Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03857.x
Sylvain Ladame, Marcelo S Castilho, Carlos H T P Silva, Colette Denier, Véronique Hannaert, Jacques Périé, Glaucius Oliva, Michèle Willson
We report here the first crystal structure of a stable isosteric analogue of 1,3-bisphospho-d-glyceric acid (1,3-BPGA) bound to the catalytic domain of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) in which the two phosphoryl moieties interact with Arg249. This complex possibly illustrates a step of the catalytic process by which Arg249 may induce compression of the product formed, allowing its expulsion from the active site. Structural modifications were introduced into this isosteric analogue and the respective inhibitory effects of the resulting diphosphorylated compounds on T. cruzi and Trypanosoma brucei gGAPDHs were investigated by enzymatic inhibition studies, fluorescence spectroscopy, site-directed mutagenesis, and molecular modelling. Despite the high homology between the two trypanomastid gGAPDHs (> 95%), we have identified specific interactions that could be used to design selective irreversible inhibitors against T. cruzi gGAPDH.
{"title":"Crystal structure of Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase complexed with an analogue of 1,3-bisphospho-d-glyceric acid.","authors":"Sylvain Ladame, Marcelo S Castilho, Carlos H T P Silva, Colette Denier, Véronique Hannaert, Jacques Périé, Glaucius Oliva, Michèle Willson","doi":"10.1046/j.1432-1033.2003.03857.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03857.x","url":null,"abstract":"<p><p>We report here the first crystal structure of a stable isosteric analogue of 1,3-bisphospho-d-glyceric acid (1,3-BPGA) bound to the catalytic domain of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) in which the two phosphoryl moieties interact with Arg249. This complex possibly illustrates a step of the catalytic process by which Arg249 may induce compression of the product formed, allowing its expulsion from the active site. Structural modifications were introduced into this isosteric analogue and the respective inhibitory effects of the resulting diphosphorylated compounds on T. cruzi and Trypanosoma brucei gGAPDHs were investigated by enzymatic inhibition studies, fluorescence spectroscopy, site-directed mutagenesis, and molecular modelling. Despite the high homology between the two trypanomastid gGAPDHs (> 95%), we have identified specific interactions that could be used to design selective irreversible inhibitors against T. cruzi gGAPDH.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 22","pages":"4574-86"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03857.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24079706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03802.x
Marco H Hefti, Jacques Vervoort, Willem J H van Berkel
Flavoproteins are ubiquitous redox proteins that are involved in many biological processes. In the majority of flavoproteins, the flavin cofactor is tightly but noncovalently bound. Reversible dissociation of flavoproteins into apoprotein and flavin prosthetic group yields valuable insights in flavoprotein folding, function and mechanism. Replacement of the natural cofactor with artificial flavins has proved to be especially useful for the determination of the solvent accessibility, polarity, reaction stereochemistry and dynamic behaviour of flavoprotein active sites. In this review we summarize the advances made in the field of flavoprotein deflavination and reconstitution. Several sophisticated chromatographic procedures to either deflavinate or reconstitute the flavoprotein on a large scale are discussed. In a subset of flavoproteins, the flavin cofactor is covalently attached to the polypeptide chain. Studies from riboflavin-deficient expression systems and site-directed mutagenesis suggest that the flavinylation reaction is a post-translational, rather than a cotranslational, process. These genetic approaches have also provided insight into the mechanism of covalent flavinylation and the rationale for this atypical protein modification.
{"title":"Deflavination and reconstitution of flavoproteins.","authors":"Marco H Hefti, Jacques Vervoort, Willem J H van Berkel","doi":"10.1046/j.1432-1033.2003.03802.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03802.x","url":null,"abstract":"<p><p>Flavoproteins are ubiquitous redox proteins that are involved in many biological processes. In the majority of flavoproteins, the flavin cofactor is tightly but noncovalently bound. Reversible dissociation of flavoproteins into apoprotein and flavin prosthetic group yields valuable insights in flavoprotein folding, function and mechanism. Replacement of the natural cofactor with artificial flavins has proved to be especially useful for the determination of the solvent accessibility, polarity, reaction stereochemistry and dynamic behaviour of flavoprotein active sites. In this review we summarize the advances made in the field of flavoprotein deflavination and reconstitution. Several sophisticated chromatographic procedures to either deflavinate or reconstitute the flavoprotein on a large scale are discussed. In a subset of flavoproteins, the flavin cofactor is covalently attached to the polypeptide chain. Studies from riboflavin-deficient expression systems and site-directed mutagenesis suggest that the flavinylation reaction is a post-translational, rather than a cotranslational, process. These genetic approaches have also provided insight into the mechanism of covalent flavinylation and the rationale for this atypical protein modification.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4227-42"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03802.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24079708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03828.x
Maghil Denis, P D Mercy Palatty, N Renuka Bai, S Jeya Suriya
A naturally occurring hemagglutinin was detected in the serum of the freshwater crab, Paratelphusa jacquemontii (Rathbun). Hemagglutination activity with different mammalian erythrocytes suggested a strong affinity of the serum agglutinin for horse and rabbit erythrocytes. The most potent inhibitor of hemagglutination proved to be bovine submaxillary mucin. The lectin was purified by affinity chromatography using bovine submaxillary mucin-coupled agarose. The molecular mass of the purified lectin was 34 kDa as determined by SDS/PAGE. The hemagglutination of purified lectin was inhibited by N-acetylneuraminic acid but not by N-glycolylneuraminic acid, even at a concentration of 100 mm. Bovine submaxillary mucin, which contains mainly 9-O-acetyl- and 8,9 di-O-acety-N-acetyl neuraminic acid was the most potent inhibitor of the lectin. Sialidase treatment and de-O-acetylation of bovine submaxillary mucin abolished its inhibitory capacity completely. Also, asialo-rabbit erythrocytes lost there binding specificity towards the lectin. The findings indicated an O-acetyl neuraminic acid specificity of the lectin.
在淡水蟹(Paratelphusa jacquemontii, Rathbun)的血清中检测到一种天然存在的血凝素。与不同哺乳动物红细胞的血凝活性表明,血清凝集素对马和兔红细胞具有较强的亲和力。最有效的血凝抑制剂被证明是牛颌下粘蛋白。用牛颌下黏液偶联琼脂糖亲和层析纯化凝集素。经SDS/PAGE测定,纯化的凝集素分子量为34 kDa。在浓度为100 mm时,n -乙酰神经氨酸对凝集素的血凝作用有抑制作用,而n -糖基神经氨酸对凝集素的血凝作用无抑制作用。牛颌下粘蛋白主要含有9- o -乙酰和8,9 -二- o -乙酰- n -乙酰神经氨酸,是最有效的凝集素抑制剂。唾液酸酶处理和去氧乙酰化处理使牛颌下黏液蛋白的抑制能力完全丧失。同时,亚细亚兔红细胞也失去了对凝集素的结合特异性。结果表明,该凝集素具有o -乙酰基神经氨酸特异性。
{"title":"Purification and characterization of a sialic acid specific lectin from the hemolymph of the freshwater crab Paratelphusa jacquemontii.","authors":"Maghil Denis, P D Mercy Palatty, N Renuka Bai, S Jeya Suriya","doi":"10.1046/j.1432-1033.2003.03828.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03828.x","url":null,"abstract":"<p><p>A naturally occurring hemagglutinin was detected in the serum of the freshwater crab, Paratelphusa jacquemontii (Rathbun). Hemagglutination activity with different mammalian erythrocytes suggested a strong affinity of the serum agglutinin for horse and rabbit erythrocytes. The most potent inhibitor of hemagglutination proved to be bovine submaxillary mucin. The lectin was purified by affinity chromatography using bovine submaxillary mucin-coupled agarose. The molecular mass of the purified lectin was 34 kDa as determined by SDS/PAGE. The hemagglutination of purified lectin was inhibited by N-acetylneuraminic acid but not by N-glycolylneuraminic acid, even at a concentration of 100 mm. Bovine submaxillary mucin, which contains mainly 9-O-acetyl- and 8,9 di-O-acety-N-acetyl neuraminic acid was the most potent inhibitor of the lectin. Sialidase treatment and de-O-acetylation of bovine submaxillary mucin abolished its inhibitory capacity completely. Also, asialo-rabbit erythrocytes lost there binding specificity towards the lectin. The findings indicated an O-acetyl neuraminic acid specificity of the lectin.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4348-55"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03828.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24080711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03856.x
Sylwia Kedracka-Krok, Zygmunt Wasylewski
Tetracycline repressor (TetR), which constitutes the most common mechanism of bacterial resistance to an antibiotic, is a homodimeric protein composed of two identical subunits, each of which contains a domain possessing a helix-turn-helix motif and a domain responsible for binding tetracycline. Binding of tetracycline in the protein pocket is accompanied by conformational changes in TetR, which abolish the specific interaction between the protein and DNA. Differential scanning calorimetry (DSC) and CD measurements, performed at pH 8.0, were used to observe the thermal denaturation of TetR in the absence and presence of tetracycline. The DSC results show that, in the absence of tetracycline, the thermally induced transitions of TetR can be described as an irreversible process, strongly dependent on scan rate and indicating that the protein denaturation is under kinetic control described by the simple kinetic scheme: N(2)--->D(2), where k is a first-order kinetic constant, N is the native state, and D is the denatured state. On the other hand, analysis of the scan rate effect on the transitions of TetR in the presence of tetracycline shows that thermal unfolding of the protein can be described by the two-state model: N(2)<--->U(2)--->D. In the proposed model, TetR in the presence of tetracycline undergoes co-operative unfolding, characterized by an enthalpy change (DeltaH(cal) = 1067 kJ x mol(-1)) and an entropy change (DeltaS = 3.1 kJ x mol(-1)).
四环素抑制因子(TetR)是细菌对抗生素产生耐药性的最常见机制,它是一种同二聚体蛋白,由两个相同的亚基组成,每个亚基都包含一个具有螺旋-螺旋-螺旋基序的结构域和一个负责结合四环素的结构域。四环素在蛋白质口袋中的结合伴随着TetR的构象变化,从而取消了蛋白质与DNA之间的特异性相互作用。采用差示扫描量热法(DSC)和CD法,在pH 8.0下观察四环素存在和不存在时TetR的热变性。DSC结果表明,在没有四环素的情况下,TetR的热诱导转变可以描述为一个不可逆的过程,强烈依赖于扫描速率,表明蛋白质变性受动力学控制,动力学模式为N(2)- >D(2),其中k为一级动力学常数,N为天然态,D为变性态。另一方面,分析扫描速率对四环素存在下TetR跃迁的影响表明,蛋白质的热展开可以用两态模型来描述:N(2)U(2)—>D。在提出的模型中,四环素存在时,TetR进行协同展开,其特征是焓变化(δ tah (cal) = 1067 kJ x mol(-1))和熵变化(δ tas = 3.1 kJ x mol(-1))。
{"title":"A differential scanning calorimetry study of tetracycline repressor.","authors":"Sylwia Kedracka-Krok, Zygmunt Wasylewski","doi":"10.1046/j.1432-1033.2003.03856.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03856.x","url":null,"abstract":"<p><p>Tetracycline repressor (TetR), which constitutes the most common mechanism of bacterial resistance to an antibiotic, is a homodimeric protein composed of two identical subunits, each of which contains a domain possessing a helix-turn-helix motif and a domain responsible for binding tetracycline. Binding of tetracycline in the protein pocket is accompanied by conformational changes in TetR, which abolish the specific interaction between the protein and DNA. Differential scanning calorimetry (DSC) and CD measurements, performed at pH 8.0, were used to observe the thermal denaturation of TetR in the absence and presence of tetracycline. The DSC results show that, in the absence of tetracycline, the thermally induced transitions of TetR can be described as an irreversible process, strongly dependent on scan rate and indicating that the protein denaturation is under kinetic control described by the simple kinetic scheme: N(2)--->D(2), where k is a first-order kinetic constant, N is the native state, and D is the denatured state. On the other hand, analysis of the scan rate effect on the transitions of TetR in the presence of tetracycline shows that thermal unfolding of the protein can be described by the two-state model: N(2)<--->U(2)--->D. In the proposed model, TetR in the presence of tetracycline undergoes co-operative unfolding, characterized by an enthalpy change (DeltaH(cal) = 1067 kJ x mol(-1)) and an entropy change (DeltaS = 3.1 kJ x mol(-1)).</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 22","pages":"4564-73"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03856.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24079705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03822.x
Henrik Karring, Asgeir Björnsson, Søren Thirup, Brian F C Clark, Charlotte R Knudsen
Elongation factor Ts (EF-Ts) is the guanine nucleotide-exchange factor for elongation factor Tu (EF-Tu) that is responsible for promoting the binding of aminoacyl-tRNA to the mRNA-programmed ribosome. The structure of the Escherichia coli EF-Tu-EF-Ts complex reveals a protruding antiparallel coiled-coil motif in EF-Ts, which is responsible for the dimerization of EF-Ts in the crystal. In this study, the sequence encoding the coiled-coil motif in EF-Ts was deleted from the genome in Escherichia coli by gene replacement. The growth rate of the resulting mutant strain was 70-95% of that of the wild-type strain, depending on the growth conditions used. The mutant strain sensed amino acid starvation and synthesized the nucleotides guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate at a lower cell density than the wild-type strain. Deletion of the coiled-coil motif only partially reduced the ability of EF-Ts to stimulate the guanine nucleotide exchange in EF-Tu. However, the concentration of guanine nucleotides (GDP and GTP) required to dissociate the mutant EF-Tu-EF-Ts complex was at least two orders of magnitude lower than that for the wild-type complex. The results show that the coiled-coil motif plays a significant role in the ability of EF-Ts to compete with guanine nucleotides for the binding to EF-Tu. The present results also indicate that the deletion alters the competition between EF-Ts and kirromycin for the binding to EF-Tu.
{"title":"Functional effects of deleting the coiled-coil motif in Escherichia coli elongation factor Ts.","authors":"Henrik Karring, Asgeir Björnsson, Søren Thirup, Brian F C Clark, Charlotte R Knudsen","doi":"10.1046/j.1432-1033.2003.03822.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03822.x","url":null,"abstract":"<p><p>Elongation factor Ts (EF-Ts) is the guanine nucleotide-exchange factor for elongation factor Tu (EF-Tu) that is responsible for promoting the binding of aminoacyl-tRNA to the mRNA-programmed ribosome. The structure of the Escherichia coli EF-Tu-EF-Ts complex reveals a protruding antiparallel coiled-coil motif in EF-Ts, which is responsible for the dimerization of EF-Ts in the crystal. In this study, the sequence encoding the coiled-coil motif in EF-Ts was deleted from the genome in Escherichia coli by gene replacement. The growth rate of the resulting mutant strain was 70-95% of that of the wild-type strain, depending on the growth conditions used. The mutant strain sensed amino acid starvation and synthesized the nucleotides guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate at a lower cell density than the wild-type strain. Deletion of the coiled-coil motif only partially reduced the ability of EF-Ts to stimulate the guanine nucleotide exchange in EF-Tu. However, the concentration of guanine nucleotides (GDP and GTP) required to dissociate the mutant EF-Tu-EF-Ts complex was at least two orders of magnitude lower than that for the wild-type complex. The results show that the coiled-coil motif plays a significant role in the ability of EF-Ts to compete with guanine nucleotides for the binding to EF-Tu. The present results also indicate that the deletion alters the competition between EF-Ts and kirromycin for the binding to EF-Tu.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4294-305"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03822.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24080705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03811.x
Ricarda Jahnel, Olaf Bender, Lisa M Münter, Mathias Dreger, Clemens Gillen, Ferdinand Hucho
The vanilloid-like TRP-channel VRL-1 (TRPV2) is a nonselective cation channel expressed by primary sensory neurons and non-neuronal tissues [Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J and Julius, D. (1999) Nature 398, 436-441]. It is one of the six members of the vanilloid-like TRP-channel family which is now termed the TRPV family [Montell, G., Birnbaumer, L., Flockerzi, V., Bindels, R.J., Brutford, E.A., Caterina, M.J., Clapham, D.E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A.M., Schultz, G., Shimizu, N. and Zhu, M.X. (2002) Mol. Cell 2, 229-231]. As it is a temperature-gated channel, VRL-1 appears to be functionally related to VR1. In contrast to VR1, VRL-1 is activated at a higher temperature threshold and it does not respond to capsaicin or protons. Here we describe the expression of VRL-1 in the rat dorsal root ganglion-derived cell line F-11, a hybridoma of mouse neuroblastoma (N18TG2) and rat dorsal root ganglion cells. We found by RT-PCR that F-11 cells express not only the rat VRL-1, but also its mouse orthologue in a single cell. The F-11 parental cell line N18TG2 also expressed murine VRL-1. Due to its neuronal character, the DRG-derived F-11 cell line provides an experimental system for the study of VRL-1 biochemistry. However, one has to be aware that both the mouse and the rat protein are expressed simultaneously. Furthermore we cloned VRL-1 from rat brain and analyzed its glycosylation and localization in comparison to the endogenously expressed protein in F-11 cells. In contrast to the endogenous VRL-1 the overexpressed protein is glycosylated. Similar to VR1 the glycosylation is N-linked as shown by an deglycosylation assay. Immunofluorescence analysis of the endogenous VRL-1 in F-11 cells gives only weak signals in the cytoplasm whereas the overexpressed rat VRL-1 appears mainly at the plasma membrane.
{"title":"Dual expression of mouse and rat VRL-1 in the dorsal root ganglion derived cell line F-11 and biochemical analysis of VRL-1 after heterologous expression.","authors":"Ricarda Jahnel, Olaf Bender, Lisa M Münter, Mathias Dreger, Clemens Gillen, Ferdinand Hucho","doi":"10.1046/j.1432-1033.2003.03811.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03811.x","url":null,"abstract":"<p><p>The vanilloid-like TRP-channel VRL-1 (TRPV2) is a nonselective cation channel expressed by primary sensory neurons and non-neuronal tissues [Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J and Julius, D. (1999) Nature 398, 436-441]. It is one of the six members of the vanilloid-like TRP-channel family which is now termed the TRPV family [Montell, G., Birnbaumer, L., Flockerzi, V., Bindels, R.J., Brutford, E.A., Caterina, M.J., Clapham, D.E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A.M., Schultz, G., Shimizu, N. and Zhu, M.X. (2002) Mol. Cell 2, 229-231]. As it is a temperature-gated channel, VRL-1 appears to be functionally related to VR1. In contrast to VR1, VRL-1 is activated at a higher temperature threshold and it does not respond to capsaicin or protons. Here we describe the expression of VRL-1 in the rat dorsal root ganglion-derived cell line F-11, a hybridoma of mouse neuroblastoma (N18TG2) and rat dorsal root ganglion cells. We found by RT-PCR that F-11 cells express not only the rat VRL-1, but also its mouse orthologue in a single cell. The F-11 parental cell line N18TG2 also expressed murine VRL-1. Due to its neuronal character, the DRG-derived F-11 cell line provides an experimental system for the study of VRL-1 biochemistry. However, one has to be aware that both the mouse and the rat protein are expressed simultaneously. Furthermore we cloned VRL-1 from rat brain and analyzed its glycosylation and localization in comparison to the endogenously expressed protein in F-11 cells. In contrast to the endogenous VRL-1 the overexpressed protein is glycosylated. Similar to VR1 the glycosylation is N-linked as shown by an deglycosylation assay. Immunofluorescence analysis of the endogenous VRL-1 in F-11 cells gives only weak signals in the cytoplasm whereas the overexpressed rat VRL-1 appears mainly at the plasma membrane.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4264-71"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03811.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24079711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03823.x
Albana Rexhepaj, Huanfa Liu, Jing Peng, Yves Choffat, Eric Kubli
Mating elicits two postmating responses in many insect females: the egg laying rate increases and sexual receptivity is reduced. In Drosophila melanogaster, two peptides of the male genital tract, sex-peptide and DUP99B, elicit these postmating responses when injected into virgin females. Here we show that the gene encoding DUP99B is expressed in the male ejaculatory duct and in the cardia of both sexes. The DUP99B that is synthesized in the ejaculatory duct is transferred, during mating, into the female genital tract. Expression of the gene is first seen in a late pupal stage. Males containing an intact ejaculatory duct, but lacking accessory glands, initiate the two postmating responses in their female partners [Xue, L. & Noll, M. (2000) Proc. Natl Acad. Sci. USA97, 3272-3275]. Although such males synthesize DUP99B in wild-type quantities, they elicit only weak postmating responses in their mating partners. Males lacking the Dup99B gene elicit the two postmating responses to the same extent as wild-type males. These results suggest that both sex-peptide and DUP99B can elicit both responses in vivo. However, sex-peptide seems to play the major role in eliciting the postmating responses, while DUP99B may have specialized for other, as yet unknown, functions.
交配在许多昆虫雌性中引起两种交配后反应:产卵率增加和性接受性降低。在黑腹果蝇中,雄性生殖道的两种多肽,性肽和DUP99B,当注射到处女雌性体内时,会引起这些交配后反应。在这里,我们发现编码DUP99B的基因在男性射精管和两性心脏中表达。在射精管中合成的DUP99B在交配过程中被转移到女性生殖道。该基因的表达最早见于蛹后期。含有完整射精管但缺乏附属腺的雄性,在其雌性伴侣中发起两种交配后反应[Xue, L. & Noll, M. (2000) Proc. Natl Acad. Sci.]USA97, 3272 - 3275]。尽管这些雄性在野生型中大量合成DUP99B,但它们在交配伴侣中只引起微弱的交配后反应。缺乏Dup99B基因的雄性与野生型雄性在交配后产生这两种反应的程度相同。这些结果表明,性别肽和DUP99B都可以在体内引起这两种反应。然而,性肽似乎在诱导交配后反应中起主要作用,而DUP99B可能具有其他尚未可知的功能。
{"title":"The sex-peptide DUP99B is expressed in the male ejaculatory duct and in the cardia of both sexes.","authors":"Albana Rexhepaj, Huanfa Liu, Jing Peng, Yves Choffat, Eric Kubli","doi":"10.1046/j.1432-1033.2003.03823.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03823.x","url":null,"abstract":"<p><p>Mating elicits two postmating responses in many insect females: the egg laying rate increases and sexual receptivity is reduced. In Drosophila melanogaster, two peptides of the male genital tract, sex-peptide and DUP99B, elicit these postmating responses when injected into virgin females. Here we show that the gene encoding DUP99B is expressed in the male ejaculatory duct and in the cardia of both sexes. The DUP99B that is synthesized in the ejaculatory duct is transferred, during mating, into the female genital tract. Expression of the gene is first seen in a late pupal stage. Males containing an intact ejaculatory duct, but lacking accessory glands, initiate the two postmating responses in their female partners [Xue, L. & Noll, M. (2000) Proc. Natl Acad. Sci. USA97, 3272-3275]. Although such males synthesize DUP99B in wild-type quantities, they elicit only weak postmating responses in their mating partners. Males lacking the Dup99B gene elicit the two postmating responses to the same extent as wild-type males. These results suggest that both sex-peptide and DUP99B can elicit both responses in vivo. However, sex-peptide seems to play the major role in eliciting the postmating responses, while DUP99B may have specialized for other, as yet unknown, functions.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4306-14"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03823.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24080706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reactive oxygen species (ROS) are products of normal metabolic activities and are thought to be the cause of many diseases. A selenium-containing single-chain abzyme 2F3 (Se-2F3-scFv) that imitates glutathione peroxidase has been produced which has the capacity to remove ROS. To evaluate the antioxidant ability of Se-2F3-scFv, we constructed a ferrous sulfate/ascorbate (Vc/Fe2+)-induced mitochondrial damage model system and investigated the capacity of Se-2F3-scFv to protect mitochondria from oxidative damage. Se-2F3-scFv markedly decreased mitochondrial swelling, inhibited lipid peroxidation, and maintained the activity of cytochrome c oxidase, in comparison with Ebselen, a well-studied glutathione peroxidase mimic, indicating that Se-2F3-scFv has potential for treating diseases mediated by ROS.
{"title":"A selenium-containing single-chain abzyme with potent antioxidant activity.","authors":"Delin You, Xiaojun Ren, Yan Xue, Guimin Luo, Tongshu Yang, Jiacong Shen","doi":"10.1046/j.1432-1033.2003.03825.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03825.x","url":null,"abstract":"<p><p>Reactive oxygen species (ROS) are products of normal metabolic activities and are thought to be the cause of many diseases. A selenium-containing single-chain abzyme 2F3 (Se-2F3-scFv) that imitates glutathione peroxidase has been produced which has the capacity to remove ROS. To evaluate the antioxidant ability of Se-2F3-scFv, we constructed a ferrous sulfate/ascorbate (Vc/Fe2+)-induced mitochondrial damage model system and investigated the capacity of Se-2F3-scFv to protect mitochondria from oxidative damage. Se-2F3-scFv markedly decreased mitochondrial swelling, inhibited lipid peroxidation, and maintained the activity of cytochrome c oxidase, in comparison with Ebselen, a well-studied glutathione peroxidase mimic, indicating that Se-2F3-scFv has potential for treating diseases mediated by ROS.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4326-31"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03825.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24080708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03806.x
Paul M J Clement, C Allen Henderson, Zandra A Jenkins, Zeljka Smit-McBride, Edith C Wolff, John W B Hershey, Myung Hee Park, Hans E Johansson
The phylogenetically conserved eukaryotic translation initiation factor 5A (eIF5A) is the only known cellular protein to contain the post-translationally derived amino acid hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Both eIF5A and its hypusine modification are essential for sustained cell proliferation. Normally only one eIF5A protein is expressed in human cells. Recently, we identified a second human EIF5A gene that would encode an isoform (eIF5A-2) of 84% sequence identity. Overexpression of eIF5A-2 mRNA in certain human cancer cells, in contrast to weak normal expression limited to human testis and brain, suggests EIF5A2 as a potential oncogene. However, eIF5A-2 protein has not been described in human or mammalian cells heretofore. Here, we describe the identification of eIF5A-2 protein in human colorectal and ovarian cancer lines, SW-480 and UACC-1598, that overexpress eIF5A-2 mRNAs. Functional characterization of the human isoforms revealed that either human EIF5A gene can complement growth of a yeast strain in which the yeast EIF5A genes were disrupted. This indicates functional similarity of the human isoforms in yeast and suggests that eIF5A-2 has an important role in eukaryotic cell survival similar to that of the ubiquitous eIF5A-1. Detectable structural differences were also noted, including lack of immunological cross-reactivity, formation of different complexes with deoxyhypusine synthase, and Km values (1.5 +/- 0.2 vs. 8.3 +/- 1.4 microm for eIF5A-1 and -2, respectively) as substrates for deoxyhypusine synthase in vitro. These physical characteristics and distinct amino acid sequences in the C-terminal domain together with differences in gene expression patterns imply differentiated, tissue-specific functions of the eIF5A-2 isoform in the mammalian organism and in cancer.
{"title":"Identification and characterization of eukaryotic initiation factor 5A-2.","authors":"Paul M J Clement, C Allen Henderson, Zandra A Jenkins, Zeljka Smit-McBride, Edith C Wolff, John W B Hershey, Myung Hee Park, Hans E Johansson","doi":"10.1046/j.1432-1033.2003.03806.x","DOIUrl":"10.1046/j.1432-1033.2003.03806.x","url":null,"abstract":"<p><p>The phylogenetically conserved eukaryotic translation initiation factor 5A (eIF5A) is the only known cellular protein to contain the post-translationally derived amino acid hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Both eIF5A and its hypusine modification are essential for sustained cell proliferation. Normally only one eIF5A protein is expressed in human cells. Recently, we identified a second human EIF5A gene that would encode an isoform (eIF5A-2) of 84% sequence identity. Overexpression of eIF5A-2 mRNA in certain human cancer cells, in contrast to weak normal expression limited to human testis and brain, suggests EIF5A2 as a potential oncogene. However, eIF5A-2 protein has not been described in human or mammalian cells heretofore. Here, we describe the identification of eIF5A-2 protein in human colorectal and ovarian cancer lines, SW-480 and UACC-1598, that overexpress eIF5A-2 mRNAs. Functional characterization of the human isoforms revealed that either human EIF5A gene can complement growth of a yeast strain in which the yeast EIF5A genes were disrupted. This indicates functional similarity of the human isoforms in yeast and suggests that eIF5A-2 has an important role in eukaryotic cell survival similar to that of the ubiquitous eIF5A-1. Detectable structural differences were also noted, including lack of immunological cross-reactivity, formation of different complexes with deoxyhypusine synthase, and Km values (1.5 +/- 0.2 vs. 8.3 +/- 1.4 microm for eIF5A-1 and -2, respectively) as substrates for deoxyhypusine synthase in vitro. These physical characteristics and distinct amino acid sequences in the C-terminal domain together with differences in gene expression patterns imply differentiated, tissue-specific functions of the eIF5A-2 isoform in the mammalian organism and in cancer.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4254-63"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24079710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2003-11-01DOI: 10.1046/j.1432-1033.2003.03812.x
Holger Bauer, Stephan Gromer, Andrea Urbani, Martina Schnölzer, R Heiner Schirmer, Hans-Michael Müller
The mosquito, Anopheles gambiae, is an important vector of Plasmodium falciparum malaria. Full genome analysis revealed that, as in Drosophila melanogaster, the enzyme glutathione reductase is absent in A. gambiae and functionally substituted by the thioredoxin system. The key enzyme of this system is thioredoxin reductase-1, a homodimeric FAD-containing protein of 55.3 kDa per subunit, which catalyses the reaction NADPH + H+ + thioredoxin disulfide-->NADP+ + thioredoxin dithiol. The A. gambiae trxr gene is located on chromosome X as a single copy; it represents three splice variants coding for two cytosolic and one mitochondrial variant. The predominant isoform, A. gambiae thioredoxin reductase-1, was recombinantly expressed in Escherichia coli and functionally compared with the wild-type enzyme isolated in a final yield of 1.4 U.ml(-1) of packed insect cells. In redox titrations, the substrate A. gambiae thioredoxin-1 (Km=8.5 microm, kcat=15.4 s(-1) at pH 7.4 and 25 degrees C) was unable to oxidize NADPH-reduced A. gambiae thioredoxin reductase-1 to the fully oxidized state. This indicates that, in contrast to other disulfide reductases, A. gambiae thioredoxin reductase-1 oscillates during catalysis between the four-electron reduced state and a two-electron reduced state. The thioredoxin reductases of the malaria system were compared. A. gambiae thioredoxin reductase-1 shares 52% and 45% sequence identity with its orthologues from humans and P. falciparum, respectively. A major difference among the three enzymes is the structure of the C-terminal redox centre, reflected in the varying resistance of catalytic intermediates to autoxidation. The relevant sequences of this centre are Thr-Cys-Cys-SerOH in A. gambiae thioredoxin reductase, Gly-Cys-selenocysteine-GlyOH in human thioredoxin reductase, and Cys-X-X-X-X-Cys-GlyOH in the P. falciparum enzyme. These differences offer an interesting approach to the design of species-specific inhibitors. Notably, A. gambiae thioredoxin reductase-1 is not a selenoenzyme but instead contains a highly unusual redox-active Cys-Cys sequence.
冈比亚按蚊是恶性疟原虫的重要传播媒介。全基因组分析显示,与黑腹果蝇一样,冈比亚果蝇中没有谷胱甘肽还原酶,功能上被硫氧还蛋白系统所取代。该系统的关键酶是硫氧还蛋白还原酶-1,这是一种含有fad的二聚体蛋白,每个亚基55.3 kDa,催化NADPH + H+ +硫氧还蛋白二硫->NADP+ +硫氧还蛋白二硫醇的反应。冈比亚疟蚊trxr基因位于X染色体上,为单拷贝;它代表三个剪接变异体编码两个细胞质变异体和一个线粒体变异体。在大肠杆菌中重组表达了优势亚型冈比亚比亚硫氧还蛋白还原酶-1,并与野生型酶进行了功能比较,最终产量为1.4 U.ml(-1)。在氧化还原滴定中,底物A. gambiae thioredoxin-1 (Km=8.5微米,kcat=15.4 s(-1), pH为7.4,25℃)不能将nadph还原的A. gambiae thioredoxin reducase -1氧化至完全氧化状态。这表明,与其他二硫还原酶不同,冈比亚硫氧还蛋白还原酶-1在催化过程中在四电子还原态和两电子还原态之间振荡。比较了疟疾系统的硫氧还蛋白还原酶。冈比亚拟虫硫氧还蛋白还原酶-1与人类和恶性疟原虫同源物序列同源性分别为52%和45%。这三种酶的主要区别是c端氧化还原中心的结构,反映在催化中间体对自氧化的不同抗性上。该中心的相关序列为冈比亚亚种硫氧还蛋白还原酶的Thr-Cys-Cys-SerOH,人硫氧还蛋白还原酶的gly - cys -硒半胱氨酸- glyoh,恶性疟原虫硫氧还蛋白还原酶的cys - x - x - x - cys - glyoh。这些差异为设计物种特异性抑制剂提供了一种有趣的方法。值得注意的是,冈比亚芽孢杆菌硫氧还蛋白还原酶-1不是一种硒酶,而是含有一个非常不寻常的氧化还原活性Cys-Cys序列。
{"title":"Thioredoxin reductase from the malaria mosquito Anopheles gambiae.","authors":"Holger Bauer, Stephan Gromer, Andrea Urbani, Martina Schnölzer, R Heiner Schirmer, Hans-Michael Müller","doi":"10.1046/j.1432-1033.2003.03812.x","DOIUrl":"https://doi.org/10.1046/j.1432-1033.2003.03812.x","url":null,"abstract":"<p><p>The mosquito, Anopheles gambiae, is an important vector of Plasmodium falciparum malaria. Full genome analysis revealed that, as in Drosophila melanogaster, the enzyme glutathione reductase is absent in A. gambiae and functionally substituted by the thioredoxin system. The key enzyme of this system is thioredoxin reductase-1, a homodimeric FAD-containing protein of 55.3 kDa per subunit, which catalyses the reaction NADPH + H+ + thioredoxin disulfide-->NADP+ + thioredoxin dithiol. The A. gambiae trxr gene is located on chromosome X as a single copy; it represents three splice variants coding for two cytosolic and one mitochondrial variant. The predominant isoform, A. gambiae thioredoxin reductase-1, was recombinantly expressed in Escherichia coli and functionally compared with the wild-type enzyme isolated in a final yield of 1.4 U.ml(-1) of packed insect cells. In redox titrations, the substrate A. gambiae thioredoxin-1 (Km=8.5 microm, kcat=15.4 s(-1) at pH 7.4 and 25 degrees C) was unable to oxidize NADPH-reduced A. gambiae thioredoxin reductase-1 to the fully oxidized state. This indicates that, in contrast to other disulfide reductases, A. gambiae thioredoxin reductase-1 oscillates during catalysis between the four-electron reduced state and a two-electron reduced state. The thioredoxin reductases of the malaria system were compared. A. gambiae thioredoxin reductase-1 shares 52% and 45% sequence identity with its orthologues from humans and P. falciparum, respectively. A major difference among the three enzymes is the structure of the C-terminal redox centre, reflected in the varying resistance of catalytic intermediates to autoxidation. The relevant sequences of this centre are Thr-Cys-Cys-SerOH in A. gambiae thioredoxin reductase, Gly-Cys-selenocysteine-GlyOH in human thioredoxin reductase, and Cys-X-X-X-X-Cys-GlyOH in the P. falciparum enzyme. These differences offer an interesting approach to the design of species-specific inhibitors. Notably, A. gambiae thioredoxin reductase-1 is not a selenoenzyme but instead contains a highly unusual redox-active Cys-Cys sequence.</p>","PeriodicalId":11817,"journal":{"name":"European journal of biochemistry","volume":"270 21","pages":"4272-81"},"PeriodicalIF":0.0,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/j.1432-1033.2003.03812.x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24079712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}