Pub Date : 2023-09-28DOI: 10.1080/26395940.2023.2261776
Tianjing She, Xin Liu, Jingjing Wang, Yan Zhu
We investigated the impact of shape (beads, fibers and films) and size (0.5 and 1.0 mm; diameter or length) of polypropylene microplastics (MPs) on MP transport by a springtail species, Folsomia candida in dishes. The percentages of transported beads, fibers and films were 9.10%, 3.18% and 4.10%, respectively. For 1.0 mm MPs, the number of MPs transported was significantly higher for beads than for fibers and films, whereas, for 0.5 mm MPs, the number was significantly higher for fibers than for the other MP types. Additionally, the number of MPs transported was higher for small fibers than for large fibers, whereas it was higher for large beads than for small beads. These results indicate that the effects of F. candida on MP migration depend on MP shape and size. Our results highlight the importance of considering the physical characteristics of MPs while elucidating the interaction between soil fauna and MPs.
我们研究了形状(珠子、纤维和薄膜)和尺寸(0.5和1.0 mm)的影响;直径或长度)的聚丙烯微塑料(MPs)对MP运输的弹尾物种,假丝酵母菌在盘子。运珠率为9.10%,纤维率为3.18%,薄膜率为4.10%。对于1.0 mm MPs,微珠的MPs运输数量明显高于纤维和薄膜,而对于0.5 mm MPs,纤维的MPs运输数量明显高于其他类型的MPs。此外,小纤维的MPs转运数量高于大纤维,而大纤维的MPs转运数量高于小纤维。这些结果表明,念珠菌对MP迁移的影响取决于MP的形状和大小。我们的研究结果强调了在阐明土壤动物与MPs之间的相互作用时考虑MPs物理特性的重要性。
{"title":"Impact of size and shape in the transport of microplastics by a springtail species","authors":"Tianjing She, Xin Liu, Jingjing Wang, Yan Zhu","doi":"10.1080/26395940.2023.2261776","DOIUrl":"https://doi.org/10.1080/26395940.2023.2261776","url":null,"abstract":"We investigated the impact of shape (beads, fibers and films) and size (0.5 and 1.0 mm; diameter or length) of polypropylene microplastics (MPs) on MP transport by a springtail species, Folsomia candida in dishes. The percentages of transported beads, fibers and films were 9.10%, 3.18% and 4.10%, respectively. For 1.0 mm MPs, the number of MPs transported was significantly higher for beads than for fibers and films, whereas, for 0.5 mm MPs, the number was significantly higher for fibers than for the other MP types. Additionally, the number of MPs transported was higher for small fibers than for large fibers, whereas it was higher for large beads than for small beads. These results indicate that the effects of F. candida on MP migration depend on MP shape and size. Our results highlight the importance of considering the physical characteristics of MPs while elucidating the interaction between soil fauna and MPs.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135344398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lignin, with its rich reserves of phenolic compounds, holds great promise as a candidate for renewable energy and valuable chemical production. However, the complex molecular structure and low reactivity of lignin have impeded progress in this research direction. Consequently, the depolymerization of lignin into high-value small-molecule chemicals has become a new area of focus. Metal and metal oxides have emerged as a promising catalyst to overcome this obstacle due to their high selectivity in depolymerizing lignin and the mild reaction conditions required. This paper reviews the properties, and products of various metal and metal oxides used for lignin depolymerization under microwave, pyrolysis, hydrogenolysis, and oxidation conditions. The research prospects and challenges of metal oxide degradation of lignin are summarized to pave the way for future applications and development of lignin depolymerization.
{"title":"Catalytic depolymerization of lignin by metal and metal oxide: a review","authors":"Yiran Zhao, Hao Li, Guoqiang Chen, Hongying Huang, Enhui Sun, Ling Chen, Cheng Yong, Hongmei Jin, Shuping Wu, Ping Qu","doi":"10.1080/26395940.2023.2263168","DOIUrl":"https://doi.org/10.1080/26395940.2023.2263168","url":null,"abstract":"Lignin, with its rich reserves of phenolic compounds, holds great promise as a candidate for renewable energy and valuable chemical production. However, the complex molecular structure and low reactivity of lignin have impeded progress in this research direction. Consequently, the depolymerization of lignin into high-value small-molecule chemicals has become a new area of focus. Metal and metal oxides have emerged as a promising catalyst to overcome this obstacle due to their high selectivity in depolymerizing lignin and the mild reaction conditions required. This paper reviews the properties, and products of various metal and metal oxides used for lignin depolymerization under microwave, pyrolysis, hydrogenolysis, and oxidation conditions. The research prospects and challenges of metal oxide degradation of lignin are summarized to pave the way for future applications and development of lignin depolymerization.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135537253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-16DOI: 10.1080/26395940.2023.2257388
Karabelo Moloantoa, Zenzile Khetsha, Mokgaotsa Mochane, John Unuofin, Abdon Atangana, Errol Cason, Esta van Heerden, Julio Castillo
Sulphate (SO4) abundance in the earth’s crust contributes largely to industrial wastewater contamination lowering the pH, which exuberates the dissolution of metals forming acidic drainages. Biological sulphate reduction as a remediation process can be affected by factors such as pH, temperature and high sulphide concentrations. In this study, sulphate-reducing bacterial community enriched from mine wastewaters was applied in semi-automated bioreactors to assess the effects of these factors on microbial sulphate reduction capacities. Low pH (3.5) and temperature (10°C) were observed to promote the toxicity of sulphur-reduced species on the consortium while mesophilic temperature (25°C) and near neutral pH (6.2) were observed to induce optimum SO4 reduction attaining a maximum of 95% SO4 reduction. Obtained SO4 reduction dynamics data was then applied in formulating a unique non-competitive inhibition equation that models biogeochemical events during SO4 reduction under varied pH and temperature conditions and predicts the efficacy of a bioremediation system.
{"title":"Evaluating the effects of pH and temperature on sulphate-reducing bacteria and modelling of their effects in stirred bioreactors","authors":"Karabelo Moloantoa, Zenzile Khetsha, Mokgaotsa Mochane, John Unuofin, Abdon Atangana, Errol Cason, Esta van Heerden, Julio Castillo","doi":"10.1080/26395940.2023.2257388","DOIUrl":"https://doi.org/10.1080/26395940.2023.2257388","url":null,"abstract":"Sulphate (SO4) abundance in the earth’s crust contributes largely to industrial wastewater contamination lowering the pH, which exuberates the dissolution of metals forming acidic drainages. Biological sulphate reduction as a remediation process can be affected by factors such as pH, temperature and high sulphide concentrations. In this study, sulphate-reducing bacterial community enriched from mine wastewaters was applied in semi-automated bioreactors to assess the effects of these factors on microbial sulphate reduction capacities. Low pH (3.5) and temperature (10°C) were observed to promote the toxicity of sulphur-reduced species on the consortium while mesophilic temperature (25°C) and near neutral pH (6.2) were observed to induce optimum SO4 reduction attaining a maximum of 95% SO4 reduction. Obtained SO4 reduction dynamics data was then applied in formulating a unique non-competitive inhibition equation that models biogeochemical events during SO4 reduction under varied pH and temperature conditions and predicts the efficacy of a bioremediation system.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135307313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-08DOI: 10.1080/26395940.2023.2254493
T. Manyiwa, Venecio Ultra, Mosimanegape Hengari, Gaolathe Rantong
ABSTRACT The environmental impact of the abandoned Monarch Gold Mine in Botswana was analysed based on the concentrations of As, Mn, Cu, Cr and Zr in tailings and its vicinity, and the plants growing in the area. Results showed that the soil in the tailings dam (TD) and in the vicinity of the tailings dam (VTD), and the river sediments (RS) were severely contaminated with pollution load index (PLI) ranging from 1.89 to 2.86 in decreasing magnitude from TD>VTD> RS. The main contaminant is As but Cu, Cr and Zr are all also slightly above the critical values for soil. The TD has fewer plant species than VTD and accumulated elevated levels of these heavy metals (HM). The livestock grazing on these plants also consume the soil which could result to HM bioaccumulation. Therefore, proper management of the site is recommended to prevent the spread of pollutants and exposure to HM by animals and humans.
{"title":"Spatial variability of heavy metals in soils and vegetation and associated risk to grazing animals in the abandoned gold mine in Francistown, Botswana","authors":"T. Manyiwa, Venecio Ultra, Mosimanegape Hengari, Gaolathe Rantong","doi":"10.1080/26395940.2023.2254493","DOIUrl":"https://doi.org/10.1080/26395940.2023.2254493","url":null,"abstract":"ABSTRACT The environmental impact of the abandoned Monarch Gold Mine in Botswana was analysed based on the concentrations of As, Mn, Cu, Cr and Zr in tailings and its vicinity, and the plants growing in the area. Results showed that the soil in the tailings dam (TD) and in the vicinity of the tailings dam (VTD), and the river sediments (RS) were severely contaminated with pollution load index (PLI) ranging from 1.89 to 2.86 in decreasing magnitude from TD>VTD> RS. The main contaminant is As but Cu, Cr and Zr are all also slightly above the critical values for soil. The TD has fewer plant species than VTD and accumulated elevated levels of these heavy metals (HM). The livestock grazing on these plants also consume the soil which could result to HM bioaccumulation. Therefore, proper management of the site is recommended to prevent the spread of pollutants and exposure to HM by animals and humans.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87795171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-04DOI: 10.1080/26395940.2023.2253996
Sk Abdul Kader Arafin, Md Musfike Meraz, H. Abdo, Md. Habibur Rahman Sobuz, Md. Montaseer Meraz, M. J. Abedin, J. Ferdous, A.K.M. Fazlul Hoque, Hussein Almohamad, Ahmed Abdullah Al Dughairi, Jasem A. Albanai
ABSTRACT The present study analyzed soil samples from flood-prone Unions in two Coastal Upazilas of Bangladesh using Proton Induced X-Ray Emission (PIXE) techniques with Van de Graaff Accelerator for detecting heavy trace elements and Gamma spectrometry techniques. The findings indicate that while Potassium (averaging 19,62 μg/g for Sutarkhali; 21364.67 μg/g for Amtoli) and Calcium (averaging 36,923.92 μg/g for Sutarkhali; 30404.33 μg/g for Amtoli) levels were high naturally, the levels of Lead (averaging 71.8 μg/g for Sutarkhali; 171.44 μg/g for Amtoli), and Chromium (averaging 6.87 μg/g for Sutarkhali; 340.22 μg/g for Amtoli) were posing a serious risk to the inhabitants. The evaluation contamination factor (CF), pollution load index (PLI), potential ecological risk index (ERI) and health risk assessment indicate severe heavy metal pollution in both regions, with young children being particularly vulnerable to lead poisoning. Nonetheless, the radiation levels were below the safe limit set by the International Atomic Energy Agency (IAEA).
{"title":"Soil contamination and health risk assessment at coastal Upazilas of the Bangladesh: a case study","authors":"Sk Abdul Kader Arafin, Md Musfike Meraz, H. Abdo, Md. Habibur Rahman Sobuz, Md. Montaseer Meraz, M. J. Abedin, J. Ferdous, A.K.M. Fazlul Hoque, Hussein Almohamad, Ahmed Abdullah Al Dughairi, Jasem A. Albanai","doi":"10.1080/26395940.2023.2253996","DOIUrl":"https://doi.org/10.1080/26395940.2023.2253996","url":null,"abstract":"ABSTRACT The present study analyzed soil samples from flood-prone Unions in two Coastal Upazilas of Bangladesh using Proton Induced X-Ray Emission (PIXE) techniques with Van de Graaff Accelerator for detecting heavy trace elements and Gamma spectrometry techniques. The findings indicate that while Potassium (averaging 19,62 μg/g for Sutarkhali; 21364.67 μg/g for Amtoli) and Calcium (averaging 36,923.92 μg/g for Sutarkhali; 30404.33 μg/g for Amtoli) levels were high naturally, the levels of Lead (averaging 71.8 μg/g for Sutarkhali; 171.44 μg/g for Amtoli), and Chromium (averaging 6.87 μg/g for Sutarkhali; 340.22 μg/g for Amtoli) were posing a serious risk to the inhabitants. The evaluation contamination factor (CF), pollution load index (PLI), potential ecological risk index (ERI) and health risk assessment indicate severe heavy metal pollution in both regions, with young children being particularly vulnerable to lead poisoning. Nonetheless, the radiation levels were below the safe limit set by the International Atomic Energy Agency (IAEA).","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86365662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1080/26395940.2023.2248384
Chao Zhang, Fujie Zhai, Xudong Deng, Baoqing Shan
ABSTRACT We investigated the contents and distributions of nutrients and heavy metals in sediment from the Yitong River. The main aims were to analyze heavy metals speciation and evaluate their bioavailability, in order to assess the risks they pose to both ecosystem and human health. The average total nitrogen (TN), total phosphorus (TP), organic matter (OM) and Cd, Cr, Cu, Ni, Pb and Zn contents were 1747.69, 895.58, 75103, 0.19, 75.64, 33.61, 47.17, 56.65 and 159.91 mg kg−1, respectively. Results from acid-extraction fraction analysis showed that the proportions of Cd and Zn ranged from 3.78% to 30.20% and 5.31% to 30.74%, respectively. Health risk assessment model showed the risk index values of children and adults were 0.412 and 0.059, respectively, indicating a minimal threat to human health. Multivariate statistical analyses revealed that TN and TP may have similar sources and could be attributed to combined sewer overflows, while Cr, Cu, Ni and Zn were primarily derived from industrial pollution sources. Toxicity bioassay tests demonstrated that the majority of sediment samples were classified as non-toxic. However, 25% of the samples showed slight toxicity towards Vibrio qinghaiensis Q67, while 7% of the samples exhibited slight toxicity towards Daphnia magna. Based on these findings, it is necessary to implement pollution control measures and conduct assessments of aquatic ecological risks in sediments from urban rivers. These results can be used to develop effective strategies for the management and governance of aquatic sediments.
{"title":"Spatial distribution, ecotoxicity and human health assessment of nutrients and heavy metals in river sediment under urbanization – A study case of Yitong River, China","authors":"Chao Zhang, Fujie Zhai, Xudong Deng, Baoqing Shan","doi":"10.1080/26395940.2023.2248384","DOIUrl":"https://doi.org/10.1080/26395940.2023.2248384","url":null,"abstract":"ABSTRACT We investigated the contents and distributions of nutrients and heavy metals in sediment from the Yitong River. The main aims were to analyze heavy metals speciation and evaluate their bioavailability, in order to assess the risks they pose to both ecosystem and human health. The average total nitrogen (TN), total phosphorus (TP), organic matter (OM) and Cd, Cr, Cu, Ni, Pb and Zn contents were 1747.69, 895.58, 75103, 0.19, 75.64, 33.61, 47.17, 56.65 and 159.91 mg kg−1, respectively. Results from acid-extraction fraction analysis showed that the proportions of Cd and Zn ranged from 3.78% to 30.20% and 5.31% to 30.74%, respectively. Health risk assessment model showed the risk index values of children and adults were 0.412 and 0.059, respectively, indicating a minimal threat to human health. Multivariate statistical analyses revealed that TN and TP may have similar sources and could be attributed to combined sewer overflows, while Cr, Cu, Ni and Zn were primarily derived from industrial pollution sources. Toxicity bioassay tests demonstrated that the majority of sediment samples were classified as non-toxic. However, 25% of the samples showed slight toxicity towards Vibrio qinghaiensis Q67, while 7% of the samples exhibited slight toxicity towards Daphnia magna. Based on these findings, it is necessary to implement pollution control measures and conduct assessments of aquatic ecological risks in sediments from urban rivers. These results can be used to develop effective strategies for the management and governance of aquatic sediments.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78133339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-25DOI: 10.1080/26395940.2023.2250912
Kefei Sun, Jie Kong, Jiale Gao, Yan Fang, Jiaqi Shi, Zixuan Jiang, Kongyong Ouyang, Tao Ge, Ting Fang, Yangyang Shi, Ningyuan Zhang, Xinju Dong, Yunhua Zhang, Hui Li
ABSTRACT Heavy metals contamination in soil from copper mine areas is a serious and widespread problem in China. In this study, the content of Tl, Hg, Cu, Cd, Ni, Pb and As and probabilistic human health risks were investigated in a typical copper mining city. Copper showed the highest average content of 184.29 mg/kg, followed by Pb, As, Ni, Tl, Cd and Hg. Approximately 54.2% of study sites were moderately contaminated by Cu, Cd, As and Tl. Among the heavy metals, Hg, Cu and Cd showed relatively high mobility and medium risk in the environment based on the chemical speciation. In particular, Tl was mainly present as Tl(I) in soil with more biovailability and solubility. Moreover, the probabilistic human health risk assessment using Monte-Carlo approach revealed that heavy metals in soil can cause non-carcinogenic risks (adults: 0.03%, children: 48.45%) and carcinogenic risks (adults: 41.79%; children 61.98%). The soil oral ingestion is the main exposure pathway for human exposed to heavy metals. Our findings indicate that the copper mining activities can cause high level of heavy metals in soils, and corresponding health risks. Meanwhile, these results could provide important information and theoretical support the development of precise soil pollution management strategies in copper mining areas.
{"title":"Pollution characteristics and probabilistic human health risks of thallium and other heavy metals in soils from a typical copper mining city in the Yangtze river Delta, eastern China","authors":"Kefei Sun, Jie Kong, Jiale Gao, Yan Fang, Jiaqi Shi, Zixuan Jiang, Kongyong Ouyang, Tao Ge, Ting Fang, Yangyang Shi, Ningyuan Zhang, Xinju Dong, Yunhua Zhang, Hui Li","doi":"10.1080/26395940.2023.2250912","DOIUrl":"https://doi.org/10.1080/26395940.2023.2250912","url":null,"abstract":"ABSTRACT Heavy metals contamination in soil from copper mine areas is a serious and widespread problem in China. In this study, the content of Tl, Hg, Cu, Cd, Ni, Pb and As and probabilistic human health risks were investigated in a typical copper mining city. Copper showed the highest average content of 184.29 mg/kg, followed by Pb, As, Ni, Tl, Cd and Hg. Approximately 54.2% of study sites were moderately contaminated by Cu, Cd, As and Tl. Among the heavy metals, Hg, Cu and Cd showed relatively high mobility and medium risk in the environment based on the chemical speciation. In particular, Tl was mainly present as Tl(I) in soil with more biovailability and solubility. Moreover, the probabilistic human health risk assessment using Monte-Carlo approach revealed that heavy metals in soil can cause non-carcinogenic risks (adults: 0.03%, children: 48.45%) and carcinogenic risks (adults: 41.79%; children 61.98%). The soil oral ingestion is the main exposure pathway for human exposed to heavy metals. Our findings indicate that the copper mining activities can cause high level of heavy metals in soils, and corresponding health risks. Meanwhile, these results could provide important information and theoretical support the development of precise soil pollution management strategies in copper mining areas.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75803430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-15DOI: 10.1080/26395940.2023.2242701
Arun Kumar, P. Yadav, Shikha Singh, Anita Singh
ABSTRACT The continuous application of pesticides leads to several harmful effects on the ecosystem and get accumulated in the food chain. To regulate the toxicity of pesticides there are several strategies available. In relation to this, the endogenous as well as exogenous role of salicylic acid in pesticide regulation is less overviewed. To regulate the pesticide stress, in presence of salicylic acid, the genes, and proteins related to reduced glutathione (GSH) metabolism, biosynthesis of secondary metabolites, glyoxylate, and dicarboxylate metabolism get upregulated and are found to be more differentially expressed for pesticide detoxification. Salicylic acid regulates pesticide toxicity by activating gene expression of P450, antioxidant enzymes, ABC transporters subfamilies to form a defense network. In this context, the present review tries to comprehend the pesticide detoxification processes involving salicylic acid to regulate the stress caused thereby in plants and further utilize this strategy for wider application.
{"title":"An overview on the modulation of pesticide detoxification mechanism via salicylic acid in the plants","authors":"Arun Kumar, P. Yadav, Shikha Singh, Anita Singh","doi":"10.1080/26395940.2023.2242701","DOIUrl":"https://doi.org/10.1080/26395940.2023.2242701","url":null,"abstract":"ABSTRACT The continuous application of pesticides leads to several harmful effects on the ecosystem and get accumulated in the food chain. To regulate the toxicity of pesticides there are several strategies available. In relation to this, the endogenous as well as exogenous role of salicylic acid in pesticide regulation is less overviewed. To regulate the pesticide stress, in presence of salicylic acid, the genes, and proteins related to reduced glutathione (GSH) metabolism, biosynthesis of secondary metabolites, glyoxylate, and dicarboxylate metabolism get upregulated and are found to be more differentially expressed for pesticide detoxification. Salicylic acid regulates pesticide toxicity by activating gene expression of P450, antioxidant enzymes, ABC transporters subfamilies to form a defense network. In this context, the present review tries to comprehend the pesticide detoxification processes involving salicylic acid to regulate the stress caused thereby in plants and further utilize this strategy for wider application.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82214218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.1080/26395940.2023.2238895
Jiaxin Wang, Qingye Hou, Zhongfang Yang, Tao Yu, Riyang Wen
Evaluating the variation in heavy metal concentrations in soil caused by anthropogenic activities in heavily contaminated areas is of great significance. The degree of heavy metal pollution in soil is primarily assessed by different indices with different standards and reference elements. However, these methods cannot be used to evaluate the degree of heavy metal pollution caused by anthropogenic activities. In this study, Zhuzhou, China was selected as the contaminated area, and Yueyang, China was selected as the background area, where geological and climatic conditions are similar to those of Zhuzhou, China. The concentrations of As (6.6–23.6 mg/kg), Cd (0.125–0.757 mg/kg), Cu (33–75 mg/kg), Hg (0.032–0.202 mg/kg), Pb (17–108 mg/kg), and Zn (74–122 mg/kg) in the vertical soil profiles in the contaminated area were higher than those in the background area (ranging 1.7–20.7, 0.085–0.210, 21–47, 0.030–0.105, 17–38 and 32–88 mg/kg, respectively). K2O/Al2O3, SiO2/Al2O3, and the weathering leaching coefficient (ba) showed little difference, suggesting that the weathering degree of soil in these two areas was similar. The weathering degree of soil governs the geochemical behavior of heavy metals and reference elements. According to the prediction models for heavy metal concentrations and organic carbon, K2O/Al2O3, and SiO2/Al2O3 in the soil profiles from the background area, the increase in heavy metal concentrations in the topsoil in the contaminated area was depicted. The heavy metal concentrations in topsoil were obviously affected by anthropogenic activities. This study provides a case study for evaluating the impact of anthropogenic activities on heavy metals in soil.
{"title":"Anthropogenic increase of heavy metals in soil from a heavily contaminated area of China","authors":"Jiaxin Wang, Qingye Hou, Zhongfang Yang, Tao Yu, Riyang Wen","doi":"10.1080/26395940.2023.2238895","DOIUrl":"https://doi.org/10.1080/26395940.2023.2238895","url":null,"abstract":"Evaluating the variation in heavy metal concentrations in soil caused by anthropogenic activities in heavily contaminated areas is of great significance. The degree of heavy metal pollution in soil is primarily assessed by different indices with different standards and reference elements. However, these methods cannot be used to evaluate the degree of heavy metal pollution caused by anthropogenic activities. In this study, Zhuzhou, China was selected as the contaminated area, and Yueyang, China was selected as the background area, where geological and climatic conditions are similar to those of Zhuzhou, China. The concentrations of As (6.6–23.6 mg/kg), Cd (0.125–0.757 mg/kg), Cu (33–75 mg/kg), Hg (0.032–0.202 mg/kg), Pb (17–108 mg/kg), and Zn (74–122 mg/kg) in the vertical soil profiles in the contaminated area were higher than those in the background area (ranging 1.7–20.7, 0.085–0.210, 21–47, 0.030–0.105, 17–38 and 32–88 mg/kg, respectively). K2O/Al2O3, SiO2/Al2O3, and the weathering leaching coefficient (ba) showed little difference, suggesting that the weathering degree of soil in these two areas was similar. The weathering degree of soil governs the geochemical behavior of heavy metals and reference elements. According to the prediction models for heavy metal concentrations and organic carbon, K2O/Al2O3, and SiO2/Al2O3 in the soil profiles from the background area, the increase in heavy metal concentrations in the topsoil in the contaminated area was depicted. The heavy metal concentrations in topsoil were obviously affected by anthropogenic activities. This study provides a case study for evaluating the impact of anthropogenic activities on heavy metals in soil.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACT Biosolid-borne heavy metals are the main concern in soils. Therefore, the effects of biosolid biochar application in soils were evaluated in our study through a rice-wheat rotation in fields. The results showed that after the application of biosolid biochar, soil organic matter (SOM), soil pH, and soil total heavy metal concentrations (Cd, Zn, Cu, and Pb) were significantly increased. But the CaCl2 extracted metals concentrations were decreased, and no significant differences in metal concentrations of soil deeper layers (20–100 cm) were found among different treatments. The Cd, Zn, Cu, and Pb concentrations in rice decreased by 13.2%, 37.0%, 9.92%, and 63.0%, respectively, and the concentrations of Cd, Zn, Cu, and Pb in wheat decreased by 20.85%, 19.7%, 48.6%, and 23.6%, respectively, compared with the control treatment. Biosolid biochar can decrease metal availability in soils and increase crop production in fields, thus is suggested to use in fields.
{"title":"Effects of biosolid biochar on crop production and metal accumulation through a rice-wheat rotation system in fields","authors":"Yonghua Liu, Guoqiang Liu, Jialing Zhang, Haidong Li, Jing Wu","doi":"10.1080/26395940.2023.2240016","DOIUrl":"https://doi.org/10.1080/26395940.2023.2240016","url":null,"abstract":"ABSTRACT Biosolid-borne heavy metals are the main concern in soils. Therefore, the effects of biosolid biochar application in soils were evaluated in our study through a rice-wheat rotation in fields. The results showed that after the application of biosolid biochar, soil organic matter (SOM), soil pH, and soil total heavy metal concentrations (Cd, Zn, Cu, and Pb) were significantly increased. But the CaCl2 extracted metals concentrations were decreased, and no significant differences in metal concentrations of soil deeper layers (20–100 cm) were found among different treatments. The Cd, Zn, Cu, and Pb concentrations in rice decreased by 13.2%, 37.0%, 9.92%, and 63.0%, respectively, and the concentrations of Cd, Zn, Cu, and Pb in wheat decreased by 20.85%, 19.7%, 48.6%, and 23.6%, respectively, compared with the control treatment. Biosolid biochar can decrease metal availability in soils and increase crop production in fields, thus is suggested to use in fields.","PeriodicalId":11785,"journal":{"name":"Environmental Pollutants and Bioavailability","volume":null,"pages":null},"PeriodicalIF":3.3,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79661558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}