Pub Date : 2014-01-01Epub Date: 2014-04-10DOI: 10.1155/2014/738739
Bárbara M Bonine, Patricia Peres Polizelli, Gustavo O Bonilla-Rodriguez
This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C.
{"title":"Immobilization of a Plant Lipase from Pachira aquatica in Alginate and Alginate/PVA Beads.","authors":"Bárbara M Bonine, Patricia Peres Polizelli, Gustavo O Bonilla-Rodriguez","doi":"10.1155/2014/738739","DOIUrl":"https://doi.org/10.1155/2014/738739","url":null,"abstract":"<p><p>This study reports the immobilization of a new lipase isolated from oleaginous seeds of Pachira aquatica, using beads of calcium alginate (Alg) and poly(vinyl alcohol) (PVA). We evaluated the morphology, number of cycles of reuse, optimum temperature, and temperature stability of both immobilization methods compared to the free enzyme. The immobilized enzymes were more stable than the free enzyme, keeping 60% of the original activity after 4 h at 50°C. The immobilized lipase was reused several times, with activity decreasing to approximately 50% after 5 cycles. Both the free and immobilized enzymes were found to be optimally active between 30 and 40°C. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"738739"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/738739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32333194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-04-10DOI: 10.1155/2014/780549
Ryousuke Takgi, Tomoyuki Miyashita
Tyrosinase plays an important role in the formation of the shell matrix and melanin synthesis in mollusks shells. A cDNA clone encoding a 47 kDa protein was isolated from the pearl oyster Pinctada fucata. The cDNA was 1,957 base pairs long and encodes a 417 residue protein that has extensive sequence identity with tyrosinase (polyphenol oxidase: EC 1.14.18.1). This tyrosinase-like protein, termed PfTy, contains an N-terminal signal sequence and the two copper-binding domain signatures (CuA and CuB), suggesting that PfTy belongs to the α -subclass of type-3 copper proteins. Enzyme activity of PfTy was examined by a spectrophotometric method using the translation product derived from an S30 T7 high-yield protein expression system. Tyrosinase activity was seen in this recombinant product. RT-PCR analysis showed that PfTy mRNA was expressed in the mantle pallial, but not in the mantle edge. Therefore, PfTy may participate in insoluble shell matrix formation of the nacreous layer. PfTy expression was also observed in the foot, liver, and adductor muscle, suggesting that PfTy participates in the synthesis of melanins, which are effective scavengers of free radicals formed in multiple intracellular oxidative processes. This is the first report of a novel α -class tyrosinase from the pearl oyster P. fucata.
{"title":"A cDNA Cloning of a Novel Alpha-Class Tyrosinase of Pinctada fucata: Its Expression Analysis and Characterization of the Expressed Protein.","authors":"Ryousuke Takgi, Tomoyuki Miyashita","doi":"10.1155/2014/780549","DOIUrl":"https://doi.org/10.1155/2014/780549","url":null,"abstract":"<p><p>Tyrosinase plays an important role in the formation of the shell matrix and melanin synthesis in mollusks shells. A cDNA clone encoding a 47 kDa protein was isolated from the pearl oyster Pinctada fucata. The cDNA was 1,957 base pairs long and encodes a 417 residue protein that has extensive sequence identity with tyrosinase (polyphenol oxidase: EC 1.14.18.1). This tyrosinase-like protein, termed PfTy, contains an N-terminal signal sequence and the two copper-binding domain signatures (CuA and CuB), suggesting that PfTy belongs to the α -subclass of type-3 copper proteins. Enzyme activity of PfTy was examined by a spectrophotometric method using the translation product derived from an S30 T7 high-yield protein expression system. Tyrosinase activity was seen in this recombinant product. RT-PCR analysis showed that PfTy mRNA was expressed in the mantle pallial, but not in the mantle edge. Therefore, PfTy may participate in insoluble shell matrix formation of the nacreous layer. PfTy expression was also observed in the foot, liver, and adductor muscle, suggesting that PfTy participates in the synthesis of melanins, which are effective scavengers of free radicals formed in multiple intracellular oxidative processes. This is the first report of a novel α -class tyrosinase from the pearl oyster P. fucata. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"780549"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/780549","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32333195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-09-07DOI: 10.1155/2014/708676
Gloria López, Pilar Estrada
The secondary structure of xylanase II from Trichoderma reesei is lost in an apparent irreversible cooperative process as temperature is increased with a midpoint transition of 58.8 ± 0.1°C. The shift of the spectral centre of mass above 50°C is also apparently cooperative with midpoint transition of 56.3 ± 0.2°C, but the existence of two isofluorescent points in the fluorescence emission spectra suggests a non-two-state process. Further corroboration comes from differential scanning calorimetry experiments. At protein concentrations ≤0.56 mg·mL(-1) the calorimetric transition is reversible and the data were fitted to a non-two-state model and deconvoluted into six transitions, whereas at concentrations greater than 0.56 mg·mL(-1) the calorimetric transition is irreversible with an exothermic contribution to the thermogram. The apparent T m increased linearly with the scan rate according to first order inactivation kinetics. The effect of additives on the calorimetric transition of xylanase is dependent on their nature. The addition of sorbitol transforms reversible transitions into irreversible transitions while stabilizing the protein as the apparent T m increases linearly with sorbitol concentration. d-Glucono-1,5-lactone, a noncompetitive inhibitor in xylanase kinetics, and soluble xylan change irreversible processes into reversible processes at high protein concentration.
{"title":"Effect of Temperature on Xylanase II from Trichoderma reesei QM 9414: A Calorimetric, Catalytic, and Conformational Study.","authors":"Gloria López, Pilar Estrada","doi":"10.1155/2014/708676","DOIUrl":"https://doi.org/10.1155/2014/708676","url":null,"abstract":"<p><p>The secondary structure of xylanase II from Trichoderma reesei is lost in an apparent irreversible cooperative process as temperature is increased with a midpoint transition of 58.8 ± 0.1°C. The shift of the spectral centre of mass above 50°C is also apparently cooperative with midpoint transition of 56.3 ± 0.2°C, but the existence of two isofluorescent points in the fluorescence emission spectra suggests a non-two-state process. Further corroboration comes from differential scanning calorimetry experiments. At protein concentrations ≤0.56 mg·mL(-1) the calorimetric transition is reversible and the data were fitted to a non-two-state model and deconvoluted into six transitions, whereas at concentrations greater than 0.56 mg·mL(-1) the calorimetric transition is irreversible with an exothermic contribution to the thermogram. The apparent T m increased linearly with the scan rate according to first order inactivation kinetics. The effect of additives on the calorimetric transition of xylanase is dependent on their nature. The addition of sorbitol transforms reversible transitions into irreversible transitions while stabilizing the protein as the apparent T m increases linearly with sorbitol concentration. d-Glucono-1,5-lactone, a noncompetitive inhibitor in xylanase kinetics, and soluble xylan change irreversible processes into reversible processes at high protein concentration. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"708676"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/708676","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32715131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-10-01DOI: 10.1155/2014/694148
Mohammad Reza Namazi, Armaghan Ashraf, Farhad Handjani, Ebrahim Eftekhar, Amir Kalafi
Background. Alopecia areata (AA) is a chronic inflammatory disease of the hair follicle. The exact pathogenesis of AA remains unknown, although recent studies support a T-cell mediated autoimmune process. On the other hand, some studies have proposed that the renin-angiotensin-aldosterone system (RAAS) may play a role in autoimmunity. Therefore, we assessed serum activity of angiotensin converting enzyme (ACE), a component of this system, in AA. Methods. ACE activity was measured in the sera of 19 patients with AA and 16 healthy control subjects. In addition, the relationship between severity and duration of the disease and ACE activity was evaluated. Results. Serum ACE activity was higher in the patient group (55.81 U/L) compared to the control group (46.41 U/L), but the difference was not statistically significant (P = 0.085). Also, there was no correlation between ACE activity and severity (P = 0.13) and duration of disease (P = 0.25) in the patient group. Conclusion. The increased serum ACE activity found in this study may demonstrate local involvement of the RAAS in the pathogenesis of AA. Assessment of ACE in a study with a larger sample size as well as in tissue samples is recommended in order to further evaluate the possible role of RAAS in AA.
{"title":"Angiotensin converting enzyme activity in alopecia areata.","authors":"Mohammad Reza Namazi, Armaghan Ashraf, Farhad Handjani, Ebrahim Eftekhar, Amir Kalafi","doi":"10.1155/2014/694148","DOIUrl":"https://doi.org/10.1155/2014/694148","url":null,"abstract":"<p><p>Background. Alopecia areata (AA) is a chronic inflammatory disease of the hair follicle. The exact pathogenesis of AA remains unknown, although recent studies support a T-cell mediated autoimmune process. On the other hand, some studies have proposed that the renin-angiotensin-aldosterone system (RAAS) may play a role in autoimmunity. Therefore, we assessed serum activity of angiotensin converting enzyme (ACE), a component of this system, in AA. Methods. ACE activity was measured in the sera of 19 patients with AA and 16 healthy control subjects. In addition, the relationship between severity and duration of the disease and ACE activity was evaluated. Results. Serum ACE activity was higher in the patient group (55.81 U/L) compared to the control group (46.41 U/L), but the difference was not statistically significant (P = 0.085). Also, there was no correlation between ACE activity and severity (P = 0.13) and duration of disease (P = 0.25) in the patient group. Conclusion. The increased serum ACE activity found in this study may demonstrate local involvement of the RAAS in the pathogenesis of AA. Assessment of ACE in a study with a larger sample size as well as in tissue samples is recommended in order to further evaluate the possible role of RAAS in AA. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"694148"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/694148","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32774782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-12-25DOI: 10.1155/2014/714054
Mahmoud A Ibrahim, Abdel-Hady M Ghazy, Ahmed M H Salem, Mohamed A Ghazy, Mohamed M Abdel-Monsef
Glucose-6-phosphate dehydrogenase from camel liver was purified to homogeneity by ammonium sulfate precipitation and a combination of DEAE-cellulose, Sephacryl S-300 gel filtration, and 2', 5' ADP Sepharose 4B affinity chromatography columns. The specific activity of camel liver G6PD is increased to 1.80438 units/mg proteins with 63-fold purification. It turned out to be homogenous on both native PAGE and 12% SDS PAGE, with a molecular weight of 64 kDa. The molecular weight of the native form of camel liver G6PD was determined to be 194 kDa by gel filtration indicating a trimeric protein. The K m value was found to be 0.081 mM of NADP(+). Camel liver G6PD displayed its optimum activity at pH 7.8 with an isoelectric point (pI) of pH 6.6-6.8. The divalent cations MgCl2, MnCl2, and CoCl2 act as activators; on the other hand, CaCl2 and NiCl2 act as moderate inhibitors, while FeCl2, CuCl2, and ZnCl2 are potent inhibitors of camel liver G6PD activity. NADPH inhibited camel liver G6PD competitively with K i value of 0.035 mM. One binding site was deduced for NADPH on the enzyme molecule. This study presents a simple and reproducible purification procedure of G6PD from the camel liver.
{"title":"Purification and characterization of glucose-6-phosphate dehydrogenase from camel liver.","authors":"Mahmoud A Ibrahim, Abdel-Hady M Ghazy, Ahmed M H Salem, Mohamed A Ghazy, Mohamed M Abdel-Monsef","doi":"10.1155/2014/714054","DOIUrl":"10.1155/2014/714054","url":null,"abstract":"<p><p>Glucose-6-phosphate dehydrogenase from camel liver was purified to homogeneity by ammonium sulfate precipitation and a combination of DEAE-cellulose, Sephacryl S-300 gel filtration, and 2', 5' ADP Sepharose 4B affinity chromatography columns. The specific activity of camel liver G6PD is increased to 1.80438 units/mg proteins with 63-fold purification. It turned out to be homogenous on both native PAGE and 12% SDS PAGE, with a molecular weight of 64 kDa. The molecular weight of the native form of camel liver G6PD was determined to be 194 kDa by gel filtration indicating a trimeric protein. The K m value was found to be 0.081 mM of NADP(+). Camel liver G6PD displayed its optimum activity at pH 7.8 with an isoelectric point (pI) of pH 6.6-6.8. The divalent cations MgCl2, MnCl2, and CoCl2 act as activators; on the other hand, CaCl2 and NiCl2 act as moderate inhibitors, while FeCl2, CuCl2, and ZnCl2 are potent inhibitors of camel liver G6PD activity. NADPH inhibited camel liver G6PD competitively with K i value of 0.035 mM. One binding site was deduced for NADPH on the enzyme molecule. This study presents a simple and reproducible purification procedure of G6PD from the camel liver. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"714054"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4290037/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33323621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work proposes the purification of an active and efficient enzyme, extracellular poly(3-hydroxybutyrate) (PHB)-depolymerase, suitable for industrial applications. This is achieved by the application of an easy, fast, and cheap route, skipping the chromatography step. Chromatography with one or two columns is a common step in the purification procedure, which however renders the isolation of the enzyme a time consuming and an expensive process. A strain of the fungus Penicillium pinophilum (ATCC 9644) is used for the isolation of extracellular PHB-depolymerase. The molecular weight of the purified enzyme is about 35 kDa and is estimated by gel electrophoresis (SDS-PAGE, 12% polyacrylamide). The enzymatic activity of the isolated enzyme is determined to be 3.56-fold similar to that found by other researchers that have used chromatography for the isolation. The as-isolated enzyme disintegrates the poly(3-hydroxybutyrate) (PHB) films successfully, as it is demonstrated by the biodegradation test results provided here.
{"title":"A Simple Route for Purifying Extracellular Poly(3-hydroxybutyrate)-depolymerase from Penicillium pinophilum.","authors":"Elpiniki Panagiotidou, Constantinos Konidaris, Apostolos Baklavaridis, Ioannis Zuburtikudis, Dimitris Achilias, Paraskevi Mitlianga","doi":"10.1155/2014/159809","DOIUrl":"10.1155/2014/159809","url":null,"abstract":"<p><p>This work proposes the purification of an active and efficient enzyme, extracellular poly(3-hydroxybutyrate) (PHB)-depolymerase, suitable for industrial applications. This is achieved by the application of an easy, fast, and cheap route, skipping the chromatography step. Chromatography with one or two columns is a common step in the purification procedure, which however renders the isolation of the enzyme a time consuming and an expensive process. A strain of the fungus Penicillium pinophilum (ATCC 9644) is used for the isolation of extracellular PHB-depolymerase. The molecular weight of the purified enzyme is about 35 kDa and is estimated by gel electrophoresis (SDS-PAGE, 12% polyacrylamide). The enzymatic activity of the isolated enzyme is determined to be 3.56-fold similar to that found by other researchers that have used chromatography for the isolation. The as-isolated enzyme disintegrates the poly(3-hydroxybutyrate) (PHB) films successfully, as it is demonstrated by the biodegradation test results provided here. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"159809"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4190121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-09-10DOI: 10.1155/2014/389739
Kanchana Dumri, Dau Hung Anh
Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10-20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40(°)C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%.
生物柴油生产技术在低成本和替代能源方面具有竞争力,既要可持续又要环保。脂肪酶固定化生产生物柴油的设计具有显著的影响,但仍具有挑战性。在这项工作中,使用一种由商业脂肪酶(EC 3.1.1.3)、银纳米粒子和聚多巴胺组成的新型生物催化剂,增强和促进了大豆油生产生物柴油。制备了尺寸范围为10 ~ 20 nm的银纳米颗粒(AgNPs)。聚多巴胺(PD)通过多巴胺在10 mM Tris-HCl pH 8.5中自聚合传递,并同时包被AgNPs形成PD/AgNPs复合物。将脂肪酶通过共价键固定在PD/AgNPs复合物表面,形成由固定化脂肪酶/PD/AgNPs复合物(LPA)组成的特制生物催化剂。利用紫外可见光谱和扫描电镜对各组分的形成和形貌进行了表征。值得注意的是,气相色谱分析表明,使用LPA复合物在40(°)C下反应6小时,生物柴油的产率达到95%,而使用游离冻干脂肪酶的产率为86%。7批次后,LPA配合物明显可重复使用,大豆油的后期转化率仅下降27%。
{"title":"Immobilization of Lipase on Silver Nanoparticles via Adhesive Polydopamine for Biodiesel Production.","authors":"Kanchana Dumri, Dau Hung Anh","doi":"10.1155/2014/389739","DOIUrl":"https://doi.org/10.1155/2014/389739","url":null,"abstract":"<p><p>Biodiesel production technology is competitive in terms of low cost and alternative source of energy which should be not only sustainable but also environmentally friendly. Designing of the lipase immobilization for biodiesel production has a remarkable impact and is still challenging. In this work, biodiesel production from soybean oil was enhanced and facilitated by using a novel biocatalyst consisting of commercial lipase (EC 3.1.1.3), silver nanoparticles, and polydopamine. Silver nanoparticles (AgNPs) were synthesized with a size range of 10-20 nm. Polydopamine (PD) was delivered by the self-polymerization of dopamine in 10 mM Tris-HCl pH 8.5 and simultaneously coated the AgNPs to form a PD/AgNPs complex. Lipase was immobilized on the PD/AgNPs complex surface via covalent bonds to form a tailor-made biocatalyst consisting of immobilized lipase/PD/AgNPs complex (LPA). The formation and morphology of each composition were characterized by UV-Vis spectroscopy and scanning electron microscope (SEM). Significantly, gas chromatography analysis showed a remarkable biodiesel production yield of 95% by using the LPA complex at 40(°)C for 6-hours reaction time, whereas the yield was 86% when using free lyophilized lipase. The LPA complex was apparently reusable after 7 batches and the latter conversion rate of soybean oil was decreased by only 27%. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"389739"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/389739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32759051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection.
{"title":"Fungal laccases and their applications in bioremediation.","authors":"Buddolla Viswanath, Bandi Rajesh, Avilala Janardhan, Arthala Praveen Kumar, Golla Narasimha","doi":"10.1155/2014/163242","DOIUrl":"https://doi.org/10.1155/2014/163242","url":null,"abstract":"<p><p>Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"163242"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/163242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32451566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2014-01-01Epub Date: 2014-11-12DOI: 10.1155/2014/601046
Rajshree Saxena, Rajni Singh
The enormous increase in world population has resulted in generation of million tons of agricultural wastes. Biotechnological process for production of green chemicals, namely, enzymes, provides the best utilization of these otherwise unutilized wastes. The present study elaborates concomitant production of protease and amylase in solid state fermentation (SSF) by a newly isolated Bacillus megaterium B69, using agroindustrial wastes. Two-level statistical model employing Plackett-Burman and response surface methodology was designed for optimization of various physicochemical conditions affecting the production of two enzymes concomitantly. The studies revealed that the new strain concomitantly produced 1242 U/g of protease and 1666.6 U/g of amylase by best utilizing mustard oilseed cake as the substrate at 20% substrate concentration and 45% moisture content after 84 h of incubation. An increase of 2.95- and 2.04-fold from basal media was observed in protease and amylase production, respectively. ANOVA of both the design models showed high accuracy of the polynomial model with significant similarities between the predicted and the observed results. The model stood accurate at the bench level validation, suggesting that the design model could be used for multienzyme production at mass scale.
{"title":"Contemporaneous Production of Amylase and Protease through CCD Response Surface Methodology by Newly Isolated Bacillus megaterium Strain B69.","authors":"Rajshree Saxena, Rajni Singh","doi":"10.1155/2014/601046","DOIUrl":"10.1155/2014/601046","url":null,"abstract":"<p><p>The enormous increase in world population has resulted in generation of million tons of agricultural wastes. Biotechnological process for production of green chemicals, namely, enzymes, provides the best utilization of these otherwise unutilized wastes. The present study elaborates concomitant production of protease and amylase in solid state fermentation (SSF) by a newly isolated Bacillus megaterium B69, using agroindustrial wastes. Two-level statistical model employing Plackett-Burman and response surface methodology was designed for optimization of various physicochemical conditions affecting the production of two enzymes concomitantly. The studies revealed that the new strain concomitantly produced 1242 U/g of protease and 1666.6 U/g of amylase by best utilizing mustard oilseed cake as the substrate at 20% substrate concentration and 45% moisture content after 84 h of incubation. An increase of 2.95- and 2.04-fold from basal media was observed in protease and amylase production, respectively. ANOVA of both the design models showed high accuracy of the polynomial model with significant similarities between the predicted and the observed results. The model stood accurate at the bench level validation, suggesting that the design model could be used for multienzyme production at mass scale. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"601046"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4244924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32884256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Production of laccase by a cold and pH tolerant strain of Penicillium pinophilum has been investigated under different cultural conditions for up to 35 days of incubation. The fungus was originally isolated from a low temperature environment under mountain ecosystem of Indian Himalaya. The estimations were conducted at 3 temperatures (15, 25, and 35°C), a range of pH (3.5-11.5), and in presence of supplements including carbon and nitrogen sources, vitamins, and antibiotics. Optimum production of laccase was recorded at 25°C (optimum temperature for fungal growth) and 7.5 pH. The production of enzyme was recorded maximum on day 28 (11.6 ± 0.52 U/L) following a slow decline at day 35 of incubation (10.6 ± 0.80 U/L). Fructose and potassium nitrate (0.2%) among nutritional supplements, chloramphenicol (0.1%) among antibiotics, and folic acid (0.1%) among vitamins were found to be the best enhancers for production of laccase. Relatively lower but consistent production of laccase for a longer period is likely to be an ecologically important phenomenon under low temperature environment. Further, enhancement in production of enzyme using various supplements will be useful for its use in specific biotechnological applications.
{"title":"Prolonged Laccase Production by a Cold and pH Tolerant Strain of Penicillium pinophilum (MCC 1049) Isolated from a Low Temperature Environment.","authors":"Kusum Dhakar, Rahul Jain, Sushma Tamta, Anita Pandey","doi":"10.1155/2014/120708","DOIUrl":"https://doi.org/10.1155/2014/120708","url":null,"abstract":"<p><p>Production of laccase by a cold and pH tolerant strain of Penicillium pinophilum has been investigated under different cultural conditions for up to 35 days of incubation. The fungus was originally isolated from a low temperature environment under mountain ecosystem of Indian Himalaya. The estimations were conducted at 3 temperatures (15, 25, and 35°C), a range of pH (3.5-11.5), and in presence of supplements including carbon and nitrogen sources, vitamins, and antibiotics. Optimum production of laccase was recorded at 25°C (optimum temperature for fungal growth) and 7.5 pH. The production of enzyme was recorded maximum on day 28 (11.6 ± 0.52 U/L) following a slow decline at day 35 of incubation (10.6 ± 0.80 U/L). Fructose and potassium nitrate (0.2%) among nutritional supplements, chloramphenicol (0.1%) among antibiotics, and folic acid (0.1%) among vitamins were found to be the best enhancers for production of laccase. Relatively lower but consistent production of laccase for a longer period is likely to be an ecologically important phenomenon under low temperature environment. Further, enhancement in production of enzyme using various supplements will be useful for its use in specific biotechnological applications. </p>","PeriodicalId":11835,"journal":{"name":"Enzyme Research","volume":"2014 ","pages":"120708"},"PeriodicalIF":0.0,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2014/120708","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32263935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}