K. Samarkhanov, M. Khasenov, E. Batyrbekov, Y. Gordienko, Y. Baklanova, I. Kenzhina, Y. Tulubayev, I. Karambayeva
The present paper examines the luminescence of ternary Ar-Kr-Xe and Ne-Ar-Kr mixtures of noble gases in the spectral range from 300 to 970 nm, excited by the 6Li(n,α)3H nuclear reaction products in the core of a nuclear reactor. A thin layer of lithium applied on the walls of the experimental device, stabilized in the matrix of the capillary-porous structure, serves as a source of gas excitation. During in-pile tests, conducted at the IVG.1M research reactor, thermal neutrons interact via the 6Li(n,α)3H reaction, and the emergent alpha particles with a kinetic energy of 2.05 MeV and tritium ions with a kinetic energy of 2.73 MeV excite gaseous medium. The study was carried out in a wide temperature range. The temperature dependence of the intensity of the emission of the atoms of noble gases and alkali metals, heteronuclear ionic molecules of noble gases were studied. The obtained values of the activation energy of the emission process 1.58 eV for lithium and 0.72 eV for potassium agree well with the known values of evaporation energy. Excitation of alkali metals atoms occurs consequently of the Penning process of alkali metals atoms on noble gas atoms in the 1s-states and further ion-molecular reactions.
{"title":"Optical Radiation from the Sputtered Species under Excitation of Ternary Mixtures of Noble Gases by the 6Li(n,α)3H Nuclear Reaction Products","authors":"K. Samarkhanov, M. Khasenov, E. Batyrbekov, Y. Gordienko, Y. Baklanova, I. Kenzhina, Y. Tulubayev, I. Karambayeva","doi":"10.18321/ectj1079","DOIUrl":"https://doi.org/10.18321/ectj1079","url":null,"abstract":"The present paper examines the luminescence of ternary Ar-Kr-Xe and Ne-Ar-Kr mixtures of noble gases in the spectral range from 300 to 970 nm, excited by the 6Li(n,α)3H nuclear reaction products in the core of a nuclear reactor. A thin layer of lithium applied on the walls of the experimental device, stabilized in the matrix of the capillary-porous structure, serves as a source of gas excitation. During in-pile tests, conducted at the IVG.1M research reactor, thermal neutrons interact via the 6Li(n,α)3H reaction, and the emergent alpha particles with a kinetic energy of 2.05 MeV and tritium ions with a kinetic energy of 2.73 MeV excite gaseous medium. The study was carried out in a wide temperature range. The temperature dependence of the intensity of the emission of the atoms of noble gases and alkali metals, heteronuclear ionic molecules of noble gases were studied. The obtained values of the activation energy of the emission process 1.58 eV for lithium and 0.72 eV for potassium agree well with the known values of evaporation energy. Excitation of alkali metals atoms occurs consequently of the Penning process of alkali metals atoms on noble gas atoms in the 1s-states and further ion-molecular reactions.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45966888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The evolution of the Universe proceeds through the persistent complication of the appearing objects. As the constituent objects become more complex, the intensity of their energy exchange with the environment increases, which is necessary to counteract entropic processes. Our Civilization is the most complex of the natural systems, with the development of which its energy consumption has constantly increased and will inevitably increase in the future. This will happen regardless of the sources of energy, be it fossil hydrocarbons, thermonuclear energy, or solar radiation, which is the only primary source of all renewable energy. The use of the latter on a global scale will reduce the Earth’s albedo. Maintaining the thermal balance of the Earth by increasing the emission of low-potential IR radiation into space will require an increase in surface temperature. Thus, the current strategy of managing climate processes by reducing greenhouse gas emissions is in princi¬ple not capable of preventing the inevitable future global warming caused by the progressive development of Civilization, but will require enormous funds, energy, natural resources and intellectual potential. Until more realistic ideas about the ways of development of Civilization and the corresponding strategic decisions are put forward, the most rational tactic of our relationship with the environment is not to stave off inevitable changes, but to prepare for them.
{"title":"Is it Possible to Stabilize the Earth Climate by Transition to Renewable Energy?","authors":"V. Arutyunov","doi":"10.18321/ectj1076","DOIUrl":"https://doi.org/10.18321/ectj1076","url":null,"abstract":"The evolution of the Universe proceeds through the persistent complication of the appearing objects. As the constituent objects become more complex, the intensity of their energy exchange with the environment increases, which is necessary to counteract entropic processes. Our Civilization is the most complex of the natural systems, with the development of which its energy consumption has constantly increased and will inevitably increase in the future. This will happen regardless of the sources of energy, be it fossil hydrocarbons, thermonuclear energy, or solar radiation, which is the only primary source of all renewable energy. The use of the latter on a global scale will reduce the Earth’s albedo. Maintaining the thermal balance of the Earth by increasing the emission of low-potential IR radiation into space will require an increase in surface temperature. Thus, the current strategy of managing climate processes by reducing greenhouse gas emissions is in princi¬ple not capable of preventing the inevitable future global warming caused by the progressive development of Civilization, but will require enormous funds, energy, natural resources and intellectual potential. Until more realistic ideas about the ways of development of Civilization and the corresponding strategic decisions are put forward, the most rational tactic of our relationship with the environment is not to stave off inevitable changes, but to prepare for them.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43418601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. J. Seidualiyeva, K. Kamunur, R. Abdulkarimova, U. Onuralp, A. Batkal
Borides and carbides attract the attention of developers of heat-resistant and super hard structural materials due to a unique combination of their resistance to high-temperature oxidation, high hardness, wear resistance, electrical and thermal conductivity and etc. The article presents experimental results on obtaining composites based on TiB2-TiC-Al2O3, CrB2-Al2O3 by a method combining self-propagating high-temperature synthesis (SHS) and mechanical activation (MA). The influence of the composition of the initial components, the conditions of SHS and preliminary MA on the formation of the microstructure and phase composition of the SHS-composite based on titanium carbide and titanium, chromium borides has been studied. The SHS products were examined by X-ray diffraction analysis and a scanning electron microscope. High-temperature phases of borides of chromium, titanium, aluminum oxide and their spinel are found in SHS products.
{"title":"Synthesis of Composite Materials based on TiB2–TiC–Al2O3 and CrB2-Al2O3 in the Combustion Conditions","authors":"A. J. Seidualiyeva, K. Kamunur, R. Abdulkarimova, U. Onuralp, A. Batkal","doi":"10.18321/ectj1081","DOIUrl":"https://doi.org/10.18321/ectj1081","url":null,"abstract":"Borides and carbides attract the attention of developers of heat-resistant and super hard structural materials due to a unique combination of their resistance to high-temperature oxidation, high hardness, wear resistance, electrical and thermal conductivity and etc. The article presents experimental results on obtaining composites based on TiB2-TiC-Al2O3, CrB2-Al2O3 by a method combining self-propagating high-temperature synthesis (SHS) and mechanical activation (MA). The influence of the composition of the initial components, the conditions of SHS and preliminary MA on the formation of the microstructure and phase composition of the SHS-composite based on titanium carbide and titanium, chromium borides has been studied. The SHS products were examined by X-ray diffraction analysis and a scanning electron microscope. High-temperature phases of borides of chromium, titanium, aluminum oxide and their spinel are found in SHS products.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41485253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Zhakirova, R. Salakhov, L. Sassykova, R. Khamidullin, T. Deberdeev, U.R. Yalyshev, A.R. Khamidi, T. Seilkhanov
The article presents the results of the electromagnetic activation of petroleum feed in the vortex layer apparatus. It is shown that under the electromagnetic influence, there is a significant increase in the proportion of straight-run gasoline fraction distillate, as well as a change in the physicochemical parameters of the light fractions obtained as a result of the cavitation effect and the low-temperature cracking. It has been established that the processes of wave action on oil occurring in the electromagnetic field zone lead to a change in the individual and group hydrocarbon composition of the distillates obtained. The gasoline fraction produced from activated petroleum, due to an increase in the proportion of aromatic compounds, has a high octane number compared to the original straight-run fraction and low content of alkenes, which allows us to recommend its use as a high-octane component of motor fuels in the compounding and production of commercial gasoline.
{"title":"Increasing the Yield of Light Distillates by Wave Action on Oil Raw Materials","authors":"N. Zhakirova, R. Salakhov, L. Sassykova, R. Khamidullin, T. Deberdeev, U.R. Yalyshev, A.R. Khamidi, T. Seilkhanov","doi":"10.18321/ectj1083","DOIUrl":"https://doi.org/10.18321/ectj1083","url":null,"abstract":"The article presents the results of the electromagnetic activation of petroleum feed in the vortex layer apparatus. It is shown that under the electromagnetic influence, there is a significant increase in the proportion of straight-run gasoline fraction distillate, as well as a change in the physicochemical parameters of the light fractions obtained as a result of the cavitation effect and the low-temperature cracking. It has been established that the processes of wave action on oil occurring in the electromagnetic field zone lead to a change in the individual and group hydrocarbon composition of the distillates obtained. The gasoline fraction produced from activated petroleum, due to an increase in the proportion of aromatic compounds, has a high octane number compared to the original straight-run fraction and low content of alkenes, which allows us to recommend its use as a high-octane component of motor fuels in the compounding and production of commercial gasoline.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48664661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Sekerbayev, G. K. Mussabek, Yerkin Shabdan, Y. Taurbayev
Organometal perovskite nanocrystals have shown remarkable properties not only in photovoltaics, but also in light-emitting devices. In this work colloidal nanocrystals of organometal perovskite CH3NH3PbBr3 (MAPBr) with effective visible photoluminescence were synthesized by the ligand assisted reprecipitation method. The studies were carried out by photoluminescence spectroscopy and optical transmission spectroscopy. Analysis of the photoluminescence and transmission spectra showed that by changing the concentration of the ligands oleylamine and octylamine, it is possible to control the size of nanocrystals and the photoluminescence wavelength due to the quantum confinement effect. It was shown that the increase in ligands concentration in MAPBr perovskite nanocrystals (NCs) solutions decreases the width of the peak which indicates a better quality of the obtained nanocrystals. An increase in the band gap indicates a decrease in the size of the nanocrystals. Replacing the ligands in the colloidal perovskite NCs solutions leads to shift of the photoluminescence peak from 456 to 535 nm.
{"title":"Ligand Assisted Control of Photoluminescence in Organometal Perovskite Nanocrystals","authors":"K. Sekerbayev, G. K. Mussabek, Yerkin Shabdan, Y. Taurbayev","doi":"10.18321/ectj1078","DOIUrl":"https://doi.org/10.18321/ectj1078","url":null,"abstract":"Organometal perovskite nanocrystals have shown remarkable properties not only in photovoltaics, but also in light-emitting devices. In this work colloidal nanocrystals of organometal perovskite CH3NH3PbBr3 (MAPBr) with effective visible photoluminescence were synthesized by the ligand assisted reprecipitation method. The studies were carried out by photoluminescence spectroscopy and optical transmission spectroscopy. Analysis of the photoluminescence and transmission spectra showed that by changing the concentration of the ligands oleylamine and octylamine, it is possible to control the size of nanocrystals and the photoluminescence wavelength due to the quantum confinement effect. It was shown that the increase in ligands concentration in MAPBr perovskite nanocrystals (NCs) solutions decreases the width of the peak which indicates a better quality of the obtained nanocrystals. An increase in the band gap indicates a decrease in the size of the nanocrystals. Replacing the ligands in the colloidal perovskite NCs solutions leads to shift of the photoluminescence peak from 456 to 535 nm.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48994153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. N. Zhabayeva, M.T. Velyamov, N.E. Nakypbekova, S. Dolgikh, S. Adekenov
The article discusses the use of supercritical fluid extraction in the technology for the isolation of resveratrol, a phenolic compound found in Vitis vinifera L. A technology was developed for obtaining the sum of polyphenolic compounds with a quantitative content of resveratrol. As a raw material for the production of the substance, Vitis pomace was used after the production of wine and juice, which makes it possible to introduce complex processing of plant raw materials. For the first time, by the method of carbon dioxide extraction, the conditions for the isolation of resveratrol from Vitis pomace raw materials of the Kazakhstani varieties Saperavi and Cabernet were optimized. The influence of pressure (from 10 to 35 MPa), duration (from 60 to 180 min), temperature (from 50 to 70 °C) was studied when optimizing the extraction mode. The quantitative content of resveratrol in carbon dioxide extracts was determined by high-performance liquid chromatography( HPLC). The optimal parameters for the extraction of Vitis vinifera L. pomace (pressure, duration, temperature) were established, which provide a relatively high content of resveratrol in the extracts.
{"title":"Supercritical Fluid Extraction in Resveratrol Isolation Technology","authors":"A. N. Zhabayeva, M.T. Velyamov, N.E. Nakypbekova, S. Dolgikh, S. Adekenov","doi":"10.18321/ectj1082","DOIUrl":"https://doi.org/10.18321/ectj1082","url":null,"abstract":"The article discusses the use of supercritical fluid extraction in the technology for the isolation of resveratrol, a phenolic compound found in Vitis vinifera L. A technology was developed for obtaining the sum of polyphenolic compounds with a quantitative content of resveratrol. As a raw material for the production of the substance, Vitis pomace was used after the production of wine and juice, which makes it possible to introduce complex processing of plant raw materials. For the first time, by the method of carbon dioxide extraction, the conditions for the isolation of resveratrol from Vitis pomace raw materials of the Kazakhstani varieties Saperavi and Cabernet were optimized. The influence of pressure (from 10 to 35 MPa), duration (from 60 to 180 min), temperature (from 50 to 70 °C) was studied when optimizing the extraction mode. The quantitative content of resveratrol in carbon dioxide extracts was determined by high-performance liquid chromatography( HPLC). The optimal parameters for the extraction of Vitis vinifera L. pomace (pressure, duration, temperature) were established, which provide a relatively high content of resveratrol in the extracts.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42207038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tongfei Cheng, Jinxing Cao, Xiaohong Jiang, M. Yarmolenko, A. Rogachev, A. Rogachev
In this paper, icaritin film was prepared by low-energy beam electron beam deposition (EBD). The material test showed that the structure and composition of icaritin were not changed after electron beam deposition. Then, the film was sliced and immersed in simulated body fluids, it can be seen that the film was released quickly in the first 7 days. With the extension of soaking time, the release rate gradually slowed down, and the release amount exceeded 90% in about 20 days. In vitro cytotoxicity test showed that the relative cell viability rate of the film was still 92.32±1.30% (p<0.05), indicating that the film possessed excellent cytocompatibility.
{"title":"Study of Icaritin Films by Low-Energy Electron Beam Deposition","authors":"Tongfei Cheng, Jinxing Cao, Xiaohong Jiang, M. Yarmolenko, A. Rogachev, A. Rogachev","doi":"10.18321/ectj1077","DOIUrl":"https://doi.org/10.18321/ectj1077","url":null,"abstract":"In this paper, icaritin film was prepared by low-energy beam electron beam deposition (EBD). The material test showed that the structure and composition of icaritin were not changed after electron beam deposition. Then, the film was sliced and immersed in simulated body fluids, it can be seen that the film was released quickly in the first 7 days. With the extension of soaking time, the release rate gradually slowed down, and the release amount exceeded 90% in about 20 days. In vitro cytotoxicity test showed that the relative cell viability rate of the film was still 92.32±1.30% (p<0.05), indicating that the film possessed excellent cytocompatibility.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48012787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. H. Nguyen, Y. Konyukhov, N. Minh, D. Karpenkov, V. Levina, G. Karunakaran, A. G. Buchirina
This research study describes the magnetic properties of Fe, Co and Ni metallic nanopowders (NPs) and their ternary nanocomposites (NCs), which can be used as fillers in radio-wave absorbing composite materials and coatings, as well as for magnetic protection of banknotes and security paper. The nanopowders were prepared by the chemical metallurgy method. The desired properties of Fe, Co and Ni NPs and NCs were achieved by co-precipitation, the addition of surfactants and changes in reduction temperature and time parameters. Magnetic measurements showed that all samples of pure metal NPs are semi-hard magnetic materials. The added surfactants have distinct effects on the dimensional and magnetic characteristics of Fe, Co and Ni NPs. Ni–Co–Fe NCs are also mainly semi-hard magnetic materials. Fine-tuning of their composition and chemical reduction temperatures allows controlling the values of Ms and Hc in large ranges from 49 to 197 A·m2/kg and from 4.7 to 60.6 kA/m, respectively.
{"title":"Magnetic Properties of Fe, Co and Ni Based Nanopowders Produced by Chemical-Metallurgy Method","authors":"T. H. Nguyen, Y. Konyukhov, N. Minh, D. Karpenkov, V. Levina, G. Karunakaran, A. G. Buchirina","doi":"10.18321/ECTJ1028","DOIUrl":"https://doi.org/10.18321/ECTJ1028","url":null,"abstract":"This research study describes the magnetic properties of Fe, Co and Ni metallic nanopowders (NPs) and their ternary nanocomposites (NCs), which can be used as fillers in radio-wave absorbing composite materials and coatings, as well as for magnetic protection of banknotes and security paper. The nanopowders were prepared by the chemical metallurgy method. The desired properties of Fe, Co and Ni NPs and NCs were achieved by co-precipitation, the addition of surfactants and changes in reduction temperature and time parameters. Magnetic measurements showed that all samples of pure metal NPs are semi-hard magnetic materials. The added surfactants have distinct effects on the dimensional and magnetic characteristics of Fe, Co and Ni NPs. Ni–Co–Fe NCs are also mainly semi-hard magnetic materials. Fine-tuning of their composition and chemical reduction temperatures allows controlling the values of Ms and Hc in large ranges from 49 to 197 A·m2/kg and from 4.7 to 60.6 kA/m, respectively.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":"23 1","pages":"3-8"},"PeriodicalIF":0.5,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49128681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Filatov, M. Kopytov, V. S. Ovsyannikova, E. El’chaninova
The possibility of biochemical oxidation of polyaromatic hydrocarbon mixtures (PAHs) by the mixed culture of hydrocarbon-oxidizing microorganisms (HOM) in a liquid medium and soil was investigated. The mixed HOM culture was represented by Pseudomonas stutzeri, Pseudomonas putida, Bacillus cereus, and Arthrobacter globiformis genera. It was shown that during HOM cultivation of the microorganisms under study in the liquid medium their number increases from 0.25·104 to 11·108 CFU/ml, which is accompanied by an increase in their oxygenase activity. All PAHs identified were subjected to oxidation from 11.3 to 100%. The results of experiments on biodegradation of PAHs under natural conditions have shown that for 60 days the total utilization of oil products in soils was on the average 65% of the initial contamination. This suggests the prospects for the use of the mixed HOM culture under study for effective biodegradation of PAHs polluting soil and waste waters.
{"title":"Oxidation of a Mixture of Polyaromatic Hydrocarbons by a Mixed Culture of Hydrocarbon-Oxidizing Microorganisms","authors":"D. Filatov, M. Kopytov, V. S. Ovsyannikova, E. El’chaninova","doi":"10.18321/ECTJ1034","DOIUrl":"https://doi.org/10.18321/ECTJ1034","url":null,"abstract":"The possibility of biochemical oxidation of polyaromatic hydrocarbon mixtures (PAHs) by the mixed culture of hydrocarbon-oxidizing microorganisms (HOM) in a liquid medium and soil was investigated. The mixed HOM culture was represented by Pseudomonas stutzeri, Pseudomonas putida, Bacillus cereus, and Arthrobacter globiformis genera. It was shown that during HOM cultivation of the microorganisms under study in the liquid medium their number increases from 0.25·104 to 11·108 CFU/ml, which is accompanied by an increase in their oxygenase activity. All PAHs identified were subjected to oxidation from 11.3 to 100%. The results of experiments on biodegradation of PAHs under natural conditions have shown that for 60 days the total utilization of oil products in soils was on the average 65% of the initial contamination. This suggests the prospects for the use of the mixed HOM culture under study for effective biodegradation of PAHs polluting soil and waste waters.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":"23 1","pages":"59-65"},"PeriodicalIF":0.5,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45028646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yernat Kozhakhmetov, М. Skakov, S. Kurbanbekov, N. Mukhamedov, N. Mukhamedov
The results of a study of the microstructure evolution of pre-mechanically activated elementary powders based on the Ti-25Al-25Nb (at.%) compositions differing in the particle size of the aluminum (Al) component are presented. It was found that during the mechanical activation, most of the Al was dissolved in the Ti and Nb lattices by interpenetration with the formation of solid solutions (Ti, Al) and (Nb, Al). It has been established that an increase in temperature to 1400 °C, when sintering powder materials based on the Ti-Al-Nb system, leads to a sharp increase in the temperature of Al particles, as a result of the melting of which it is impossible to control the phase formation, which ultimately leads to the difficulty of obtaining the required product. It was determined that in the process of spark-plasma sintering of mechanically activated compositions, intermetallic compounds are formed based on phases ‒ α2, B2 and O, and with an increase in the sintering temperature, their morphology and distribution in the alloy volume change.
{"title":"Powder Composition Structurization of the Ti-25Al-25Nb (at.%) System upon Mechanical Activation and Subsequent Spark Plasma Sintering","authors":"Yernat Kozhakhmetov, М. Skakov, S. Kurbanbekov, N. Mukhamedov, N. Mukhamedov","doi":"10.18321/ECTJ1032","DOIUrl":"https://doi.org/10.18321/ECTJ1032","url":null,"abstract":"The results of a study of the microstructure evolution of pre-mechanically activated elementary powders based on the Ti-25Al-25Nb (at.%) compositions differing in the particle size of the aluminum (Al) component are presented. It was found that during the mechanical activation, most of the Al was dissolved in the Ti and Nb lattices by interpenetration with the formation of solid solutions (Ti, Al) and (Nb, Al). It has been established that an increase in temperature to 1400 °C, when sintering powder materials based on the Ti-Al-Nb system, leads to a sharp increase in the temperature of Al particles, as a result of the melting of which it is impossible to control the phase formation, which ultimately leads to the difficulty of obtaining the required product. It was determined that in the process of spark-plasma sintering of mechanically activated compositions, intermetallic compounds are formed based on phases ‒ α2, B2 and O, and with an increase in the sintering temperature, their morphology and distribution in the alloy volume change.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":"23 1","pages":"37-44"},"PeriodicalIF":0.5,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42195583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}