Introduction: Indoor nitrogen dioxide (NO2) sources include gas heating, cooking, and infiltration from outdoors. Associations with pulmonary function, systemic inflammation, and oxidative stress in patients with chronic obstructive pulmonary disease (COPD) are uncertain.
Methods: We recruited 144 COPD patients at the VA Boston Healthcare System between 2012 and 2017. In-home NO2 was measured using an Ogawa passive sampling badge for a week seasonally followed by measuring plasma biomarkers of systemic inflammation (C-reactive protein [CRP] and interleukin-6 [IL-6]), urinary oxidative stress biomarkers (8-hydroxy-2'deoxyguanosine [8-OHdG] and malondialdehyde [MDA]), and pre- and postbronchodilator spirometry. Linear mixed effects regression with a random intercept for each subject was used to assess associations with weekly NO2. Effect modification by COPD severity and by body mass index (BMI) was examined using multiplicative interaction terms and stratum-specific effect estimates.
Results: Median (25%ile, 75%ile) concentration of indoor NO2 was 6.8 (4.4, 11.2) ppb. There were no associations observed between NO2 with CRP, 8-OHdG, or MDA. Although the confidence intervals were wide, there was a reduction in prebronchodilator FEV1 and FVC among participants with more severe COPD (FEV1: -17.36 mL; -58.35, 23.60 and FVC: -28.22 mL; -91.49, 35.07) that was greater than in patients with less severe COPD (FEV1: -1.64 mL; -24.80, 21.57 and FVC: -6.22 mL; -42.16, 29.71). In participants with a BMI <30, there was a reduction in FEV1 and FVC.
Conclusions: Low-level indoor NO2 was not associated with systemic inflammation or oxidative stress. There was a suggestive association with reduced lung function among patients with more severe COPD and among patients with a lower BMI.
Background: Heat effects on respiratory mortality are known, mostly from time-series studies of city-wide data. A limited number of studies have been conducted at the national level or covering non-urban areas. Effect modification by area-level factors has not been extensively investigated. Our study assessed the heat effects on respiratory mortality at a small administrative area level in Norway, Germany, and England and Wales, in the warm period (May-September) within 1996-2018. Also, we examined possible effect modification by several area-level characteristics in the framework of the EU-Horizon2020 EXHAUSTION project.
Methods: Daily respiratory mortality counts and modeled air temperature data were collected for Norway, Germany, and England and Wales at a small administrative area level. The temperature-mortality association was assessed by small area-specific Poisson regression allowing for overdispersion, using distributed lag non-linear models. Estimates were pooled at the national level and overall using a random-effect meta-analysis. Age- and sex-specific models were also applied. A multilevel random-effects model was applied to investigate the modification of the heat effects by area-level factors.
Results: A rise in temperature from the 75th to 99th percentile was associated with a 27% (95% confidence interval [CI] = 19%, 34%) increase in respiratory mortality, with higher effects for females. Increased population density and PM2.5 concentrations were associated with stronger heat effects on mortality.
Conclusions: Our study strengthens the evidence of adverse heat effects on respiratory mortality in Northern Europe by identifying vulnerable subgroups and subregions. This may contribute to the development of targeted policies for adaptation to climate change.
[This corrects the article DOI: 10.1097/EE9.0000000000000265.].
Background: Nonalcoholic fatty liver disease (NAFLD) is a disease characterized by lipid accumulation within hepatocytes, ranging from simple steatosis to steatohepatitis, in the absence of secondary causes of hepatic fat accumulation. Although air pollution (AP) has been associated with several conditions related to NAFLD (e.g., metabolic syndrome, type 2 diabetes mellitus), few studies have explored an association between AP and NAFLD. The aim of the study was to investigate whether exposure to AP is associated with NAFLD prevalence.
Methods: We used baseline cross-sectional data (2000-2003) of the Heinz-Nixdorf-Recall cohort study in Germany (baseline n = 4,814), a prospective population-based cohort study in the urbanized Ruhr Area. Mean annual exposure to size-fractioned particulate matter (PM10, PM2.5, PMcoarse, and PM2.5abs), nitrogen dioxide, and particle number was assessed using two different exposure models: a chemistry transport dispersion model, which captures urban background AP exposure on a 1 km2 grid at participant's residential addresses, and a land use regression model, which captures point-specific AP exposure at participant's residential addresses. NAFLD was assessed with the fatty liver index (n = 4,065), with NAFLD defined as fatty liver index ≥60. We estimated ORs of NAFLD per interquartile range of exposure using logistic regression, adjusted for socio-demographic and lifestyle variables.
Results: We observed a NAFLD prevalence of 31.7% (n = 1,288). All air pollutants were positively associated with NAFLD prevalence, with an OR per interquartile range for PM2.5 of 1.11 (95% confidence interval [CI] = 1.00, 1.24) using chemistry transport model, and 1.06 (95% CI = 0.94, 1.19) using the land use regression model, respectively.
Conclusion: There was a positive association between long-term AP exposure and NAFLD.