Francesca Ruggieri, Katharina Jonas, Manuela Ferracin, Michael Dengler, Vanessa Jӓger, Martin Pichler
Cancer cells reprogram their metabolism to support their growth. Since the discovery of the Warburg effect, several other metabolic alterations and metabolites have been described in cancer cells, including lactate, glutamine, and lipid metabolism reprogramming. Together these alterations provide rapidly dividing tumor cells with metabolic intermediates needed for nucleotide, protein, and fatty acid biosynthesis. MicroRNAs are a class of small non-coding RNAs involved in the regulation of virtually all biological pathways. Altered microRNA expression patterns are associated with the onset and development of several diseases, including cancer. Tumor suppressor microRNAs targeting molecules involved in tumor metabolism are frequently downregulated in cancers. Therefore, microRNAs can serve as potential tumor biomarkers and also represent interesting therapeutic targets. This review summarizes recent findings about microRNAs involved in the regulation of tumor metabolism.
{"title":"MicroRNAs as regulators of tumor metabolism.","authors":"Francesca Ruggieri, Katharina Jonas, Manuela Ferracin, Michael Dengler, Vanessa Jӓger, Martin Pichler","doi":"10.1530/ERC-22-0267","DOIUrl":"https://doi.org/10.1530/ERC-22-0267","url":null,"abstract":"<p><p>Cancer cells reprogram their metabolism to support their growth. Since the discovery of the Warburg effect, several other metabolic alterations and metabolites have been described in cancer cells, including lactate, glutamine, and lipid metabolism reprogramming. Together these alterations provide rapidly dividing tumor cells with metabolic intermediates needed for nucleotide, protein, and fatty acid biosynthesis. MicroRNAs are a class of small non-coding RNAs involved in the regulation of virtually all biological pathways. Altered microRNA expression patterns are associated with the onset and development of several diseases, including cancer. Tumor suppressor microRNAs targeting molecules involved in tumor metabolism are frequently downregulated in cancers. Therefore, microRNAs can serve as potential tumor biomarkers and also represent interesting therapeutic targets. This review summarizes recent findings about microRNAs involved in the regulation of tumor metabolism.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 8","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9842299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anlotinib-mediated angiogenic remodeling was delineated in various tumors. Meanwhile, we previously showed that anlotinib inhibited tumor angiogenesis in anaplastic thyroid cancer (ATC). However, the potential role of anlotinib on cell lethality in ATC remains an enigma. Herein, we found that anlotinib inhibited the viability, proliferation, and migration of KHM-5M, C643, and 8505C cells in a dose-dependently manner. Under anlotinib treatment, PANoptosis (pyroptosis, apoptosis, and necroptosis) markers were not changed; however, ferroptosis targets (transferrin, HO-1, FTH1, FTL, and GPX4) were significantly downregulated. ROS levels also increased in a concentration-dependent manner after anlotinib treatment in KHM-5M, C643, and 8505C cells. In addition, protective autophagy was activated in response to anlotinib, and autophagic blockade potentiated anlotinib-mediated ferroptosis and antitumor effects in vitro and in vivo. Our new discovery identified autophagy-ferroptosis signaling pathway which provides mechanistic insight into anlotinib-mediated cell death, and synergistic combination therapy may help develop new ATC treatment strategies.
{"title":"Autophagic blockade potentiates anlotinib-mediated ferroptosis in anaplastic thyroid cancer.","authors":"Jiajun Wu, Juyong Liang, Ruiqi Liu, Tian Lv, Kangyin Fu, Liehao Jiang, Wenli Ma, Yan Pan, Zhuo Tan, Qing Liu, Weihua Qiu, Minghua Ge, Jiafeng Wang","doi":"10.1530/ERC-23-0036","DOIUrl":"10.1530/ERC-23-0036","url":null,"abstract":"<p><p>Anlotinib-mediated angiogenic remodeling was delineated in various tumors. Meanwhile, we previously showed that anlotinib inhibited tumor angiogenesis in anaplastic thyroid cancer (ATC). However, the potential role of anlotinib on cell lethality in ATC remains an enigma. Herein, we found that anlotinib inhibited the viability, proliferation, and migration of KHM-5M, C643, and 8505C cells in a dose-dependently manner. Under anlotinib treatment, PANoptosis (pyroptosis, apoptosis, and necroptosis) markers were not changed; however, ferroptosis targets (transferrin, HO-1, FTH1, FTL, and GPX4) were significantly downregulated. ROS levels also increased in a concentration-dependent manner after anlotinib treatment in KHM-5M, C643, and 8505C cells. In addition, protective autophagy was activated in response to anlotinib, and autophagic blockade potentiated anlotinib-mediated ferroptosis and antitumor effects in vitro and in vivo. Our new discovery identified autophagy-ferroptosis signaling pathway which provides mechanistic insight into anlotinib-mediated cell death, and synergistic combination therapy may help develop new ATC treatment strategies.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10074036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonia M Abuzakhm, Vineeth Sukrithan, Briant Fruth, Rui Qin, Jonathan Strosberg, Timothy J Hobday, Thomas Semrad, Diane Reidy Lagunes, Hedy Lee Kindler, George P Kim, Jennifer J Knox, Andreas Kaubisch, Miguel Villalona-Calero, Helen Chen, Charles Erlichman, Manisha H Shah
We assessed the efficacy and safety of combining bevacizumab with temsirolimus in patients with advanced extra-pancreatic neuroendocrine tumors. This NCI-sponsored multicenter, open-label, phase II study (NCT01010126) enrolled patients with advanced, recurrent, or metastatic extra-pancreatic neuroendocrine tumors. All patients were treated with temsirolimus and bevacizumab until disease progression or unacceptable toxicity. Temsirolimus 25 mg was administered intravenously on days 1, 8, 15, and 22, and bevacizumab 10 mg/kg intravenously on days 1 and 15 of a 4-week cycle. Discontinuation of temsirolimus or bevacizumab did not require discontinuation of the other agent. The primary endpoints were objective response rate and 6-month progression-free survival rate. Fifty-nine patients were enrolled in this study, and 54 were evaluable for efficacy and adverse events. While median progression-free survival was 7.1 months, median duration of treatment with temsirolimus was 3.9 months, and with bevacizumab was 3.5 months. The objective response rate of combination therapy was 2%, and 6-month progression-free survival was 48%. The most frequently reported grade 3-4 adverse events included fatigue (13%), hypertension (13%), and bleeding (13%). Close to 54% of patients discontinued treatment due to adverse events, refusal of further treatment, or treatment delays. Three deaths occurred on study, with 2 treatment-related fatal bowel perforations. Given the minimal efficacy and increased toxicity seen with the combination of bevacizumab and temsirolimus, we do not recommend the use of this regimen in patients with advanced extra-pancreatic neuroendocrine tumors.
{"title":"A phase II study of bevacizumab and temsirolimus in advanced extra-pancreatic neuroendocrine tumors.","authors":"Sonia M Abuzakhm, Vineeth Sukrithan, Briant Fruth, Rui Qin, Jonathan Strosberg, Timothy J Hobday, Thomas Semrad, Diane Reidy Lagunes, Hedy Lee Kindler, George P Kim, Jennifer J Knox, Andreas Kaubisch, Miguel Villalona-Calero, Helen Chen, Charles Erlichman, Manisha H Shah","doi":"10.1530/ERC-22-0301","DOIUrl":"https://doi.org/10.1530/ERC-22-0301","url":null,"abstract":"<p><p>We assessed the efficacy and safety of combining bevacizumab with temsirolimus in patients with advanced extra-pancreatic neuroendocrine tumors. This NCI-sponsored multicenter, open-label, phase II study (NCT01010126) enrolled patients with advanced, recurrent, or metastatic extra-pancreatic neuroendocrine tumors. All patients were treated with temsirolimus and bevacizumab until disease progression or unacceptable toxicity. Temsirolimus 25 mg was administered intravenously on days 1, 8, 15, and 22, and bevacizumab 10 mg/kg intravenously on days 1 and 15 of a 4-week cycle. Discontinuation of temsirolimus or bevacizumab did not require discontinuation of the other agent. The primary endpoints were objective response rate and 6-month progression-free survival rate. Fifty-nine patients were enrolled in this study, and 54 were evaluable for efficacy and adverse events. While median progression-free survival was 7.1 months, median duration of treatment with temsirolimus was 3.9 months, and with bevacizumab was 3.5 months. The objective response rate of combination therapy was 2%, and 6-month progression-free survival was 48%. The most frequently reported grade 3-4 adverse events included fatigue (13%), hypertension (13%), and bleeding (13%). Close to 54% of patients discontinued treatment due to adverse events, refusal of further treatment, or treatment delays. Three deaths occurred on study, with 2 treatment-related fatal bowel perforations. Given the minimal efficacy and increased toxicity seen with the combination of bevacizumab and temsirolimus, we do not recommend the use of this regimen in patients with advanced extra-pancreatic neuroendocrine tumors.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10222351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28Print Date: 2023-09-01DOI: 10.1530/ERC-23-0110
Myungwoo Nam, Woojung Yang, Hye Sung Kim, Jewel Park, Gahee Park, Sukjun Kim, Sanghoon Song, Chan-Young Ock, Victor G Wang, Jeffrey H Chuang, Young Kwang Chae
Standard-of-care treatment options provide an excellent prognosis for papillary thyroid cancers (PTCs); however, approximately 10% of cases are advanced PTCs, resulting in less than 50% 5-year survival rates. Understanding the tumor microenvironment is essential for understanding cancer progression and investigating potential biomarkers for treatment, such as immunotherapy. Our study focused on tumor-infiltrating lymphocytes (TILs), which are the main effectors of antitumor immunity and related to the mechanism of immunotherapy. Using an artificial intelligence model, we analyzed the density of intratumoral and peritumoral TILs in the pathologic slides of The Cancer Genome Atlas PTC cohort. Tumors were classified into three immune phenotypes (IPs) based on the spatial distribution of TILs: immune-desert (48%), immune-excluded (34%), and inflamed (18%). Immune-desert IP was mostly characterized by RAS mutations, high thyroid differentiation score, and low antitumor immune response. Immune-excluded IP predominantly consisted of BRAF V600E-mutated tumors and had a higher rate of lymph node metastasis. Inflamed IP was characterized by a high antitumor immune response, as demonstrated by a high cytolytic score, immune-related cell infiltrations, expression of immunomodulatory molecules (including immunotherapy target molecules), and enrichment of immune-related pathways. This study is the first to investigate IP classification using TILs in PTC through a tissue-based approach. Each IP had unique immune and genomic profiles. Further studies are warranted to assess the predictive value of IP classification in advanced PTC patients treated with immunotherapy.
{"title":"Papillary thyroid cancer immune phenotypes via tumor-infiltrating lymphocyte spatial analysis.","authors":"Myungwoo Nam, Woojung Yang, Hye Sung Kim, Jewel Park, Gahee Park, Sukjun Kim, Sanghoon Song, Chan-Young Ock, Victor G Wang, Jeffrey H Chuang, Young Kwang Chae","doi":"10.1530/ERC-23-0110","DOIUrl":"10.1530/ERC-23-0110","url":null,"abstract":"<p><p>Standard-of-care treatment options provide an excellent prognosis for papillary thyroid cancers (PTCs); however, approximately 10% of cases are advanced PTCs, resulting in less than 50% 5-year survival rates. Understanding the tumor microenvironment is essential for understanding cancer progression and investigating potential biomarkers for treatment, such as immunotherapy. Our study focused on tumor-infiltrating lymphocytes (TILs), which are the main effectors of antitumor immunity and related to the mechanism of immunotherapy. Using an artificial intelligence model, we analyzed the density of intratumoral and peritumoral TILs in the pathologic slides of The Cancer Genome Atlas PTC cohort. Tumors were classified into three immune phenotypes (IPs) based on the spatial distribution of TILs: immune-desert (48%), immune-excluded (34%), and inflamed (18%). Immune-desert IP was mostly characterized by RAS mutations, high thyroid differentiation score, and low antitumor immune response. Immune-excluded IP predominantly consisted of BRAF V600E-mutated tumors and had a higher rate of lymph node metastasis. Inflamed IP was characterized by a high antitumor immune response, as demonstrated by a high cytolytic score, immune-related cell infiltrations, expression of immunomodulatory molecules (including immunotherapy target molecules), and enrichment of immune-related pathways. This study is the first to investigate IP classification using TILs in PTC through a tissue-based approach. Each IP had unique immune and genomic profiles. Further studies are warranted to assess the predictive value of IP classification in advanced PTC patients treated with immunotherapy.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9898192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26Print Date: 2023-09-01DOI: 10.1530/ERC-23-0011
Nidhi Singh, Hannelore V Heemers
Prostate cancer (CaP) remains the second leading cause of cancer-related mortality in American men. Systemic treatments for metastatic CaP, which causes the majority of deaths, include androgen deprivation therapy and chemotherapy. These treatments induce remissions but do not cure CaP. Novel and functionally diverse therapeutic targets that control the cell biology that drives aggressive CaP progression are needed to overcome treatment resistance. Because signal transduction that mediates CaP cell behavior is tightly regulated by phosphorylation, kinases have attracted interest as alternative targets for CaP treatments. Here, we examine emerging evidence from recent NextGen sequencing and (phospho) proteomics analyses on clinical CaP specimens that were obtained during lethal disease progression to determine the role of deregulated kinase action in CaP growth, treatment resistance, and recurrence. We provide an overview of kinases that are impacted by gene amplification, gene deletion or somatic mutations during the progression from localized treatment-naïve CaP to metastatic castration-resistant CaP or neuroendocrine CaP, and the potential impact of such alterations on aggressive CaP behavior and treatment efficacy. Furthermore, we review knowledge on alterations in the phosphoproteome that occur during the progression to treatment-resistant CaP, the molecular mechanisms in the control of these changes, and the signal transduction associated with them. Finally, we discuss kinase inhibitors under evaluation in CaP clinical trials and the potential, challenges, and limitations to moving knowledge on the CaP kinome forward to new therapeutic strategies.
{"title":"Deregulated kinase action in prostate cancer: molecular basis and therapeutic implications.","authors":"Nidhi Singh, Hannelore V Heemers","doi":"10.1530/ERC-23-0011","DOIUrl":"10.1530/ERC-23-0011","url":null,"abstract":"<p><p>Prostate cancer (CaP) remains the second leading cause of cancer-related mortality in American men. Systemic treatments for metastatic CaP, which causes the majority of deaths, include androgen deprivation therapy and chemotherapy. These treatments induce remissions but do not cure CaP. Novel and functionally diverse therapeutic targets that control the cell biology that drives aggressive CaP progression are needed to overcome treatment resistance. Because signal transduction that mediates CaP cell behavior is tightly regulated by phosphorylation, kinases have attracted interest as alternative targets for CaP treatments. Here, we examine emerging evidence from recent NextGen sequencing and (phospho) proteomics analyses on clinical CaP specimens that were obtained during lethal disease progression to determine the role of deregulated kinase action in CaP growth, treatment resistance, and recurrence. We provide an overview of kinases that are impacted by gene amplification, gene deletion or somatic mutations during the progression from localized treatment-naïve CaP to metastatic castration-resistant CaP or neuroendocrine CaP, and the potential impact of such alterations on aggressive CaP behavior and treatment efficacy. Furthermore, we review knowledge on alterations in the phosphoproteome that occur during the progression to treatment-resistant CaP, the molecular mechanisms in the control of these changes, and the signal transduction associated with them. Finally, we discuss kinase inhibitors under evaluation in CaP clinical trials and the potential, challenges, and limitations to moving knowledge on the CaP kinome forward to new therapeutic strategies.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 9","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563173/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10645906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26Print Date: 2023-09-01DOI: 10.1530/ERC-23-0034
Christine Sempoux, Gunter Klöppel
Nesidioblastoma and nesidioblastosis were terms given to neoplastic and non-neoplastic lesions of the pancreas associated with pancreatogenous hyperinsulinaemic hypoglycaemia. While nesidioblastoma was rapidly replaced by islet cell tumour, nesidioblastosis, defined as the proliferation of islet cells budding off from pancreatic ducts, was the diagnostic term associated with congenital hyperinsulinism of infancy (CHI) and adult non-neoplastic hyperinsulinaemic hypoglycaemia (ANHH). When it was shown that nesidioblastosis was not specific for CHI or ANHH, it was no longer applied to CHI but kept for the morphological diagnosis of ANHH. In severe CHI cases, a diffuse form with hypertrophic ß-cells in all islets can be distinguished from a focal form with hyperactive ß-cells changes in a limited adenomatoid hyperplastic area. Genetically, mutations were identified in several ß-cell genes involved in insulin secretion. Most common are mutations in the ABCC8 or KCNJ11 genes, solely affected in the diffuse form and associated with a focal maternal allelic loss on 11p15.5 in the focal form. Focal CHI can be localized by 18F-DOPA-PET and is thus curable by targeted resection. Diffuse CHI that fails medical treatment requires subtotal pancreatectomy. In ANHH, an idiopathic form can be distinguished from a form associated with gastric bypass, in whom GLP1-induced stimulation of the ß-cells is discussed. While the ß-cells in idiopathic ANHH are diffusely affected and are either hypertrophic or show only little changes, it is controversial whether there is a ß-cell increase or ß-cell hyperactivity in patients with gastric bypass. Recognizing morphological signs of ß-cell hyperactivity needs a good knowledge of the non-neoplastic endocrine pancreas across all ages.
{"title":"Pathological features in non-neoplastic congenital and adult hyperinsulinism: from nesidioblastosis to current terminology and understanding.","authors":"Christine Sempoux, Gunter Klöppel","doi":"10.1530/ERC-23-0034","DOIUrl":"10.1530/ERC-23-0034","url":null,"abstract":"<p><p>Nesidioblastoma and nesidioblastosis were terms given to neoplastic and non-neoplastic lesions of the pancreas associated with pancreatogenous hyperinsulinaemic hypoglycaemia. While nesidioblastoma was rapidly replaced by islet cell tumour, nesidioblastosis, defined as the proliferation of islet cells budding off from pancreatic ducts, was the diagnostic term associated with congenital hyperinsulinism of infancy (CHI) and adult non-neoplastic hyperinsulinaemic hypoglycaemia (ANHH). When it was shown that nesidioblastosis was not specific for CHI or ANHH, it was no longer applied to CHI but kept for the morphological diagnosis of ANHH. In severe CHI cases, a diffuse form with hypertrophic ß-cells in all islets can be distinguished from a focal form with hyperactive ß-cells changes in a limited adenomatoid hyperplastic area. Genetically, mutations were identified in several ß-cell genes involved in insulin secretion. Most common are mutations in the ABCC8 or KCNJ11 genes, solely affected in the diffuse form and associated with a focal maternal allelic loss on 11p15.5 in the focal form. Focal CHI can be localized by 18F-DOPA-PET and is thus curable by targeted resection. Diffuse CHI that fails medical treatment requires subtotal pancreatectomy. In ANHH, an idiopathic form can be distinguished from a form associated with gastric bypass, in whom GLP1-induced stimulation of the ß-cells is discussed. While the ß-cells in idiopathic ANHH are diffusely affected and are either hypertrophic or show only little changes, it is controversial whether there is a ß-cell increase or ß-cell hyperactivity in patients with gastric bypass. Recognizing morphological signs of ß-cell hyperactivity needs a good knowledge of the non-neoplastic endocrine pancreas across all ages.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9871212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radioiodine treatment is a fundamental therapy for patients with papillary thyroid cancer (PTC). Sodium/iodide symporter (NIS)-mediated iodine uptake is a prerequisite for the efficacy of radioiodine therapy. Interleukin-6 (IL-6) is a pro-tumor cytokine, but its regulation of NIS expression in PTC has not been elucidated. In this study, we found that IL-6 enhanced the proliferation ability of PTC cells. Moreover, the negative association between IL-6 and NIS expression in thyroid cancer tissues was demonstrated. IL-6 downregulated thyroid-specific genes such as NIS, thyroid peroxidase, and thyroid-stimulating hormone receptor and thyroid-specific transcription factors including thyroid transcription factor-1 (TTF-1) and paired box protein-8 (PAX-8). The inhibitory effects of IL-6 on NIS expression were alleviated by mitogen-activated protein kinase and Janus kinase inhibitors. Depletion of c-Jun or STAT3 also rescued IL-6-induced NIS downregulation, with STAT3 depletion exerting a stronger effect. TTF-1 protein expression was also restored by depleting c-Jun or STAT3. STAT3 depletion, but not c-Jun depletion, alleviated the inhibitory effect of IL-6 on PAX-8 expression. Moreover, the downregulation of NIS by IL-6 was rescued by overexpressing TTF-1 and PAX-8. Tocilizumab, an IL-6 receptor blocker, did not have any cytostatic activity in PTC cells, and it also failed to induce redifferentiation in vitro. However, we found that the drug blocked the inhibitory effect of IL-6 on NIS expression. In summary, IL-6 inhibits NIS transcription in PTC cells by activating mitogen-activated protein kinase and Janus kinase signaling.
{"title":"Interleukin-6 promotes the dedifferentiation of papillary thyroid cancer cells.","authors":"Guo-Qiang Zhang, Chuang Xi, Chen-Tian Shen, Hong-Jun Song, Quan-Yong Luo, Zhong-Ling Qiu","doi":"10.1530/ERC-23-0130","DOIUrl":"10.1530/ERC-23-0130","url":null,"abstract":"<p><p>Radioiodine treatment is a fundamental therapy for patients with papillary thyroid cancer (PTC). Sodium/iodide symporter (NIS)-mediated iodine uptake is a prerequisite for the efficacy of radioiodine therapy. Interleukin-6 (IL-6) is a pro-tumor cytokine, but its regulation of NIS expression in PTC has not been elucidated. In this study, we found that IL-6 enhanced the proliferation ability of PTC cells. Moreover, the negative association between IL-6 and NIS expression in thyroid cancer tissues was demonstrated. IL-6 downregulated thyroid-specific genes such as NIS, thyroid peroxidase, and thyroid-stimulating hormone receptor and thyroid-specific transcription factors including thyroid transcription factor-1 (TTF-1) and paired box protein-8 (PAX-8). The inhibitory effects of IL-6 on NIS expression were alleviated by mitogen-activated protein kinase and Janus kinase inhibitors. Depletion of c-Jun or STAT3 also rescued IL-6-induced NIS downregulation, with STAT3 depletion exerting a stronger effect. TTF-1 protein expression was also restored by depleting c-Jun or STAT3. STAT3 depletion, but not c-Jun depletion, alleviated the inhibitory effect of IL-6 on PAX-8 expression. Moreover, the downregulation of NIS by IL-6 was rescued by overexpressing TTF-1 and PAX-8. Tocilizumab, an IL-6 receptor blocker, did not have any cytostatic activity in PTC cells, and it also failed to induce redifferentiation in vitro. However, we found that the drug blocked the inhibitory effect of IL-6 on NIS expression. In summary, IL-6 inhibits NIS transcription in PTC cells by activating mitogen-activated protein kinase and Janus kinase signaling.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9880964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-25Print Date: 2023-09-01DOI: 10.1530/ERC-22-0360
Kristina V Wells, Margaret L Krackeler, Maitreyee K Jathal, Mamta Parikh, Paramita M Ghosh, J Kent Leach, Damian C Genetos
Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.
{"title":"Prostate cancer and bone: clinical presentation and molecular mechanisms.","authors":"Kristina V Wells, Margaret L Krackeler, Maitreyee K Jathal, Mamta Parikh, Paramita M Ghosh, J Kent Leach, Damian C Genetos","doi":"10.1530/ERC-22-0360","DOIUrl":"10.1530/ERC-22-0360","url":null,"abstract":"<p><p>Prostate cancer (PCa) is an increasingly prevalent health problem in the developed world. Effective treatment options exist for localized PCa, but metastatic PCa has fewer treatment options and shorter patient survival. PCa and bone health are strongly entwined, as PCa commonly metastasizes to the skeleton. Since androgen receptor signaling drives PCa growth, androgen-deprivation therapy whose sequelae reduce bone strength constitutes the foundation of advanced PCa treatment. The homeostatic process of bone remodeling - produced by concerted actions of bone-building osteoblasts, bone-resorbing osteoclasts, and regulatory osteocytes - may also be subverted by PCa to promote metastatic growth. Mechanisms driving skeletal development and homeostasis, such as regional hypoxia or matrix-embedded growth factors, may be subjugated by bone metastatic PCa. In this way, the biology that sustains bone is integrated into adaptive mechanisms for the growth and survival of PCa in bone. Skeletally metastatic PCa is difficult to investigate due to the entwined nature of bone biology and cancer biology. Herein, we survey PCa from origin, presentation, and clinical treatment to bone composition and structure and molecular mediators of PCa metastasis to bone. Our intent is to quickly yet effectively reduce barriers to team science across multiple disciplines that focuses on PCa and metastatic bone disease. We also introduce concepts of tissue engineering as a novel perspective to model, capture, and study complex cancer-microenvironment interactions.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 9","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9934932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18Print Date: 2023-08-01DOI: 10.1530/ERC-23-0032
Bence Sipos, Gunter Klöppel
Glucagon cell hyperplasia and neoplasia (GCHN) is the name of an endocrine receptor disease, whose morphology was first described in 2006. Three years later, this rare disease was found to be to be caused by an inactivating mutation of the glucagon receptor (GCGR) gene. Functionally, the genetic defect mainly affects glucagon signaling in the liver with changes in the metabolism of glycogen, fatty acids and amino acids. Recent results of several studies in GCGR knockout mice suggested that elevated serum amino acid levels probably stimulate glucagon cell hyperplasia with subsequent transformation into glucagon cell neoplasia. This process leads over time to numerous small and some large pancreatic neuroendocrine tumors which are potentially malignant. Despite high glucagon serum levels, the patients develop no glucagonoma syndrome. In 2015, GCHN was identified as an autosomal recessive hereditary disorder.
{"title":"Glucagon cell hyperplasia and neoplasia: a recently recognized endocrine receptor disease.","authors":"Bence Sipos, Gunter Klöppel","doi":"10.1530/ERC-23-0032","DOIUrl":"10.1530/ERC-23-0032","url":null,"abstract":"<p><p>Glucagon cell hyperplasia and neoplasia (GCHN) is the name of an endocrine receptor disease, whose morphology was first described in 2006. Three years later, this rare disease was found to be to be caused by an inactivating mutation of the glucagon receptor (GCGR) gene. Functionally, the genetic defect mainly affects glucagon signaling in the liver with changes in the metabolism of glycogen, fatty acids and amino acids. Recent results of several studies in GCGR knockout mice suggested that elevated serum amino acid levels probably stimulate glucagon cell hyperplasia with subsequent transformation into glucagon cell neoplasia. This process leads over time to numerous small and some large pancreatic neuroendocrine tumors which are potentially malignant. Despite high glucagon serum levels, the patients develop no glucagonoma syndrome. In 2015, GCHN was identified as an autosomal recessive hereditary disorder.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 8","pages":""},"PeriodicalIF":3.9,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9851958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-11Print Date: 2023-08-01DOI: 10.1530/ERC-22-0206
Jennifer R Eads, Thorvardur R Halfdanarson, Tim Asmis, Andrew M Bellizzi, Emily K Bergsland, Arvind Dasari, Ghassan El-Haddad, Michael Frumovitz, Joshua Meyer, Erik Mittra, Sten Myrehaug, Eric Nakakura, Nitya Raj, Heloisa P Soares, Brian Untch, Namrata Vijayvergia, Jennifer A Chan
High-grade neuroendocrine neoplasms are a rare disease entity and account for approximately 10% of all neuroendocrine neoplasms. Because of their rarity, there is an overall lack of prospectively collected data available to advise practitioners as to how best to manage these patients. As a result, best practices are largely based on expert opinion. Recently, a distinction was made between well-differentiated high-grade (G3) neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas, and with this, pathologic details, appropriate imaging practices and treatment have become more complex. In an effort to provide practitioners with the best guidance for the management of patients with high-grade neuroendocrine neoplasms of the gastrointestinal tract, pancreas, and gynecologic system, the North American Neuroendocrine Tumor Society convened a panel of experts to develop a set of recommendations and a treatment algorithm that may be used by practitioners for the care of these patients. Here, we provide consensus recommendations from the panel on pathology, imaging practices, management of localized disease, management of metastatic disease and surveillance and draw key distinctions as to the approach that should be utilized in patients with well-differentiated G3 neuroendocrine tumors vs poorly differentiated neuroendocrine carcinomas.
{"title":"Expert Consensus Practice Recommendations of the North American Neuroendocrine Tumor Society for the management of high grade gastroenteropancreatic and gynecologic neuroendocrine neoplasms.","authors":"Jennifer R Eads, Thorvardur R Halfdanarson, Tim Asmis, Andrew M Bellizzi, Emily K Bergsland, Arvind Dasari, Ghassan El-Haddad, Michael Frumovitz, Joshua Meyer, Erik Mittra, Sten Myrehaug, Eric Nakakura, Nitya Raj, Heloisa P Soares, Brian Untch, Namrata Vijayvergia, Jennifer A Chan","doi":"10.1530/ERC-22-0206","DOIUrl":"10.1530/ERC-22-0206","url":null,"abstract":"<p><p>High-grade neuroendocrine neoplasms are a rare disease entity and account for approximately 10% of all neuroendocrine neoplasms. Because of their rarity, there is an overall lack of prospectively collected data available to advise practitioners as to how best to manage these patients. As a result, best practices are largely based on expert opinion. Recently, a distinction was made between well-differentiated high-grade (G3) neuroendocrine tumors and poorly differentiated neuroendocrine carcinomas, and with this, pathologic details, appropriate imaging practices and treatment have become more complex. In an effort to provide practitioners with the best guidance for the management of patients with high-grade neuroendocrine neoplasms of the gastrointestinal tract, pancreas, and gynecologic system, the North American Neuroendocrine Tumor Society convened a panel of experts to develop a set of recommendations and a treatment algorithm that may be used by practitioners for the care of these patients. Here, we provide consensus recommendations from the panel on pathology, imaging practices, management of localized disease, management of metastatic disease and surveillance and draw key distinctions as to the approach that should be utilized in patients with well-differentiated G3 neuroendocrine tumors vs poorly differentiated neuroendocrine carcinomas.</p>","PeriodicalId":11654,"journal":{"name":"Endocrine-related cancer","volume":"30 8","pages":""},"PeriodicalIF":4.1,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10388681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10292623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}