Pub Date : 2024-06-04DOI: 10.1186/s12940-024-01092-0
Norman Paege, Sabrina Feustel, Philip Marx-Stoelting
Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).
微生物次生代谢物(SM)的风险评估(RA)是欧盟植物保护产品(PPP)中使用的微生物活性物质(AS)审批程序的一部分。由于某种微生物菌株可能产生的微生物次生代谢物的数量可能很多,而有关代谢物的现有信息往往很少,因此在风险评估过程中经常会发现数据缺口。通常情况下,RA 无法最终明确单个物质的毒理学相关性。本研究以 Beauvericin、2,3-deepoxy-2,3-didehydro-rhizoxin (DDR)、Leucinostatin A 和 Swainsonin 四种代谢物的数据和 RA 结论为例,详细介绍了 RA 的挑战性过程。为了克服评估报告不完整的问题,需要采用新的方法对用于购买力平价的微生物反式脂肪酸进行风险评估。鉴于下一代风险评估 (NGRA),可将文献数据、肿瘤学方法、体外方法和硅学方法结合到不良结果途径 (AOP) 中,用于高效、有针对性地识别和评估相关代谢物 (MoC)。
{"title":"Toxicological evaluation of microbial secondary metabolites in the context of European active substance approval for plant protection products.","authors":"Norman Paege, Sabrina Feustel, Philip Marx-Stoelting","doi":"10.1186/s12940-024-01092-0","DOIUrl":"10.1186/s12940-024-01092-0","url":null,"abstract":"<p><p>Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).</p>","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"23 1","pages":"52"},"PeriodicalIF":6.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1186/s12940-024-01091-1
Chih-Fu Wei, Sudipta Kumer Mukherjee, Sheikh Muhammad Ekramullah, D M Arman, Md Joynul Islam, Mubinul Azim, Asifur Rahman, Md Nafaur Rahman, Md Ziauddin, Gwen Tindula, Hafiza Sultana Suchanda, Diana F Gomberg, Marc G Weisskopf, Liming Liang, Benjamin C Warf, David C Christiani, Maitreyi Mazumdar
Background: Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh.
Methods: We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure.
Results: We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82).
Conclusions: Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.
{"title":"Arsenic modifies the effect of folic acid in spina bifida prevention, a large hospital-based case-control study in Bangladesh.","authors":"Chih-Fu Wei, Sudipta Kumer Mukherjee, Sheikh Muhammad Ekramullah, D M Arman, Md Joynul Islam, Mubinul Azim, Asifur Rahman, Md Nafaur Rahman, Md Ziauddin, Gwen Tindula, Hafiza Sultana Suchanda, Diana F Gomberg, Marc G Weisskopf, Liming Liang, Benjamin C Warf, David C Christiani, Maitreyi Mazumdar","doi":"10.1186/s12940-024-01091-1","DOIUrl":"10.1186/s12940-024-01091-1","url":null,"abstract":"<p><strong>Background: </strong>Spina bifida, a developmental malformation of the spinal cord, is associated with high rates of mortality and disability. Although folic acid-based preventive strategies have been successful in reducing rates of spina bifida, some areas continue to be at higher risk because of chemical exposures. Bangladesh has high arsenic exposures through contaminated drinking water and high rates of spina bifida. This study examines the relationships between mother's arsenic exposure, folic acid, and spina bifida risk in Bangladesh.</p><p><strong>Methods: </strong>We conducted a hospital-based case-control study at the National Institute of Neurosciences & Hospital (NINS&H) in Dhaka, Bangladesh, between December 2016 and December 2022. Cases were infants under age one year with spina bifida and further classified by a neurosurgeon and imaging. Controls were drawn from children seen at NINS&H and nearby Dhaka Shishu Hospital. Mothers reported folic acid use during pregnancy, and we assessed folate status with serum assays. Arsenic exposure was estimated in drinking water using graphite furnace atomic absorption spectrophotometry (GF-AAS) and in toenails using inductively coupled plasma mass spectrometry (ICP-MS). We used logistic regression to examine the associations between arsenic and spina bifida. We used stratified models to examine the associations between folic acid and spina bifida at different levels of arsenic exposure.</p><p><strong>Results: </strong>We evaluated data from 294 cases of spina bifida and 163 controls. We did not find a main effect of mother's arsenic exposure on spina bifida risk. However, in stratified analyses, folic acid use was associated with lower odds of spina bifida (adjusted odds ratio [OR]: 0.50, 95% confidence interval [CI]: 0.25-1.00, p = 0.05) among women with toenail arsenic concentrations below the median value of 0.46 µg/g, and no association was seen among mothers with toenail arsenic concentrations higher than 0.46 µg/g (adjusted OR: 1.09, 95% CI: 0.52-2.29, p = 0.82).</p><p><strong>Conclusions: </strong>Mother's arsenic exposure modified the protective association of folic acid with spina bifida. Increased surveillance and additional preventive strategies, such as folic acid fortification and reduction of arsenic, are needed in areas of high arsenic exposure.</p>","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"23 1","pages":"51"},"PeriodicalIF":6.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1186/s12940-024-01089-9
Aline Philibert, Judy Da Silva, Myriam Fillion, Donna Mergler
Background: Since the 1960's, mercury (Hg) contamination of the aquatic environment of Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation) territories has impacted the community members' traditions, culture, livelihood, diet and health. Despite decreasing Hg exposure over time, a recent study suggested that long-term exposure contributed to later-life symptom clusters of nervous system dysfunction. Here, the objective was to evaluate, 5 years later, the prevalence and progression of these symptoms and examine the contribution of long-term, past Hg exposure.
Methods: The symptom questionnaire, applied in the 2016/17 Grassy Narrows Community Health Assessment (GN-CHA) (Time 1), was re-administered in the 2021/22 Niibin study (Time 2). A total of 85 adults (median age: 47y; range: 29-75y) responded at both times. Paired statistics were used to test the differences (Time 2 - Time 1) in self-reported symptom frequencies. The symptom clustering algorithm, derived from the entire study group of the GN-CHA (n = 391), which had yielded 6 clusters, was applied at Time 1 and 2. Equivalent hair Hg measurements (HHg) between 1970 and 1997 were used in Longitudinal Mixed Effects Models (LMEM), with a sub-group with ≥ 10 repeated HHg mesurements (age > 40y), to examine its associations with symptom cluster scores and their progression.
Results: For most symptoms, paired analyses (Time 2 - Time 1) showed a significant increase in persons reporting " very often" or "all the time", and in the mean Likert scores for younger and older participants (< and ≥ 50y). The increase in cluster scores was not associated with age or sex, except for sensory impairment where a greater increase in symptom frequency was observed for younger persons. LMEM showed that, for the sub-group, long-term past Hg exposure was associated with most cluster scores at both times, and importantly, for all clusters, with their rate of increase over time (Time 2 - Time 1).
Conclusions: The persistence of reported symptoms and their increase in frequency over the short 5-year period underline the need for adequate health care services. Results of the sub-group of persons > 40y, whose HHg reflects exposure over the 28-year sampling period, suggest that there may be a progressive impact of Hg on nervous system dysfunction.
{"title":"The evolution of symptoms of nervous system dysfunction in a First Nation community with a history of mercury exposure: a longitudinal study.","authors":"Aline Philibert, Judy Da Silva, Myriam Fillion, Donna Mergler","doi":"10.1186/s12940-024-01089-9","DOIUrl":"10.1186/s12940-024-01089-9","url":null,"abstract":"<p><strong>Background: </strong>Since the 1960's, mercury (Hg) contamination of the aquatic environment of Asubpeeschoseewagong Anishinabek (Grassy Narrows First Nation) territories has impacted the community members' traditions, culture, livelihood, diet and health. Despite decreasing Hg exposure over time, a recent study suggested that long-term exposure contributed to later-life symptom clusters of nervous system dysfunction. Here, the objective was to evaluate, 5 years later, the prevalence and progression of these symptoms and examine the contribution of long-term, past Hg exposure.</p><p><strong>Methods: </strong>The symptom questionnaire, applied in the 2016/17 Grassy Narrows Community Health Assessment (GN-CHA) (Time 1), was re-administered in the 2021/22 Niibin study (Time 2). A total of 85 adults (median age: 47y; range: 29-75y) responded at both times. Paired statistics were used to test the differences (Time 2 - Time 1) in self-reported symptom frequencies. The symptom clustering algorithm, derived from the entire study group of the GN-CHA (n = 391), which had yielded 6 clusters, was applied at Time 1 and 2. Equivalent hair Hg measurements (HHg) between 1970 and 1997 were used in Longitudinal Mixed Effects Models (LMEM), with a sub-group with ≥ 10 repeated HHg mesurements (age > 40y), to examine its associations with symptom cluster scores and their progression.</p><p><strong>Results: </strong>For most symptoms, paired analyses (Time 2 - Time 1) showed a significant increase in persons reporting \" very often\" or \"all the time\", and in the mean Likert scores for younger and older participants (< and ≥ 50y). The increase in cluster scores was not associated with age or sex, except for sensory impairment where a greater increase in symptom frequency was observed for younger persons. LMEM showed that, for the sub-group, long-term past Hg exposure was associated with most cluster scores at both times, and importantly, for all clusters, with their rate of increase over time (Time 2 - Time 1).</p><p><strong>Conclusions: </strong>The persistence of reported symptoms and their increase in frequency over the short 5-year period underline the need for adequate health care services. Results of the sub-group of persons > 40y, whose HHg reflects exposure over the 28-year sampling period, suggest that there may be a progressive impact of Hg on nervous system dysfunction.</p>","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"23 1","pages":"50"},"PeriodicalIF":5.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11140928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141185805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1186/s12940-024-01090-2
K. Wend, L. Zorrilla, F. M. Freimoser, A. Gallet
Plant protection measures are necessary to prevent pests and diseases from attacking and destroying crop plants and to meet consumer demands for agricultural produce. In the last decades the use of chemical pesticides has largely increased. Farmers are looking for alternatives. Biopesticides should be considered a sustainable solution. They may be less toxic than chemical pesticides, be very specific to the target pest, decompose quickly, and be less likely to cause resistance. On the other hand, lower efficacy and higher costs are two disadvantages of many biopesticides. Biopesticides include macroorganisms, natural compounds and microorganisms. Microbial pesticides are the most widely used and studied class of biopesticides. The greatest difference between microbial and chemical pesticides is the ability of the former to potentially multiply in the environment and on the crop plant after application. The data requirements for the European Union and the United States Environmental Protection Agency are highlighted, as these regulatory processes are the most followed in regions where local regulations for biopesticide products are not available or vague. New Approach Methods already proposed or harmonized for chemical pesticides are presented and discussed with respect to their use in evaluating microbial pesticide formulations. Evaluating the microbials themselves is not as simple as using the same validated New Approach Methods as for synthetic pesticides. Therefore, the authors suggest considering New Approach Method strategies specifically for microbials and global harmonization with acceptability with the advancements of such approaches. Further discussion is needed and greatly appreciated by the experts.
{"title":"Microbial pesticides – challenges and future perspectives for testing and safety assessment with respect to human health","authors":"K. Wend, L. Zorrilla, F. M. Freimoser, A. Gallet","doi":"10.1186/s12940-024-01090-2","DOIUrl":"https://doi.org/10.1186/s12940-024-01090-2","url":null,"abstract":"Plant protection measures are necessary to prevent pests and diseases from attacking and destroying crop plants and to meet consumer demands for agricultural produce. In the last decades the use of chemical pesticides has largely increased. Farmers are looking for alternatives. Biopesticides should be considered a sustainable solution. They may be less toxic than chemical pesticides, be very specific to the target pest, decompose quickly, and be less likely to cause resistance. On the other hand, lower efficacy and higher costs are two disadvantages of many biopesticides. Biopesticides include macroorganisms, natural compounds and microorganisms. Microbial pesticides are the most widely used and studied class of biopesticides. The greatest difference between microbial and chemical pesticides is the ability of the former to potentially multiply in the environment and on the crop plant after application. The data requirements for the European Union and the United States Environmental Protection Agency are highlighted, as these regulatory processes are the most followed in regions where local regulations for biopesticide products are not available or vague. New Approach Methods already proposed or harmonized for chemical pesticides are presented and discussed with respect to their use in evaluating microbial pesticide formulations. Evaluating the microbials themselves is not as simple as using the same validated New Approach Methods as for synthetic pesticides. Therefore, the authors suggest considering New Approach Method strategies specifically for microbials and global harmonization with acceptability with the advancements of such approaches. Further discussion is needed and greatly appreciated by the experts.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"35 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1186/s12940-024-01088-w
Myeonggyun Lee, Abhisek Saha, Rajeshwari Sundaram, Paul S Albert, Shanshan Zhao
Background: Identifying the impact of environmental mixtures on human health is an important topic. However, such studies face challenges when exposure measurements lie below limit of detection (LOD). While various approaches for accommodating a single exposure subject to LOD have been used, their impact on mixture analysis has not been thoroughly investigated. Our study aims to understand the impact of five popular LOD accommodation approaches on mixture analysis results with multiple exposures subject to LOD, including omitting subjects with any exposures below LOD (complete case analysis); single imputations by LOD/ , and by estimates from a censored accelerated failure time (AFT) model; and multiple imputation (MI) with or without truncation based on LOD.
Methods: In extensive simulation studies with high-dimensional and highly correlated exposures and a continuous health outcome, we examined the performance of each LOD approach on three mixture analysis methods: elastic net regression, weighted quantile sum regression (WQS) and Bayesian kernel machine regression (BKMR). We further analyzed data from the National Health and Nutrition Examination Survey (NHANES) on how persistent organic pollutants (POPs) influenced leukocyte telomere length (LTL).
Results: Complete case analysis was inefficient and could result in severe bias for some mixture methods. Imputation by LOD/ showed unstable performance across mixture methods. Conventional MI was associated with consistent mild biases, which can be reduced by using a truncated distribution for imputation. Estimating censored values by AFT models had a minimal impact on the results. In the NHANES analysis, imputation by LOD/ , truncated MI and censored AFT models performed similarly, with a positive overall effect of POPs on LTL while PCB126, PCB169 and furan 2,3,4,7,8-pncdf being the most important exposures.
Conclusions: Our study favored using truncated MI and censored AFT models to accommodate values below LOD for the stability of downstream mixture analysis.
{"title":"Accommodating detection limits of multiple exposures in environmental mixture analyses: an overview of statistical approaches.","authors":"Myeonggyun Lee, Abhisek Saha, Rajeshwari Sundaram, Paul S Albert, Shanshan Zhao","doi":"10.1186/s12940-024-01088-w","DOIUrl":"https://doi.org/10.1186/s12940-024-01088-w","url":null,"abstract":"<p><strong>Background: </strong>Identifying the impact of environmental mixtures on human health is an important topic. However, such studies face challenges when exposure measurements lie below limit of detection (LOD). While various approaches for accommodating a single exposure subject to LOD have been used, their impact on mixture analysis has not been thoroughly investigated. Our study aims to understand the impact of five popular LOD accommodation approaches on mixture analysis results with multiple exposures subject to LOD, including omitting subjects with any exposures below LOD (complete case analysis); single imputations by LOD/ <math><msqrt><mn>2</mn></msqrt> </math> , and by estimates from a censored accelerated failure time (AFT) model; and multiple imputation (MI) with or without truncation based on LOD.</p><p><strong>Methods: </strong>In extensive simulation studies with high-dimensional and highly correlated exposures and a continuous health outcome, we examined the performance of each LOD approach on three mixture analysis methods: elastic net regression, weighted quantile sum regression (WQS) and Bayesian kernel machine regression (BKMR). We further analyzed data from the National Health and Nutrition Examination Survey (NHANES) on how persistent organic pollutants (POPs) influenced leukocyte telomere length (LTL).</p><p><strong>Results: </strong>Complete case analysis was inefficient and could result in severe bias for some mixture methods. Imputation by LOD/ <math><msqrt><mn>2</mn></msqrt> </math> showed unstable performance across mixture methods. Conventional MI was associated with consistent mild biases, which can be reduced by using a truncated distribution for imputation. Estimating censored values by AFT models had a minimal impact on the results. In the NHANES analysis, imputation by LOD/ <math><msqrt><mn>2</mn></msqrt> </math> , truncated MI and censored AFT models performed similarly, with a positive overall effect of POPs on LTL while PCB126, PCB169 and furan 2,3,4,7,8-pncdf being the most important exposures.</p><p><strong>Conclusions: </strong>Our study favored using truncated MI and censored AFT models to accommodate values below LOD for the stability of downstream mixture analysis.</p>","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"23 1","pages":"48"},"PeriodicalIF":6.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140956765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1186/s12940-024-01077-z
Saira Tasmin, Briseis Aschebrook-Kilfoy, Donald Hedeker, Rajan Gopalakrishnan, Elizabeth Connellan, Muhammad G Kibriya, Michael T Young, Joel D Kaufman, Habibul Ahsan
Objectives: To examine whether long-term air pollution exposure is associated with central hemodynamic and brachial artery stiffness parameters.
Methods: We assessed central hemodynamic parameters including central blood pressure, cardiac parameters, systemic vascular compliance and resistance, and brachial artery stiffness measures [including brachial artery distensibility (BAD), compliance (BAC), and resistance (BAR)] using waveform analysis of the arterial pressure signals obtained from a standard cuff sphygmomanometer (DynaPulse2000A, San Diego, CA). The long-term exposures to particles with an aerodynamic diameter < 2.5 μm (PM2.5) and nitrogen dioxide (NO2) for the 3-year periods prior to enrollment were estimated at residential addresses using fine-scale intra-urban spatiotemporal models. Linear mixed models adjusted for potential confounders were used to examine associations between air pollution exposures and health outcomes.
Results: The cross-sectional study included 2,387 Chicago residents (76% African Americans) enrolled in the ChicagO Multiethnic Prevention And Surveillance Study (COMPASS) during 2013-2018 with validated address information, PM2.5 or NO2, key covariates, and hemodynamics measurements. We observed long-term concentrations of PM2.5 and NO2 to be positively associated with central systolic, pulse pressure and BAR, and negatively associated with BAD, and BAC after adjusting for relevant covariates. A 1-µg/m3 increment in preceding 3-year exposures to PM2.5 was associated with 1.8 mmHg higher central systolic (95% CI: 0.98, 4.16), 1.0 mmHg higher central pulse pressure (95% CI: 0.42, 2.87), a 0.56%mmHg lower BAD (95% CI: -0.81, -0.30), and a 0.009 mL/mmHg lower BAC (95% CI: -0.01, -0.01).
Conclusion: This population-based study provides evidence that long-term exposures to PM2.5 and NO2 is related to central BP and arterial stiffness parameters, especially among African Americans.
{"title":"Long-term exposure to ambient air pollution and measures of central hemodynamics and arterial stiffness among multiethnic Chicago residents.","authors":"Saira Tasmin, Briseis Aschebrook-Kilfoy, Donald Hedeker, Rajan Gopalakrishnan, Elizabeth Connellan, Muhammad G Kibriya, Michael T Young, Joel D Kaufman, Habibul Ahsan","doi":"10.1186/s12940-024-01077-z","DOIUrl":"10.1186/s12940-024-01077-z","url":null,"abstract":"<p><strong>Objectives: </strong>To examine whether long-term air pollution exposure is associated with central hemodynamic and brachial artery stiffness parameters.</p><p><strong>Methods: </strong>We assessed central hemodynamic parameters including central blood pressure, cardiac parameters, systemic vascular compliance and resistance, and brachial artery stiffness measures [including brachial artery distensibility (BAD), compliance (BAC), and resistance (BAR)] using waveform analysis of the arterial pressure signals obtained from a standard cuff sphygmomanometer (DynaPulse2000A, San Diego, CA). The long-term exposures to particles with an aerodynamic diameter < 2.5 μm (PM2.5) and nitrogen dioxide (NO2) for the 3-year periods prior to enrollment were estimated at residential addresses using fine-scale intra-urban spatiotemporal models. Linear mixed models adjusted for potential confounders were used to examine associations between air pollution exposures and health outcomes.</p><p><strong>Results: </strong>The cross-sectional study included 2,387 Chicago residents (76% African Americans) enrolled in the ChicagO Multiethnic Prevention And Surveillance Study (COMPASS) during 2013-2018 with validated address information, PM2.5 or NO2, key covariates, and hemodynamics measurements. We observed long-term concentrations of PM2.5 and NO2 to be positively associated with central systolic, pulse pressure and BAR, and negatively associated with BAD, and BAC after adjusting for relevant covariates. A 1-µg/m<sup>3</sup> increment in preceding 3-year exposures to PM2.5 was associated with 1.8 mmHg higher central systolic (95% CI: 0.98, 4.16), 1.0 mmHg higher central pulse pressure (95% CI: 0.42, 2.87), a 0.56%mmHg lower BAD (95% CI: -0.81, -0.30), and a 0.009 mL/mmHg lower BAC (95% CI: -0.01, -0.01).</p><p><strong>Conclusion: </strong>This population-based study provides evidence that long-term exposures to PM2.5 and NO2 is related to central BP and arterial stiffness parameters, especially among African Americans.</p>","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"23 1","pages":"47"},"PeriodicalIF":5.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11075200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1186/s12940-024-01084-0
Danielle Vienneau, Benedikt Wicki, Benjamin Flückiger, Beat Schäffer, Jean Marc Wunderli, Martin Röösli
Long-term exposure to transportation noise is related to cardio-metabolic diseases, with more recent evidence also showing associations with diabetes mellitus (DM) incidence. This study aimed to evaluate the association between transportation noise and DM mortality within the Swiss National Cohort. During 15 years of follow-up (2001–2015; 4.14 million adults), over 72,000 DM deaths were accrued. Source-specific noise was calculated at residential locations, considering moving history. Multi-exposure, time-varying Cox regression was used to derive hazard ratios (HR, and 95%-confidence intervals). Models included road traffic, railway and aircraft noise, air pollution, and individual and area-level covariates including socio-economic position. Analyses included exposure-response modelling, effect modification, and a subset analysis around airports. The main findings were integrated into meta-analyses with published studies on mortality and incidence (separately and combined). HRs were 1.06 (1.05, 1.07), 1.02 (1.01, 1.03) and 1.01 (0.99, 1.02) per 10 dB day evening-night level (Lden) road traffic, railway and aircraft noise, respectively (adjusted model, including NO2). Splines suggested a threshold for road traffic noise (~ 46 dB Lden, well below the 53 dB Lden WHO guideline level), but not railway noise. Substituting for PM2.5, or including deaths with type 1 DM hardly changed the associations. HRs were higher for males compared to females, and in younger compared to older adults. Focusing only on type 1 DM showed an independent association with road traffic noise. Meta-analysis was only possible for road traffic noise in relation to mortality (1.08 [0.99, 1.18] per 10 dB, n = 4), with the point estimate broadly similar to that for incidence (1.07 [1.05, 1.09] per 10 dB, n = 10). Combining incidence and mortality studies indicated positive associations for each source, strongest for road traffic noise (1.07 [1.05, 1.08], 1.02 [1.01, 1.03], and 1.02 [1.00, 1.03] per 10 dB road traffic [n = 14], railway [n = 5] and aircraft noise [n = 5], respectively). This study provides new evidence that transportation noise is associated with diabetes mortality. With the growing evidence and large disease burden, DM should be viewed as an important outcome in the noise and health discussion.
{"title":"Long-term exposure to transportation noise and diabetes mellitus mortality: a national cohort study and updated meta-analysis","authors":"Danielle Vienneau, Benedikt Wicki, Benjamin Flückiger, Beat Schäffer, Jean Marc Wunderli, Martin Röösli","doi":"10.1186/s12940-024-01084-0","DOIUrl":"https://doi.org/10.1186/s12940-024-01084-0","url":null,"abstract":"Long-term exposure to transportation noise is related to cardio-metabolic diseases, with more recent evidence also showing associations with diabetes mellitus (DM) incidence. This study aimed to evaluate the association between transportation noise and DM mortality within the Swiss National Cohort. During 15 years of follow-up (2001–2015; 4.14 million adults), over 72,000 DM deaths were accrued. Source-specific noise was calculated at residential locations, considering moving history. Multi-exposure, time-varying Cox regression was used to derive hazard ratios (HR, and 95%-confidence intervals). Models included road traffic, railway and aircraft noise, air pollution, and individual and area-level covariates including socio-economic position. Analyses included exposure-response modelling, effect modification, and a subset analysis around airports. The main findings were integrated into meta-analyses with published studies on mortality and incidence (separately and combined). HRs were 1.06 (1.05, 1.07), 1.02 (1.01, 1.03) and 1.01 (0.99, 1.02) per 10 dB day evening-night level (Lden) road traffic, railway and aircraft noise, respectively (adjusted model, including NO2). Splines suggested a threshold for road traffic noise (~ 46 dB Lden, well below the 53 dB Lden WHO guideline level), but not railway noise. Substituting for PM2.5, or including deaths with type 1 DM hardly changed the associations. HRs were higher for males compared to females, and in younger compared to older adults. Focusing only on type 1 DM showed an independent association with road traffic noise. Meta-analysis was only possible for road traffic noise in relation to mortality (1.08 [0.99, 1.18] per 10 dB, n = 4), with the point estimate broadly similar to that for incidence (1.07 [1.05, 1.09] per 10 dB, n = 10). Combining incidence and mortality studies indicated positive associations for each source, strongest for road traffic noise (1.07 [1.05, 1.08], 1.02 [1.01, 1.03], and 1.02 [1.00, 1.03] per 10 dB road traffic [n = 14], railway [n = 5] and aircraft noise [n = 5], respectively). This study provides new evidence that transportation noise is associated with diabetes mortality. With the growing evidence and large disease burden, DM should be viewed as an important outcome in the noise and health discussion.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"47 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1186/s12940-024-01086-y
Ying Wang, Zhaowei Meng, Sen Wei, Xuebing Li, Zheng Su, Yong Jiang, Heng Wu, Hongli Pan, Jing Wang, Qinghua Zhou, Youlin Qiao, Yaguang Fan
Volatile organic compounds (VOCs) encompass hundreds of high production volume chemicals and have been reported to be associated with adverse respiratory outcomes such as chronic obstructive pulmonary disease (COPD). However, research on the combined toxic effects of exposure to various VOCs on COPD is lacking. We aimed to assess the effect of VOC metabolite mixture on COPD risk in a large population sample. We assessed the effect of VOC metabolite mixture on COPD risk in 5997 adults from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2020 (pre-pandemic) using multivariate logistic regression, Bayesian weighted quantile sum regression (BWQS), quantile-based g-Computation method (Qgcomp), and Bayesian kernel machine regression (BKMR). We explored whether these associations were mediated by white blood cell (WBC) count and total bilirubin. In the logistic regression model, we observed a significantly increased risk of COPD associated with 9 VOC metabolites. Conversely, N-acetyl-S-(benzyl)-L-cysteine (BMA) and N-acetyl-S-(n-propyl)-L-cysteine (BPMA) showed insignificant negative correlations with COPD risk. The overall mixture exposure demonstrated a significant positive relationship with COPD in both the BWQS model (adjusted odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.06, 1.58) and BKMR model, and with marginal significance in the Qgcomp model (adjusted OR = 1.22, 95% CI: 0.98, 1.52). All three models indicated a significant effect of the VOC metabolite mixture on COPD in non-current smokers. WBC count mediated 7.1% of the VOC mixture associated-COPD in non-current smokers. Our findings provide novel evidence suggesting that VOCs may have adverse associations with COPD in the general population, with N, N- Dimethylformamide and 1,3-Butadiene contributing most. These findings underscore the significance of understanding the potential health risks associated with VOC mixture and emphasize the need for targeted interventions to mitigate the adverse effects on COPD risk.
{"title":"Urinary volatile organic compound metabolites and COPD among US adults: mixture, interaction and mediation analysis","authors":"Ying Wang, Zhaowei Meng, Sen Wei, Xuebing Li, Zheng Su, Yong Jiang, Heng Wu, Hongli Pan, Jing Wang, Qinghua Zhou, Youlin Qiao, Yaguang Fan","doi":"10.1186/s12940-024-01086-y","DOIUrl":"https://doi.org/10.1186/s12940-024-01086-y","url":null,"abstract":"Volatile organic compounds (VOCs) encompass hundreds of high production volume chemicals and have been reported to be associated with adverse respiratory outcomes such as chronic obstructive pulmonary disease (COPD). However, research on the combined toxic effects of exposure to various VOCs on COPD is lacking. We aimed to assess the effect of VOC metabolite mixture on COPD risk in a large population sample. We assessed the effect of VOC metabolite mixture on COPD risk in 5997 adults from the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2020 (pre-pandemic) using multivariate logistic regression, Bayesian weighted quantile sum regression (BWQS), quantile-based g-Computation method (Qgcomp), and Bayesian kernel machine regression (BKMR). We explored whether these associations were mediated by white blood cell (WBC) count and total bilirubin. In the logistic regression model, we observed a significantly increased risk of COPD associated with 9 VOC metabolites. Conversely, N-acetyl-S-(benzyl)-L-cysteine (BMA) and N-acetyl-S-(n-propyl)-L-cysteine (BPMA) showed insignificant negative correlations with COPD risk. The overall mixture exposure demonstrated a significant positive relationship with COPD in both the BWQS model (adjusted odds ratio (OR) = 1.30, 95% confidence interval (CI): 1.06, 1.58) and BKMR model, and with marginal significance in the Qgcomp model (adjusted OR = 1.22, 95% CI: 0.98, 1.52). All three models indicated a significant effect of the VOC metabolite mixture on COPD in non-current smokers. WBC count mediated 7.1% of the VOC mixture associated-COPD in non-current smokers. Our findings provide novel evidence suggesting that VOCs may have adverse associations with COPD in the general population, with N, N- Dimethylformamide and 1,3-Butadiene contributing most. These findings underscore the significance of understanding the potential health risks associated with VOC mixture and emphasize the need for targeted interventions to mitigate the adverse effects on COPD risk.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"21 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1186/s12940-024-01079-x
Novat Pugo Sambodo, Menno Pradhan, Robert Sparrow, Eddy van Doorslaer
The forest fires that ravaged parts of Indonesia in 2015 were the most severely polluting of this century but little is known about their effects on health care utilization of the affected population. We estimate their short-term impact on visit rates to primary and hospital care with particular focus on visits for specific smoke-related conditions (respiratory disease, acute respiratory tract infection (ARTI) and common cold). We estimate the short-term impact of the 2015 forest fire on visit rates to primary and hospital care by combining satellite data on Aerosol Optical Depth (AOD) with administrative records from Indonesian National Health Insurance Agency (BPJS Kesehatan) from January 2015–April 2016. The 16 months of panel data cover 203 districts in the islands of Sumatra and Kalimantan before, during and after the forest fires. We use the (more efficient) ANCOVA version adaptation of a fixed effects model to compare the trends in healthcare use of affected districts (with AOD value above 0.75) with control districts (AOD value below 0.75). Considering the higher vulnerability of children’s lungs, we do this separately for children under 5 and the rest of the population adults (> 5), and for both urban and rural areas, and for both the period during and after the forest fires. We find little effects for adults. For young children we estimate positive effects for care related to respiratory problems in primary health care facilities in urban areas. Hospital care visits in general, on the other hand, are negatively affected in rural areas. We argue that these patterns arise because accessibility of care during fires is more restricted for rural than for urban areas. The severity of the fires and the absence of positive impact on health care utilization for adults and children in rural areas indicate large missed opportunities for receiving necessary care. This is particularly worrisome for children, whose lungs are most vulnerable to the effects. Our findings underscore the need to ensure ongoing access to medical services during forest fires and emphasize the necessity of catching up with essential care for children after the fires, particularly in rural areas.
{"title":"When the smoke gets in your lungs: short-term effects of Indonesia’s 2015 forest fires on health care use","authors":"Novat Pugo Sambodo, Menno Pradhan, Robert Sparrow, Eddy van Doorslaer","doi":"10.1186/s12940-024-01079-x","DOIUrl":"https://doi.org/10.1186/s12940-024-01079-x","url":null,"abstract":"The forest fires that ravaged parts of Indonesia in 2015 were the most severely polluting of this century but little is known about their effects on health care utilization of the affected population. We estimate their short-term impact on visit rates to primary and hospital care with particular focus on visits for specific smoke-related conditions (respiratory disease, acute respiratory tract infection (ARTI) and common cold). We estimate the short-term impact of the 2015 forest fire on visit rates to primary and hospital care by combining satellite data on Aerosol Optical Depth (AOD) with administrative records from Indonesian National Health Insurance Agency (BPJS Kesehatan) from January 2015–April 2016. The 16 months of panel data cover 203 districts in the islands of Sumatra and Kalimantan before, during and after the forest fires. We use the (more efficient) ANCOVA version adaptation of a fixed effects model to compare the trends in healthcare use of affected districts (with AOD value above 0.75) with control districts (AOD value below 0.75). Considering the higher vulnerability of children’s lungs, we do this separately for children under 5 and the rest of the population adults (> 5), and for both urban and rural areas, and for both the period during and after the forest fires. We find little effects for adults. For young children we estimate positive effects for care related to respiratory problems in primary health care facilities in urban areas. Hospital care visits in general, on the other hand, are negatively affected in rural areas. We argue that these patterns arise because accessibility of care during fires is more restricted for rural than for urban areas. The severity of the fires and the absence of positive impact on health care utilization for adults and children in rural areas indicate large missed opportunities for receiving necessary care. This is particularly worrisome for children, whose lungs are most vulnerable to the effects. Our findings underscore the need to ensure ongoing access to medical services during forest fires and emphasize the necessity of catching up with essential care for children after the fires, particularly in rural areas.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"10 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140837266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-16DOI: 10.1186/s12940-024-01078-y
Keren Zhang, Kimberly Paul, Jonathan P. Jacobs, Myles G. Cockburn, Jeff M. Bronstein, Irish del Rosario, Beate Ritz
Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. We recruited 190 participants from a community-based epidemiologic study of Parkinson’s disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson’s disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray–Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.
有机磷农药(OP)与人类的各种健康状况有关。动物实验和体外模型表明,OP 也可能影响肠道微生物群。我们研究了环境中长期接触 OP 与人类肠道微生物变化之间的关系。我们从一项基于社区的帕金森病流行病学研究中招募了 190 名参与者,他们居住在加利福尼亚州一个以大量使用农业杀虫剂而闻名的地区。其中,61%的参与者患有帕金森病,他们的平均年龄为 72 岁。通过对粪便样本进行 16S rRNA 基因测序,获得了微生物组和预测的元基因组数据。环境中长期暴露于 OP 的情况是通过地理信息系统中的杀虫剂施用记录与住宅地址相结合进行评估的。我们研究了因暴露于 OP 而导致的肠道微生物组差异,特别是基于香农指数和 Bray-Curtis 差异性的微生物多样性差异、不同类群丰度差异,以及根据回归模型预测的 Metacyc 通路表达,并对潜在的混杂因素进行了调整。OP 暴露与肠道微生物组的α或β多样性无关。然而,在 OP 高暴露人群中,预测的元基因组更稀疏,表达也更不均匀(p = 0.04)。此外,我们还发现,两个细菌科、22 个属的丰度以及 34 种 Metacyc 通路的预测表达与长期暴露于 OP 相关。这些途径包括与细胞呼吸有关的过程受到干扰、与细菌壁结构有关的化合物的生物合成和降解增加、RNA/DNA 前体的生物合成增加以及维生素 B1 和 B6 的合成减少。我们的研究结果表明,环境中长期接触 OP 杀虫剂会改变人类肠道微生物组的组成及其预测的新陈代谢,这与之前的动物研究和体外研究结果相吻合。
{"title":"Ambient long-term exposure to organophosphorus pesticides and the human gut microbiome: an observational study","authors":"Keren Zhang, Kimberly Paul, Jonathan P. Jacobs, Myles G. Cockburn, Jeff M. Bronstein, Irish del Rosario, Beate Ritz","doi":"10.1186/s12940-024-01078-y","DOIUrl":"https://doi.org/10.1186/s12940-024-01078-y","url":null,"abstract":"Organophosphorus pesticides (OP) have been associated with various human health conditions. Animal experiments and in-vitro models suggested that OP may also affect the gut microbiota. We examined associations between ambient chronic exposure to OP and gut microbial changes in humans. We recruited 190 participants from a community-based epidemiologic study of Parkinson’s disease living in a region known for heavy agricultural pesticide use in California. Of these, 61% of participants had Parkinson’s disease and their mean age was 72 years. Microbiome and predicted metagenome data were generated by 16S rRNA gene sequencing of fecal samples. Ambient long-term OP exposures were assessed using pesticide application records combined with residential addresses in a geographic information system. We examined gut microbiome differences due to OP exposures, specifically differences in microbial diversity based on the Shannon index and Bray–Curtis dissimilarities, and differential taxa abundance and predicted Metacyc pathway expression relying on regression models and adjusting for potential confounders. OP exposure was not associated with alpha or beta diversity of the gut microbiome. However, the predicted metagenome was sparser and less evenly expressed among those highly exposed to OP (p = 0.04). Additionally, we found that the abundance of two bacterial families, 22 genera, and the predicted expression of 34 Metacyc pathways were associated with long-term OP exposure. These pathways included perturbed processes related to cellular respiration, increased biosynthesis and degradation of compounds related to bacterial wall structure, increased biosynthesis of RNA/DNA precursors, and decreased synthesis of Vitamin B1 and B6. In support of previous animal studies and in-vitro findings, our results suggest that ambient chronic OP pesticide exposure alters gut microbiome composition and its predicted metabolism in humans.","PeriodicalId":11686,"journal":{"name":"Environmental Health","volume":"139 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}