Behcet's disease (BD) is a chronic multisystem autoimmune disorder. Various cytokines take part in the pathogenesis of this disease. Interleukin (IL)-38, a new member of IL-1 cytokine family, has been reported to have anti-inflammatory properties; however, its role in BD has not been investigated yet. In this study, we aimed to examine the probable role of IL-38 in the clinical context of BD. A total of 81 patients with BD and 81 age- and sex-matched healthy subjects as controls were included in this study. The serum levels of IL-38 were measured in patients and controls sera using enzyme-linked immunosorbent assay. The relationship between the serum levels of IL-38 and clinical and laboratory characteristics of the patients were determined. IL-38 serum levels were significantly lower in patients in comparison with healthy controls at P = 0.003. We found significant differences between IL-38 levels in BD patients with positive and negative pathergy tests (P = 0.048) and patients with and without eye involvement (P = 0.046). Despite the absence of significant differences in serum levels between male and female patients, IL-38 levels were higher in female patients with a positive pathergy test (P = 0.048) and those patients with eye involvement (P = 0.046). As healthy controls showed higher IL-38 serum levels than patients, a protective anti-inflammatory role of IL-38 in BD is suggested. Together, these results suggest that the positive relationship between IL-38 serum levels and eye involvement that IL-38 may play a role in this clinical feature of the disease.
{"title":"IL-38 serum levels in patients with Behcet's disease and the relationship with clinical features.","authors":"Maryam Zarrabi, Nasser Gholijani, Saeedeh Shenavandeh, Elham Aflaki, Zahra Amirghofran","doi":"10.1684/ecn.2019.0430","DOIUrl":"https://doi.org/10.1684/ecn.2019.0430","url":null,"abstract":"<p><p>Behcet's disease (BD) is a chronic multisystem autoimmune disorder. Various cytokines take part in the pathogenesis of this disease. Interleukin (IL)-38, a new member of IL-1 cytokine family, has been reported to have anti-inflammatory properties; however, its role in BD has not been investigated yet. In this study, we aimed to examine the probable role of IL-38 in the clinical context of BD. A total of 81 patients with BD and 81 age- and sex-matched healthy subjects as controls were included in this study. The serum levels of IL-38 were measured in patients and controls sera using enzyme-linked immunosorbent assay. The relationship between the serum levels of IL-38 and clinical and laboratory characteristics of the patients were determined. IL-38 serum levels were significantly lower in patients in comparison with healthy controls at P = 0.003. We found significant differences between IL-38 levels in BD patients with positive and negative pathergy tests (P = 0.048) and patients with and without eye involvement (P = 0.046). Despite the absence of significant differences in serum levels between male and female patients, IL-38 levels were higher in female patients with a positive pathergy test (P = 0.048) and those patients with eye involvement (P = 0.046). As healthy controls showed higher IL-38 serum levels than patients, a protective anti-inflammatory role of IL-38 in BD is suggested. Together, these results suggest that the positive relationship between IL-38 serum levels and eye involvement that IL-38 may play a role in this clinical feature of the disease.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 3","pages":"82-87"},"PeriodicalIF":2.8,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0430","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37558856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As one of the most common liver disorders worldwide, nonalcoholic fatty liver disease (NAFLD) begins with the abnormal accumulation of triglyceride (TG) in the liver and can lead to inflammation and fibrosis. Long noncoding RNA (lncRNA) NEAT1 was reported to promote NAFLD progress. However, its molecular mechanism in NAFLD was not fully clear. In vitro cellular model of NAFLD was established with BRL3A cell treated by free fatty acid (FFA). Cell Counting Kit-8 (CCK-8) assay was carried out to assess cell proliferation. The expression of mRNA and protein of inflammation and fibrosis in BRL3A cell was detected by qRT-PCR and Western blot. Bioinformatics and dual-luciferase reporter assays were used to predict and validate the interaction between NEAT1 and miR-506 as well as GLI3 and miR-506. NEAT1 was upregulated while miR-506 was downregulated in the progression of NAFLD. Meanwhile, NEAT1 and miR-506 were proved to regulate fibrosis, inflammatory response, and lipid metabolism. Knockdown of NEAT1 inhibited GLI3 expression and promoted miR-506 expression, Overexpression of miR-506 inhibited NEAT1 and GLI3 expression. Moreover, dual-luciferase reporter assays proved that miR-506 could bind to NEAT1 and GLI3, whereas NEAT1 could sponge miR-506 to regulate GLI3 expression. lncRNA NEAT1 could regulate fibrosis, inflammatory response, and lipid metabolism via the miR-506/GLI3 axis as a ceRNA, which is a novel mechanistic role in the regulation of NAFLD. These results provide a new potential treatment target for NAFLD.
{"title":"lncRNA NEAT1 regulates fibrosis and inflammatory response induced by nonalcoholic fatty liver by regulating miR-506/GLI3.","authors":"Si-Si Jin, Xian-Fan Lin, Ju-Zeng Zheng, Qiong Wang, Hua-Qin Guan","doi":"10.1684/ecn.2019.0432","DOIUrl":"https://doi.org/10.1684/ecn.2019.0432","url":null,"abstract":"<p><p>As one of the most common liver disorders worldwide, nonalcoholic fatty liver disease (NAFLD) begins with the abnormal accumulation of triglyceride (TG) in the liver and can lead to inflammation and fibrosis. Long noncoding RNA (lncRNA) NEAT1 was reported to promote NAFLD progress. However, its molecular mechanism in NAFLD was not fully clear. In vitro cellular model of NAFLD was established with BRL3A cell treated by free fatty acid (FFA). Cell Counting Kit-8 (CCK-8) assay was carried out to assess cell proliferation. The expression of mRNA and protein of inflammation and fibrosis in BRL3A cell was detected by qRT-PCR and Western blot. Bioinformatics and dual-luciferase reporter assays were used to predict and validate the interaction between NEAT1 and miR-506 as well as GLI3 and miR-506. NEAT1 was upregulated while miR-506 was downregulated in the progression of NAFLD. Meanwhile, NEAT1 and miR-506 were proved to regulate fibrosis, inflammatory response, and lipid metabolism. Knockdown of NEAT1 inhibited GLI3 expression and promoted miR-506 expression, Overexpression of miR-506 inhibited NEAT1 and GLI3 expression. Moreover, dual-luciferase reporter assays proved that miR-506 could bind to NEAT1 and GLI3, whereas NEAT1 could sponge miR-506 to regulate GLI3 expression. lncRNA NEAT1 could regulate fibrosis, inflammatory response, and lipid metabolism via the miR-506/GLI3 axis as a ceRNA, which is a novel mechanistic role in the regulation of NAFLD. These results provide a new potential treatment target for NAFLD.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 3","pages":"98-106"},"PeriodicalIF":2.8,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0432","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37558783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Interleukin-10 (IL-10) is a pleiotropic cytokine, which has both regulatory and stimulatory effects on different immune cell types. Different studies have reported the importance of IL-10 and Transforming growth factor-beta (TGF-β) in the regulation of B cell class switching the production of immunoglobulin A (IgA); however, the underlying mechanisms remain to be fully elucidated. The objective of this study was to investigate the TGF-β response during B stimulation of human B cells by IL-10. Pan B cells of healthy donors were negatively purified by a magnetic cell separation technique. B cells were cultured with multimeric CD40 ligand (mCD40L) and IL-10 for two and seven days. After harvesting in specific days, TGF-β receptor II and surface IgA expression was determined by flow cytometry, while IgA and TGF-β secretion was assessed by enzyme-linked immunosorbent assay. B cells endogenously expressed TGF-β receptor II and after 48 hours cultivation with mCD40L or mCD40L plus IL-10, both the expression of this receptor and the production of TGF-β were significantly increased. Notably, TGF-β levels following stimulation with mCD40L and IL-10 were higher than those produced by B cells stimulated with mCD40L alone. Furthermore, at day 7 and following IL-10 stimulation, there was a significant rise in the amount of IgA secretion by class-switched plasma cells, which was higher than stimulation with mCD40L alone. Our findings suggest that IL-10 can modulate TGF-β production and TGF-β receptor expression in mCD40-activated human B lymphocytes.
{"title":"IL-10 induces TGF-β secretion, TGF-β receptor II upregulation, and IgA secretion in B cells.","authors":"Yasser Bagheri, Fateme Babaha, Reza Falak, Reza Yazdani, Gholamreza Azizi, Maryam Sadri, Hassan Abolhassani, Mehdi Shekarabi, Asghar Aghamohammadi","doi":"10.1684/ecn.2019.0434","DOIUrl":"https://doi.org/10.1684/ecn.2019.0434","url":null,"abstract":"<p><p>Interleukin-10 (IL-10) is a pleiotropic cytokine, which has both regulatory and stimulatory effects on different immune cell types. Different studies have reported the importance of IL-10 and Transforming growth factor-beta (TGF-β) in the regulation of B cell class switching the production of immunoglobulin A (IgA); however, the underlying mechanisms remain to be fully elucidated. The objective of this study was to investigate the TGF-β response during B stimulation of human B cells by IL-10. Pan B cells of healthy donors were negatively purified by a magnetic cell separation technique. B cells were cultured with multimeric CD40 ligand (mCD40L) and IL-10 for two and seven days. After harvesting in specific days, TGF-β receptor II and surface IgA expression was determined by flow cytometry, while IgA and TGF-β secretion was assessed by enzyme-linked immunosorbent assay. B cells endogenously expressed TGF-β receptor II and after 48 hours cultivation with mCD40L or mCD40L plus IL-10, both the expression of this receptor and the production of TGF-β were significantly increased. Notably, TGF-β levels following stimulation with mCD40L and IL-10 were higher than those produced by B cells stimulated with mCD40L alone. Furthermore, at day 7 and following IL-10 stimulation, there was a significant rise in the amount of IgA secretion by class-switched plasma cells, which was higher than stimulation with mCD40L alone. Our findings suggest that IL-10 can modulate TGF-β production and TGF-β receptor expression in mCD40-activated human B lymphocytes.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 3","pages":"107-113"},"PeriodicalIF":2.8,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0434","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37558854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Maucourant, Gabriel Andrade Nonato Queiroz, Assia Samri, Maria Fernanda Rios Grassi, Hans Yssel, Vincent Vieillard
Zika virus (ZIKV) is an emerging arbovirus that causes a mosquito-borne disease. Although infection with ZIKV generally leads to mild disease, its recent emergence in the Americas has been associated with an increase in the development of the Guillain-Barré syndrome in adults, as well as with neurological complications, in particular congenital microcephaly, in new-borns. Over the five past years, through the combined efforts of the scientific community, comprehensive remarkable progress aimed at deciphering the clinical, virological, physiopathological, and immunological features of ZIKV infection. This review highlights some of the most recent advances in our understanding of the role of cytokines and chemokines in ZIKV infection, and discusses potential links to pathogenesis.
{"title":"Zika virus in the eye of the cytokine storm.","authors":"Christopher Maucourant, Gabriel Andrade Nonato Queiroz, Assia Samri, Maria Fernanda Rios Grassi, Hans Yssel, Vincent Vieillard","doi":"10.1684/ecn.2019.0433","DOIUrl":"https://doi.org/10.1684/ecn.2019.0433","url":null,"abstract":"<p><p>Zika virus (ZIKV) is an emerging arbovirus that causes a mosquito-borne disease. Although infection with ZIKV generally leads to mild disease, its recent emergence in the Americas has been associated with an increase in the development of the Guillain-Barré syndrome in adults, as well as with neurological complications, in particular congenital microcephaly, in new-borns. Over the five past years, through the combined efforts of the scientific community, comprehensive remarkable progress aimed at deciphering the clinical, virological, physiopathological, and immunological features of ZIKV infection. This review highlights some of the most recent advances in our understanding of the role of cytokines and chemokines in ZIKV infection, and discusses potential links to pathogenesis.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 3","pages":"74-81"},"PeriodicalIF":2.8,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0433","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37558855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Zhao, Gao-Yin Kong, Wan-Min Pei, Bo Zhou, Qin-Qin Zhang, Bing-Bing Pan
Dexmedetomidine (Dex), frequently used as an effective sedative, was reported to play a critical role in the protection of multiple organs. However, its underlying mechanism of a putative protective effect on ischemia/reperfusion (I/R)-induced liver injury is still unclear. A hepatocyte injury model was established by treating WRL-68 cells with oxygen and glucose deprivation/reoxygenation (OGD/R). Enzyme Linked Immunosorbent Assay (ELISA) kits were used to determine the level of inflammatory factors (IL-6, IL-1β, and TNF-α), and oxidative stress indicators (ROS, MDA, GSH-Px, and SOD). MTT assay and flow cytometry analysis were used to determine the influence of Dex on cell viability and cell apoptosis. Expression of nuclear factor erythroid-derived 2- like 2 (Nrf2), HO-1, and apoptosis-related proteins (Bax, Bcl-2, caspase3, and caspase9) were detected by qRT-PCR and western blotting. Dex promoted cell viability and suppressed cell apoptosis in OGD/R-treated WRL-68 cells. Dex reduced TNF-α, IL-6, IL-1β, ROS, and MDA production, whereas it increased that of SOD and GSH-Px in OGD/R-treated WRL-68 cells. Moreover, Nrf2, HO-1, and Bcl-2 expression was upregulated, whereas, in contrast, transcripts for Bax, caspase3, and caspase9 were downregulated following Dex treatment under OGD/R. Knockdown of Nrf2 reversed the Dex effects on cell proliferation, apoptosis, and expression of TNF-α, IL-6, IL-1β, ROS, MDA, SOD, and GSH-Px. Dex protects WRL-68 cells against OGD/R-induced injury by inhibiting inflammation, oxidative stress, and cell apoptosis via the activation of Nrf2/HO-1 signaling pathway, suggesting that Dex may be a potential protector against hepatic injury.
{"title":"Dexmedetomidine alleviates hepatic injury via the inhibition of oxidative stress and activation of the Nrf2/HO-1 signaling pathway.","authors":"Yuan Zhao, Gao-Yin Kong, Wan-Min Pei, Bo Zhou, Qin-Qin Zhang, Bing-Bing Pan","doi":"10.1684/ecn.2019.0431","DOIUrl":"https://doi.org/10.1684/ecn.2019.0431","url":null,"abstract":"<p><p>Dexmedetomidine (Dex), frequently used as an effective sedative, was reported to play a critical role in the protection of multiple organs. However, its underlying mechanism of a putative protective effect on ischemia/reperfusion (I/R)-induced liver injury is still unclear. A hepatocyte injury model was established by treating WRL-68 cells with oxygen and glucose deprivation/reoxygenation (OGD/R). Enzyme Linked Immunosorbent Assay (ELISA) kits were used to determine the level of inflammatory factors (IL-6, IL-1β, and TNF-α), and oxidative stress indicators (ROS, MDA, GSH-Px, and SOD). MTT assay and flow cytometry analysis were used to determine the influence of Dex on cell viability and cell apoptosis. Expression of nuclear factor erythroid-derived 2- like 2 (Nrf2), HO-1, and apoptosis-related proteins (Bax, Bcl-2, caspase3, and caspase9) were detected by qRT-PCR and western blotting. Dex promoted cell viability and suppressed cell apoptosis in OGD/R-treated WRL-68 cells. Dex reduced TNF-α, IL-6, IL-1β, ROS, and MDA production, whereas it increased that of SOD and GSH-Px in OGD/R-treated WRL-68 cells. Moreover, Nrf2, HO-1, and Bcl-2 expression was upregulated, whereas, in contrast, transcripts for Bax, caspase3, and caspase9 were downregulated following Dex treatment under OGD/R. Knockdown of Nrf2 reversed the Dex effects on cell proliferation, apoptosis, and expression of TNF-α, IL-6, IL-1β, ROS, MDA, SOD, and GSH-Px. Dex protects WRL-68 cells against OGD/R-induced injury by inhibiting inflammation, oxidative stress, and cell apoptosis via the activation of Nrf2/HO-1 signaling pathway, suggesting that Dex may be a potential protector against hepatic injury.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 3","pages":"88-97"},"PeriodicalIF":2.8,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0431","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37558857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since the pro-inflammatory cytokine IL-33 and its receptor (ST2) are closely involved in regulating both innate and adaptive immune responses, it is conceivable that they may play an important role in organ transplantation. IL-33 is broadly expressed by multiple cell types such as fibroblasts, epithelial cells, and endothelial cells. As a strong inducer of type 2 helper T (Th2) cellular immune responses, IL-33 can significantly prolong allograft survival in organ transplantation partially via altering gene expression profiles and increasing frequency of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Nevertheless, the IL-33 signaling pathway and its underlying mechanisms remain largely undefined in transplant biology. This present mini-review summarizes recent advances in the studies concerning the IL-33/ST2 signaling pathway and the analysis of its biological function in the field transplantation. The literature points to a deleterious role of activation of the IL-33/ST2 signaling pathway, giving rise to ischemia/reperfusion, acute kidney injury and failure, acute heart rejection, as well as liver fibrosis. Under pro-inflammatory conditions, IL-33 expression is upregulated. Alteration of IL-33 levels has been suggested as a biomarker for predicting organ injury and ongoing allogeneic transplant outcome. These studies have deepened our understanding of immunobiological role of IL-33 and its receptor in organ transplantation. Modulation of the IL-33/ST2 signaling pathway might be utilized as a therapeutic target in the clinic.
{"title":"Role of IL-33 in transplant biology","authors":"Ying Jin, Deqiang Kong, Chen Liu, W. Gong","doi":"10.1684/ecn.2019.0429","DOIUrl":"https://doi.org/10.1684/ecn.2019.0429","url":null,"abstract":"Since the pro-inflammatory cytokine IL-33 and its receptor (ST2) are closely involved in regulating both innate and adaptive immune responses, it is conceivable that they may play an important role in organ transplantation. IL-33 is broadly expressed by multiple cell types such as fibroblasts, epithelial cells, and endothelial cells. As a strong inducer of type 2 helper T (Th2) cellular immune responses, IL-33 can significantly prolong allograft survival in organ transplantation partially via altering gene expression profiles and increasing frequency of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Nevertheless, the IL-33 signaling pathway and its underlying mechanisms remain largely undefined in transplant biology. This present mini-review summarizes recent advances in the studies concerning the IL-33/ST2 signaling pathway and the analysis of its biological function in the field transplantation. The literature points to a deleterious role of activation of the IL-33/ST2 signaling pathway, giving rise to ischemia/reperfusion, acute kidney injury and failure, acute heart rejection, as well as liver fibrosis. Under pro-inflammatory conditions, IL-33 expression is upregulated. Alteration of IL-33 levels has been suggested as a biomarker for predicting organ injury and ongoing allogeneic transplant outcome. These studies have deepened our understanding of immunobiological role of IL-33 and its receptor in organ transplantation. Modulation of the IL-33/ST2 signaling pathway might be utilized as a therapeutic target in the clinic.","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 1","pages":"39 - 42"},"PeriodicalIF":2.8,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0429","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47879611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Proskurina, A. V. Spaselnikova, G. Ritter, E. Dolgova, E. Potter, M. Romanenko, S. Netesov, Y. Efremov, O. Taranov, N. Varaksin, T. Ryabicheva, A. Ostanin, E. Chernykh, S. Bogachev
The present study demonstrates that monocyte-derived dendritic cells (moDCs) produced in vitro using a GM-CSF and IFN-α differentiation protocol encompass a rare (T}5%) subpopulation of cells showing classical dendritic cell morphology and capable of natural internalization of extracellular self-DNA.We established that DEFB, HMGB1, LL-37 and RAGE antigens, which mediate the process of DNA internalization, are expressed on the surface of moDCs similar to plasmacytoid dendritic cells. However, in constrast to the latter subpopulation, these cells do not produce interleukin (IL)-37. Nonetheless, the process of DNA internalization was not in direct relation to the presence of the above antigens on the surface of these cells. Dendritic cells were sorted into total and non-DNA-internalizing populations and cytokine production was analyzed at 24-48 hours post-DNA treatment. We show that massive secretion of cytokines by dendritic cells is associated with the dsDNA-internalizing subpopulation. A total pool of IFNmoDCs secrete pro-inflammatory “first-wave” cytokines (IL-2, IL-6, IL-8, TNF-α) at both 24 and 48 hours time points. The anti-inflammatory cytokines IL-4 and IL-10 were found to be modestly induced, whereas GM-CSF, GCSF, and IFN-γ production was strongly induced. Treatment of moDCs with dsDNA results in the up-regulated transcription of IFN-α, IFN-β, IFN-γ, IL-8, IL-10, and VEGF by 6 hours. Combined dsDNA + chloroquine treatment has a synergistic effect on transcription of only one of the genes tested, with the pro-inflammatory cytokine IFN-b displaying the strongest fold induction by 24 hours.
{"title":"Features of monocyte-derived dendritic cells encompassing a rare subpopulation of cells that are capable of natural internalization of extracellular dsDNA","authors":"A. Proskurina, A. V. Spaselnikova, G. Ritter, E. Dolgova, E. Potter, M. Romanenko, S. Netesov, Y. Efremov, O. Taranov, N. Varaksin, T. Ryabicheva, A. Ostanin, E. Chernykh, S. Bogachev","doi":"10.1684/ecn.2019.0427","DOIUrl":"https://doi.org/10.1684/ecn.2019.0427","url":null,"abstract":"The present study demonstrates that monocyte-derived dendritic cells (moDCs) produced in vitro using a GM-CSF and IFN-α differentiation protocol encompass a rare (T}5%) subpopulation of cells showing classical dendritic cell morphology and capable of natural internalization of extracellular self-DNA.We established that DEFB, HMGB1, LL-37 and RAGE antigens, which mediate the process of DNA internalization, are expressed on the surface of moDCs similar to plasmacytoid dendritic cells. However, in constrast to the latter subpopulation, these cells do not produce interleukin (IL)-37. Nonetheless, the process of DNA internalization was not in direct relation to the presence of the above antigens on the surface of these cells. Dendritic cells were sorted into total and non-DNA-internalizing populations and cytokine production was analyzed at 24-48 hours post-DNA treatment. We show that massive secretion of cytokines by dendritic cells is associated with the dsDNA-internalizing subpopulation. A total pool of IFNmoDCs secrete pro-inflammatory “first-wave” cytokines (IL-2, IL-6, IL-8, TNF-α) at both 24 and 48 hours time points. The anti-inflammatory cytokines IL-4 and IL-10 were found to be modestly induced, whereas GM-CSF, GCSF, and IFN-γ production was strongly induced. Treatment of moDCs with dsDNA results in the up-regulated transcription of IFN-α, IFN-β, IFN-γ, IL-8, IL-10, and VEGF by 6 hours. Combined dsDNA + chloroquine treatment has a synergistic effect on transcription of only one of the genes tested, with the pro-inflammatory cytokine IFN-b displaying the strongest fold induction by 24 hours.","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 1","pages":"43 - 58"},"PeriodicalIF":2.8,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0427","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47556871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dewei Wang, Tianyang Gao, Yingwei Zhao, Ye Mao, Zhigang Sheng, Qing Lan
Recent studies have demonstrated that nicotine exhibited anti-inflammatory and neuroprotective properties by interacting with the alpha 7 nicotinic acetylcholine receptor (α7nAChR). However, the role of nicotine in regeneration during peripheral nerve injury has not been elucidated. The aim of this study was to investigate whether nicotine down-regulated production of proinflammatory cytokines and promoted peripheral nerve regeneration in rats. Rats challenged with sciatic nerve crush injury were treated with nicotine (1.5 mg/kg), three times per day. The expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin (IL-1β), pinch test results, growth-associated protein 43 (GAP-43) expression, morphometric analyses, and the sciatic functional indexes were determined in sciatic nerves. Treatment with nicotine decreased local levels of TNF-α and IL-1β, and increased the expression of GAP-43. Nicotine also improved nerve regeneration and functional recovery. The overall protective effects of nicotine were reversed by concomitant treatment with α7nACHR antagonist methyllycaconitine, indicating that nicotine exerted its specific anti-inflammatory and neuroprotective effects through the α7nAChR. These findings show that nicotine administration can provide a potential therapeutic pathway for the treatment of peripheral nerve injury, by a direct protective effect through the α7nAChR-mediated cholinergic anti-inflammatory pathway.
{"title":"Nicotine exerts neuroprotective effects by attenuating local inflammatory cytokine production following crush injury to rat sciatic nerves","authors":"Dewei Wang, Tianyang Gao, Yingwei Zhao, Ye Mao, Zhigang Sheng, Qing Lan","doi":"10.1684/ecn.2019.0426","DOIUrl":"https://doi.org/10.1684/ecn.2019.0426","url":null,"abstract":"Recent studies have demonstrated that nicotine exhibited anti-inflammatory and neuroprotective properties by interacting with the alpha 7 nicotinic acetylcholine receptor (α7nAChR). However, the role of nicotine in regeneration during peripheral nerve injury has not been elucidated. The aim of this study was to investigate whether nicotine down-regulated production of proinflammatory cytokines and promoted peripheral nerve regeneration in rats. Rats challenged with sciatic nerve crush injury were treated with nicotine (1.5 mg/kg), three times per day. The expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin (IL-1β), pinch test results, growth-associated protein 43 (GAP-43) expression, morphometric analyses, and the sciatic functional indexes were determined in sciatic nerves. Treatment with nicotine decreased local levels of TNF-α and IL-1β, and increased the expression of GAP-43. Nicotine also improved nerve regeneration and functional recovery. The overall protective effects of nicotine were reversed by concomitant treatment with α7nACHR antagonist methyllycaconitine, indicating that nicotine exerted its specific anti-inflammatory and neuroprotective effects through the α7nAChR. These findings show that nicotine administration can provide a potential therapeutic pathway for the treatment of peripheral nerve injury, by a direct protective effect through the α7nAChR-mediated cholinergic anti-inflammatory pathway.","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 1","pages":"59 - 66"},"PeriodicalIF":2.8,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0426","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67563231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fugang Li, Li Liu, Xiaolan Guo, Zhigang Luo, Yong Zhang, Feng Lu, Gang Wang, Tao Chen, Dezheng Chen
This study mainly to explore the change of serum cytokines in wasp sting patients and the potential correlation between cytokines and acute kidney injury (AKI) due to wasp stings. The levels of IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ in 33 wasp sting and 24 healthy people were measured by flow cytometry, the level of IL-17 was detected by enzyme-linked immunosorbent assay and the laboratory examination including inflammatory indicators, muscle enzyme markers, and renal function were detected by automatic biochemical analyzer, blood analyzer, and urine analyzer. The wasp sting patients were divided into AKI (n = 10) and non-AKI groups (n = 23). The correlation between the levels of serum cytokines and laboratory examination results was analyzed. The levels of IL-2, IL-6, IL-10, IFN-γ, and IL-17 were statistically increased in wasp sting patients compared with the controls (P < 0.05). IL-6, IL-10, and IL-17 levels were markedly increased in the AKI group compared with the non-AKI group (P < 0.05). Moreover, compared with non-AKI group, inflammatory markers and muscle enzyme markers were more abnormal in the AKI group. The positive rate of urinary occult blood in the AKI group was higher than that in the non-AKI group. The levels of IL-2, IL-4, IL-6, IFN-γ, and IL-17 correlated positively with white blood cell counts. The levels of IL-2, IL-4, IL-10, IFN-γ, and IL-17 correlated positively with the levels of serum creatinine. The levels of IL-2, IL-4, IL-10, IL-10, and IFN-γ correlated positively with the levels of C-reactive protein. The levels of IL-10, and IFN-γ correlated positively with urinary occult blood. Conclusion: Elevated levels of cytokines in wasp sting patients might be involved in the development and progression of acute kidney injury.
{"title":"Elevated cytokine levels associated with acute kidney injury due to wasp sting.","authors":"Fugang Li, Li Liu, Xiaolan Guo, Zhigang Luo, Yong Zhang, Feng Lu, Gang Wang, Tao Chen, Dezheng Chen","doi":"10.1684/ecn.2019.0425","DOIUrl":"https://doi.org/10.1684/ecn.2019.0425","url":null,"abstract":"<p><p>This study mainly to explore the change of serum cytokines in wasp sting patients and the potential correlation between cytokines and acute kidney injury (AKI) due to wasp stings. The levels of IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ in 33 wasp sting and 24 healthy people were measured by flow cytometry, the level of IL-17 was detected by enzyme-linked immunosorbent assay and the laboratory examination including inflammatory indicators, muscle enzyme markers, and renal function were detected by automatic biochemical analyzer, blood analyzer, and urine analyzer. The wasp sting patients were divided into AKI (n = 10) and non-AKI groups (n = 23). The correlation between the levels of serum cytokines and laboratory examination results was analyzed. The levels of IL-2, IL-6, IL-10, IFN-γ, and IL-17 were statistically increased in wasp sting patients compared with the controls (P < 0.05). IL-6, IL-10, and IL-17 levels were markedly increased in the AKI group compared with the non-AKI group (P < 0.05). Moreover, compared with non-AKI group, inflammatory markers and muscle enzyme markers were more abnormal in the AKI group. The positive rate of urinary occult blood in the AKI group was higher than that in the non-AKI group. The levels of IL-2, IL-4, IL-6, IFN-γ, and IL-17 correlated positively with white blood cell counts. The levels of IL-2, IL-4, IL-10, IFN-γ, and IL-17 correlated positively with the levels of serum creatinine. The levels of IL-2, IL-4, IL-10, IL-10, and IFN-γ correlated positively with the levels of C-reactive protein. The levels of IL-10, and IFN-γ correlated positively with urinary occult blood. Conclusion: Elevated levels of cytokines in wasp sting patients might be involved in the development and progression of acute kidney injury.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 1","pages":"34-38"},"PeriodicalIF":2.8,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37226508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Ebrahim Soltani, Farzaneh Rahmani, Nima Rezaei
Guillain-Barré syndrome (GBS) is the most common cause of acute paralysis in the United States. Campylobacter jejuni is a common trigger for GBS, igniting autoimmunity as a result of molecular mimicry between C. jejuni lipooligosaccharide (LOS) and host gangliosides. Evidence also suggests an active role for cell-mediated and innate immunity in pathogenesis of GBS. Infection alone is not enough for GBS to develop, infection with the same strain might yield different outcomes in different patients. C. jejuni strains with low to absent molecular mimicry to self-antigens can cause full-blown GBS with positive autoantibodies. A role for T helper 17 and IL-17 in acute phase of GBS is also identified. Currently, no biological treatment is validated for severe, ventilation-dependent patients with GBS, who might not benefit from either IVIG or plasma exchange therapy. Use of biologic agents in treatment-resistant GBS, especially anti-IL-17 agents, such as secukinumab, ixekizumab, and brodalumab, is to be hoped. This review covers up-to-date knowledge on autoimmune mechanisms responsible in different subtypes of GBS: acute inflammatory demyelinating polyneuropathy and acute motor axonal neuropathy; as well as the experimental autoimmune neuritis (EAN), a commonly used animal model of GBS.
{"title":"Autoimmunity and cytokines in Guillain-Barré syndrome revisited: review of pathomechanisms with an eye on therapeutic options.","authors":"Zahra Ebrahim Soltani, Farzaneh Rahmani, Nima Rezaei","doi":"10.1684/ecn.2019.0424","DOIUrl":"https://doi.org/10.1684/ecn.2019.0424","url":null,"abstract":"<p><p>Guillain-Barré syndrome (GBS) is the most common cause of acute paralysis in the United States. Campylobacter jejuni is a common trigger for GBS, igniting autoimmunity as a result of molecular mimicry between C. jejuni lipooligosaccharide (LOS) and host gangliosides. Evidence also suggests an active role for cell-mediated and innate immunity in pathogenesis of GBS. Infection alone is not enough for GBS to develop, infection with the same strain might yield different outcomes in different patients. C. jejuni strains with low to absent molecular mimicry to self-antigens can cause full-blown GBS with positive autoantibodies. A role for T helper 17 and IL-17 in acute phase of GBS is also identified. Currently, no biological treatment is validated for severe, ventilation-dependent patients with GBS, who might not benefit from either IVIG or plasma exchange therapy. Use of biologic agents in treatment-resistant GBS, especially anti-IL-17 agents, such as secukinumab, ixekizumab, and brodalumab, is to be hoped. This review covers up-to-date knowledge on autoimmune mechanisms responsible in different subtypes of GBS: acute inflammatory demyelinating polyneuropathy and acute motor axonal neuropathy; as well as the experimental autoimmune neuritis (EAN), a commonly used animal model of GBS.</p>","PeriodicalId":11749,"journal":{"name":"European cytokine network","volume":"30 1","pages":"1-14"},"PeriodicalIF":2.8,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1684/ecn.2019.0424","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37226509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}