was .82 (bias = 0.00, root mean squared error = 0.18). The study results were promising, showing that item response data generated from AI can be used to calculate item proportion correct, item discrimination, conduct item calibration with anchors, distractor analysis, dimensionality analysis, and latent trait scoring. However, the proposed approach did not achieve the level of accuracy obtainable with human examinee response data. If further refined, potential resource savings in transitioning from human to AI field-testing could be enormous. AI could shorten the field-testing timeline, prevent examinees from seeing low-quality field-test items in real exams, shorten test lengths, eliminate test security, item exposure, and sample size concerns, reduce overall cost, and help expand the item bank. Example Python code from this study is available on Github: https://github.com/hotakamaeda/ai_field_testing1.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644241281053"},"PeriodicalIF":2.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562880/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-12-27DOI: 10.1177/00131644231215771
Tenko Raykov
This note is concerned with the benefits that can result from the use of the maximal reliability and optimal linear combination concepts in educational and psychological research. Within the widely used framework of unidimensional multi-component measuring instruments, it is demonstrated that the linear combination of their components that possesses the highest possible reliability can exhibit a level of consistency considerably exceeding that of their overall sum score that is nearly routinely employed in contemporary empirical research. This optimal linear combination can be particularly useful in circumstances where one or more scale components are associated with relatively large error variances, but their removal from the instrument can lead to a notable loss in validity due to construct underrepresentation. The discussion is illustrated with a numerical example.
{"title":"On the Benefits of Using Maximal Reliability in Educational and Behavioral Research.","authors":"Tenko Raykov","doi":"10.1177/00131644231215771","DOIUrl":"https://doi.org/10.1177/00131644231215771","url":null,"abstract":"<p><p>This note is concerned with the benefits that can result from the use of the maximal reliability and optimal linear combination concepts in educational and psychological research. Within the widely used framework of unidimensional multi-component measuring instruments, it is demonstrated that the linear combination of their components that possesses the highest possible reliability can exhibit a level of consistency considerably exceeding that of their overall sum score that is nearly routinely employed in contemporary empirical research. This optimal linear combination can be particularly useful in circumstances where one or more scale components are associated with relatively large error variances, but their removal from the instrument can lead to a notable loss in validity due to construct underrepresentation. The discussion is illustrated with a numerical example.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"84 5","pages":"994-1011"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142336340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1177/00131644241279882
Shan Huang, Hidetoki Ishii
Despite numerous studies on the magnitude of differential item functioning (DIF), different DIF detection methods often define effect sizes inconsistently and fail to adequately account for testing conditions. To address these limitations, this study introduces the unified M-DIF model, which defines the magnitude of DIF as the difference in item difficulty parameters between reference and focal groups. The M-DIF model can incorporate various DIF detection methods and test conditions to form a quantitative model. The pretrained approach was employed to leverage a sufficiently representative large sample as the training set and ensure the model's generalizability. Once the pretrained model is constructed, it can be directly applied to new data. Specifically, a training dataset comprising 144 combinations of test conditions and 144,000 potential DIF items, each equipped with 29 statistical metrics, was used. We adopt the XGBoost method for modeling. Results show that, based on root mean square error (RMSE) and BIAS metrics, the M-DIF model outperforms the baseline model in both validation sets: under consistent and inconsistent test conditions. Across all 360 combinations of test conditions (144 consistent and 216 inconsistent with the training set), the M-DIF model demonstrates lower RMSE in 357 cases (99.2%), illustrating its robustness. Finally, we provided an empirical example to showcase the practical feasibility of implementing the M-DIF model.
{"title":"Enhancing Precision in Predicting Magnitude of Differential Item Functioning: An M-DIF Pretrained Model Approach.","authors":"Shan Huang, Hidetoki Ishii","doi":"10.1177/00131644241279882","DOIUrl":"10.1177/00131644241279882","url":null,"abstract":"<p><p>Despite numerous studies on the magnitude of differential item functioning (DIF), different DIF detection methods often define effect sizes inconsistently and fail to adequately account for testing conditions. To address these limitations, this study introduces the unified M-DIF model, which defines the magnitude of DIF as the difference in item difficulty parameters between reference and focal groups. The M-DIF model can incorporate various DIF detection methods and test conditions to form a quantitative model. The pretrained approach was employed to leverage a sufficiently representative large sample as the training set and ensure the model's generalizability. Once the pretrained model is constructed, it can be directly applied to new data. Specifically, a training dataset comprising 144 combinations of test conditions and 144,000 potential DIF items, each equipped with 29 statistical metrics, was used. We adopt the XGBoost method for modeling. Results show that, based on root mean square error (RMSE) and BIAS metrics, the M-DIF model outperforms the baseline model in both validation sets: under consistent and inconsistent test conditions. Across all 360 combinations of test conditions (144 consistent and 216 inconsistent with the training set), the M-DIF model demonstrates lower RMSE in 357 cases (99.2%), illustrating its robustness. Finally, we provided an empirical example to showcase the practical feasibility of implementing the M-DIF model.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644241279882"},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1177/00131644241278925
Dongwei Wang, Lisa A Keller
In educational assessment, cut scores are often defined through standard setting by a group of subject matter experts. This study aims to investigate the impact of several factors on classification accuracy using the receiver operating characteristic (ROC) analysis to provide statistical and theoretical evidence when the cut score needs to be refined. Factors examined in the study include the sample distribution relative to the cut score, prevalence of the positive event, and cost ratio. Forty item responses were simulated for examinees of four sample distributions. In addition, the prevalence and cost ratio between false negatives and false positives were manipulated to examine their impacts on classification accuracy. The optimal cut score is identified using the Youden Index J. The results showed that the optimal cut score identified by the evaluation criterion tended to pull the cut score closer to the mode of the proficiency distribution. In addition, depending on the prevalence of the positive event and cost ratio, the optimal cut score shifts accordingly. With the item parameters used to simulate the data and the simulated sample distributions, it was found that when passing the exam is a low-prevalence event in the population, increasing the cut score operationally improves the classification; when passing the exam is a high-prevalence event, then cut score should be reduced to achieve optimality. As the cost ratio increases, the optimal cut score suggested by the evaluation criterion decreases. In three out of the four sample distributions examined in this study, increasing the cut score enhanced the classification, irrespective of the cost ratio when the prevalence in the population is 50%. This study provides statistical evidence when the cut score needs to be refined for policy reasons.
{"title":"Using ROC Analysis to Refine Cut Scores Following a Standard Setting Process.","authors":"Dongwei Wang, Lisa A Keller","doi":"10.1177/00131644241278925","DOIUrl":"10.1177/00131644241278925","url":null,"abstract":"<p><p>In educational assessment, cut scores are often defined through standard setting by a group of subject matter experts. This study aims to investigate the impact of several factors on classification accuracy using the receiver operating characteristic (ROC) analysis to provide statistical and theoretical evidence when the cut score needs to be refined. Factors examined in the study include the sample distribution relative to the cut score, prevalence of the positive event, and cost ratio. Forty item responses were simulated for examinees of four sample distributions. In addition, the prevalence and cost ratio between false negatives and false positives were manipulated to examine their impacts on classification accuracy. The optimal cut score is identified using the Youden Index <i>J</i>. The results showed that the optimal cut score identified by the evaluation criterion tended to pull the cut score closer to the mode of the proficiency distribution. In addition, depending on the prevalence of the positive event and cost ratio, the optimal cut score shifts accordingly. With the item parameters used to simulate the data and the simulated sample distributions, it was found that when passing the exam is a low-prevalence event in the population, increasing the cut score operationally improves the classification; when passing the exam is a high-prevalence event, then cut score should be reduced to achieve optimality. As the cost ratio increases, the optimal cut score suggested by the evaluation criterion decreases. In three out of the four sample distributions examined in this study, increasing the cut score enhanced the classification, irrespective of the cost ratio when the prevalence in the population is 50%. This study provides statistical evidence when the cut score needs to be refined for policy reasons.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644241278925"},"PeriodicalIF":2.1,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562877/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142650503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-06DOI: 10.1177/00131644241274122
Letty Koopman, Johan Braeken
Educational and psychological tests with an ordered item structure enable efficient test administration procedures and allow for intuitive score interpretation and monitoring. The effectiveness of the measurement instrument relies to a large extent on the validated strength of its ordering structure. We define three increasingly strict types of ordering for the ordering structure of a measurement instrument with clustered items: a weak and a strong invariant cluster ordering and a clustered invariant item ordering. Following a nonparametric item response theory (IRT) approach, we proposed a procedure to evaluate the ordering structure of a clustered item set along this three-fold continuum of order invariance. The basis of the procedure is (a) the local assessment of pairwise conditional expectations at both cluster and item level and (b) the global assessment of the number of Guttman errors through new generalizations of the H-coefficient for this item-cluster context. The procedure, readily implemented in R, is illustrated and applied to an empirical example. Suggestions for test practice, further methodological developments, and future research are discussed.
采用有序项目结构的教育和心理测验可以提高测验实施程序的效率,并能对分数进行直观的解释和监控。测量工具的有效性在很大程度上取决于其排序结构的有效强度。我们为具有聚类项目的测量工具的排序结构定义了三种越来越严格的排序类型:弱不变聚类排序和强不变聚类排序,以及聚类不变项目排序。按照非参数项目反应理论(IRT)的方法,我们提出了一种程序,用于根据顺序不变性的三重连续统一体评估聚类项目集的排序结构。该程序的基础是:(a) 在聚类和项目水平上对成对条件期望进行局部评估;(b) 通过对 H 系数进行新的概括,在此项目-聚类背景下对 Guttman 误差的数量进行全局评估。该程序可在 R 中轻松实现,并在一个实证例子中加以说明和应用。此外,还讨论了对测试实践、进一步的方法论发展和未来研究的建议。
{"title":"Investigating the Ordering Structure of Clustered Items Using Nonparametric Item Response Theory","authors":"Letty Koopman, Johan Braeken","doi":"10.1177/00131644241274122","DOIUrl":"https://doi.org/10.1177/00131644241274122","url":null,"abstract":"Educational and psychological tests with an ordered item structure enable efficient test administration procedures and allow for intuitive score interpretation and monitoring. The effectiveness of the measurement instrument relies to a large extent on the validated strength of its ordering structure. We define three increasingly strict types of ordering for the ordering structure of a measurement instrument with clustered items: a weak and a strong invariant cluster ordering and a clustered invariant item ordering. Following a nonparametric item response theory (IRT) approach, we proposed a procedure to evaluate the ordering structure of a clustered item set along this three-fold continuum of order invariance. The basis of the procedure is (a) the local assessment of pairwise conditional expectations at both cluster and item level and (b) the global assessment of the number of Guttman errors through new generalizations of the H-coefficient for this item-cluster context. The procedure, readily implemented in R, is illustrated and applied to an empirical example. Suggestions for test practice, further methodological developments, and future research are discussed.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"108 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1177/00131644241268073
Yan Xia, Xinchang Zhou
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the correlation matrix for a zero-factor model. This study argues that we should also address the sampling variability of eigenvalues obtained from the observed data, such that the results would inform practitioners of the variability of the number of factors across random samples. Thus, this study proposes to revise the parallel analysis to provide the proportion of random samples that suggest k factors (k = 0, 1, 2, . . .) rather than a single suggested number. Simulation results support the use of the proposed strategy, especially for research scenarios with limited sample sizes where sampling fluctuation is concerning.
平行分析法被认为是确定因子分析中因子个数的最准确方法之一。与传统的因子保留方法(如凯撒法则)相比,平行分析法的一大优势在于它能解决从特征矩阵(代表零因子模型的相关矩阵)中获得的特征值的抽样变异性问题。本研究认为,我们还应该解决从观测数据中获得的特征值的抽样变异性问题,从而使研究结果能够告知从业人员不同随机样本中因子数量的变异性。因此,本研究建议修改并行分析,以提供建议 k 个因子(k = 0、1、2、...)的随机样本比例,而不是单一的建议因子数。模拟结果支持使用所建议的策略,尤其是在样本量有限、抽样波动令人担忧的研究场景中。
{"title":"Improving the Use of Parallel Analysis by Accounting for Sampling Variability of the Observed Correlation Matrix.","authors":"Yan Xia, Xinchang Zhou","doi":"10.1177/00131644241268073","DOIUrl":"10.1177/00131644241268073","url":null,"abstract":"<p><p>Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the correlation matrix for a zero-factor model. This study argues that we should also address the sampling variability of eigenvalues obtained from the observed data, such that the results would inform practitioners of the variability of the number of factors across random samples. Thus, this study proposes to revise the parallel analysis to provide the proportion of random samples that suggest <i>k</i> factors (<i>k</i> = 0, 1, 2, . . .) rather than a single suggested number. Simulation results support the use of the proposed strategy, especially for research scenarios with limited sample sizes where sampling fluctuation is concerning.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644241268073"},"PeriodicalIF":2.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-07DOI: 10.1177/00131644241268128
Kylie Gorney, Sandip Sinharay
Test-takers, policymakers, teachers, and institutions are increasingly demanding that testing programs provide more detailed feedback regarding test performance. As a result, there has been a growing interest in the reporting of subscores that potentially provide such detailed feedback. Haberman developed a method based on classical test theory for determining whether a subscore has added value over the total score. Sinharay conducted a detailed study using both real and simulated data and concluded that it is not common for subscores to have added value according to Haberman’s criterion. However, Sinharay almost exclusively dealt with data from tests with only dichotomous items. In this article, we show that it is more common for subscores to have added value in tests with polytomous items.
{"title":"Added Value of Subscores for Tests With Polytomous Items","authors":"Kylie Gorney, Sandip Sinharay","doi":"10.1177/00131644241268128","DOIUrl":"https://doi.org/10.1177/00131644241268128","url":null,"abstract":"Test-takers, policymakers, teachers, and institutions are increasingly demanding that testing programs provide more detailed feedback regarding test performance. As a result, there has been a growing interest in the reporting of subscores that potentially provide such detailed feedback. Haberman developed a method based on classical test theory for determining whether a subscore has added value over the total score. Sinharay conducted a detailed study using both real and simulated data and concluded that it is not common for subscores to have added value according to Haberman’s criterion. However, Sinharay almost exclusively dealt with data from tests with only dichotomous items. In this article, we show that it is more common for subscores to have added value in tests with polytomous items.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"3 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1177/00131644241262964
Yongtian Cheng, K. V. Petrides
Psychologists are emphasizing the importance of predictive conclusions. Machine learning methods, such as supervised neural networks, have been used in psychological studies as they naturally fit prediction tasks. However, we are concerned about whether neural networks fitted with random datasets (i.e., datasets where there is no relationship between ordinal independent variables and continuous or binary-dependent variables) can provide an acceptable level of predictive performance from a psychologist’s perspective. Through a Monte Carlo simulation study, we found that this kind of erroneous conclusion is not likely to be drawn as long as the sample size is larger than 50 with continuous-dependent variables. However, when the dependent variable is binary, the minimum sample size is 500 when the criteria are balanced accuracy ≥ .6 or balanced accuracy ≥ .65, and the minimum sample size is 200 when the criterion is balanced accuracy ≥ .7 for a decision error less than .05. In the case where area under the curve (AUC) is used as a metric, a sample size of 100, 200, and 500 is necessary when the minimum acceptable performance level is set at AUC ≥ .7, AUC ≥ .65, and AUC ≥ .6, respectively. The results found by this study can be used for sample size planning for psychologists who wish to apply neural networks for a qualitatively reliable conclusion. Further directions and limitations of the study are also discussed.
{"title":"Evaluating The Predictive Reliability of Neural Networks in Psychological Research With Random Datasets","authors":"Yongtian Cheng, K. V. Petrides","doi":"10.1177/00131644241262964","DOIUrl":"https://doi.org/10.1177/00131644241262964","url":null,"abstract":"Psychologists are emphasizing the importance of predictive conclusions. Machine learning methods, such as supervised neural networks, have been used in psychological studies as they naturally fit prediction tasks. However, we are concerned about whether neural networks fitted with random datasets (i.e., datasets where there is no relationship between ordinal independent variables and continuous or binary-dependent variables) can provide an acceptable level of predictive performance from a psychologist’s perspective. Through a Monte Carlo simulation study, we found that this kind of erroneous conclusion is not likely to be drawn as long as the sample size is larger than 50 with continuous-dependent variables. However, when the dependent variable is binary, the minimum sample size is 500 when the criteria are balanced accuracy ≥ .6 or balanced accuracy ≥ .65, and the minimum sample size is 200 when the criterion is balanced accuracy ≥ .7 for a decision error less than .05. In the case where area under the curve (AUC) is used as a metric, a sample size of 100, 200, and 500 is necessary when the minimum acceptable performance level is set at AUC ≥ .7, AUC ≥ .65, and AUC ≥ .6, respectively. The results found by this study can be used for sample size planning for psychologists who wish to apply neural networks for a qualitatively reliable conclusion. Further directions and limitations of the study are also discussed.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"39 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1177/00131644241256626
Tenko Raykov
A latent variable modeling procedure for studying factorial invariance and differential item functioning for multi-component measuring instruments with nominal items is discussed. The method is based on a multiple testing approach utilizing the false discovery rate concept and likelihood ratio tests. The procedure complements the Revuelta, Franco-Martinez, and Ximenez approach to factorial invariance examination, and permits localization of individual invariance violations. The outlined method does not require the selection of a reference observed variable and is illustrated with empirical data.
{"title":"Studying Factorial Invariance With Nominal Items: A Note on a Latent Variable Modeling Procedure","authors":"Tenko Raykov","doi":"10.1177/00131644241256626","DOIUrl":"https://doi.org/10.1177/00131644241256626","url":null,"abstract":"A latent variable modeling procedure for studying factorial invariance and differential item functioning for multi-component measuring instruments with nominal items is discussed. The method is based on a multiple testing approach utilizing the false discovery rate concept and likelihood ratio tests. The procedure complements the Revuelta, Franco-Martinez, and Ximenez approach to factorial invariance examination, and permits localization of individual invariance violations. The outlined method does not require the selection of a reference observed variable and is illustrated with empirical data.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"33 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1177/00131644241259026
Tenko Raykov, Martin Pusic
A procedure is outlined for point and interval estimation of location parameters associated with polytomous items, or raters assessing studied subjects or cases, which follow the rating scale model. The method is developed within the framework of latent variable modeling, and is readily applied in empirical research using popular software. The approach permits testing the goodness of fit of this widely used model, which represents a rather parsimonious item response theory model as a means of description and explanation of an analyzed data set. The procedure allows examination of important aspects of the functioning of measuring instruments with polytomous ordinal items, which may also constitute person assessments furnished by teachers, counselors, judges, raters, or clinicians. The described method is illustrated using an empirical example.
{"title":"A Note on Evaluation of Polytomous Item Locations With the Rating Scale Model and Testing Its Fit","authors":"Tenko Raykov, Martin Pusic","doi":"10.1177/00131644241259026","DOIUrl":"https://doi.org/10.1177/00131644241259026","url":null,"abstract":"A procedure is outlined for point and interval estimation of location parameters associated with polytomous items, or raters assessing studied subjects or cases, which follow the rating scale model. The method is developed within the framework of latent variable modeling, and is readily applied in empirical research using popular software. The approach permits testing the goodness of fit of this widely used model, which represents a rather parsimonious item response theory model as a means of description and explanation of an analyzed data set. The procedure allows examination of important aspects of the functioning of measuring instruments with polytomous ordinal items, which may also constitute person assessments furnished by teachers, counselors, judges, raters, or clinicians. The described method is illustrated using an empirical example.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"18 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}