The eCM special issue on Dental Regenerative Biology concentrates on recent key developments that will probably soon lead to significantly improved dental treatments. Progress in the understanding of the biology and technology involved provides exciting new clinical approaches to repairing and regenerating missing or damaged dental tissues. The application of stem cells has the potential to improve tissue regeneration and the use of significantly improved biomaterials can aid dental tissue healing. This editorial highlights the importance of merging the various biological and technological disciplines in order to obtain novel state-of-the-art products and generating new and original clinical concepts.
{"title":"Editorial - Brothers in arms: regenerative biology and dentistry.","authors":"T A Mitsiadis, O Trubiani","doi":"10.22203/eCM.v043a02","DOIUrl":"https://doi.org/10.22203/eCM.v043a02","url":null,"abstract":"<p><p>The eCM special issue on Dental Regenerative Biology concentrates on recent key developments that will probably soon lead to significantly improved dental treatments. Progress in the understanding of the biology and technology involved provides exciting new clinical approaches to repairing and regenerating missing or damaged dental tissues. The application of stem cells has the potential to improve tissue regeneration and the use of significantly improved biomaterials can aid dental tissue healing. This editorial highlights the importance of merging the various biological and technological disciplines in order to obtain novel state-of-the-art products and generating new and original clinical concepts.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"43 ","pages":"4-5"},"PeriodicalIF":3.1,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9596323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L L Whitehouse, N H Thomson, T Do, G A Feichtinger
Since the discovery of bioactive molecules sequestered in dentine, researchers have been exploring ways to harness their activities for dental regeneration. One specific area, discussed in this review, is that of dental-pulp capping. Dental-pulp caps are placed when the dental pulp is exposed due to decay or trauma in an attempt to enhance tertiary dentine deposition. Several materials are used for dental-pulp capping; however, natural biomimetic scaffolds may offer advantages over manufactured materials such as improved aesthetic, biocompatibility and success rate. The present review discusses and appraises the current evidence surrounding biomimetic dental-pulp capping, with a focus on bioactive molecules sequestered in dentine. Molecules covered most extensively in the literature include transforming growth factors (TGF-βs, specifically TGF-β1) and bone morphogenetic proteins (BMPs, specifically BMP-2 and BMP-7). Further studies would need to explore the synergistic use of multiple peptides together with the development of a tailored scaffold carrier. The roles of some of the molecules identified in dentine need to be explored before they can be considered as potential bioactive molecules in a biomimetic scaffold for dental-pulp capping. Future in vivo work needs to consider the inflammatory environment of the dental pulp in pulpal exposures and compare pulp-capping materials.
{"title":"Bioactive molecules for regenerative pulp capping.","authors":"L L Whitehouse, N H Thomson, T Do, G A Feichtinger","doi":"10.22203/eCM.v042a26","DOIUrl":"https://doi.org/10.22203/eCM.v042a26","url":null,"abstract":"<p><p>Since the discovery of bioactive molecules sequestered in dentine, researchers have been exploring ways to harness their activities for dental regeneration. One specific area, discussed in this review, is that of dental-pulp capping. Dental-pulp caps are placed when the dental pulp is exposed due to decay or trauma in an attempt to enhance tertiary dentine deposition. Several materials are used for dental-pulp capping; however, natural biomimetic scaffolds may offer advantages over manufactured materials such as improved aesthetic, biocompatibility and success rate. The present review discusses and appraises the current evidence surrounding biomimetic dental-pulp capping, with a focus on bioactive molecules sequestered in dentine. Molecules covered most extensively in the literature include transforming growth factors (TGF-βs, specifically TGF-β1) and bone morphogenetic proteins (BMPs, specifically BMP-2 and BMP-7). Further studies would need to explore the synergistic use of multiple peptides together with the development of a tailored scaffold carrier. The roles of some of the molecules identified in dentine need to be explored before they can be considered as potential bioactive molecules in a biomimetic scaffold for dental-pulp capping. Future in vivo work needs to consider the inflammatory environment of the dental pulp in pulpal exposures and compare pulp-capping materials.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"415-437"},"PeriodicalIF":3.1,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39787802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Lang, M Loibl, J Gläsner, M Simon, M Rupp, S Grad, C Neumann, V Alt, A Gessner, F Hanses
Vertebral osteomyelitis (VO) is an infection of the spine mainly caused by bacterial pathogens. The pathogenesis leading to destruction of intervertebral discs (IVDs) and adjacent vertebral bodies (VBs) is poorly described. The present study aimed at investigating the connection between infection and bone/disc metabolism in VO patients. 14 patients with VO (infection group) and 14 patients with burst fractures of the spine (fracture group; control) were included prospectively. Tissue biopsies from affected IVDs and adjacent VBs were analysed by RT-qPCR for mRNA-expression levels of 18 target genes including chemokines, adipokines and genes involved in bone metabolism. Most importantly, the receptor activator of NF-κB/osteoprotegerin (RANK/OPG) expression ratio was drastically elevated in both VBs and IVDs of the infection group. In parallel, expression of genes of the prostaglandin-E2-dependent prostanoid system was induced. Such genes regulate tissue degradation processes via the triad OPG/RANK/RANKL as well as via the chemokines IL-8 and CCL-20, whose expression was also found to be increased upon infection. The gene expression of the adipokine leptin, which promotes inflammatory tissue degradation, was higher in IVD tissue of the infection group, whereas the transcription of omentin and resistin genes, whose functions are largely unknown in the context of infectious diseases, was lower in infected VBs. In summary, similar expression patterns of pro-inflammatory cytokines and pro-osteoclastogenic factors were identified in VBs and IVDs of patients suffering from VO. This suggests that common immuno-metabolic pathways are involved in the mechanisms leading to tissue degradation in VBs and IVDs during VO.
椎体骨髓炎(VO)是一种主要由细菌性病原体引起的脊柱感染。导致椎间盘(IVDs)和邻近椎体(VBs)破坏的发病机制尚不清楚。本研究旨在探讨VO患者感染与骨/椎间盘代谢之间的关系。VO患者14例(感染组),脊柱爆裂骨折14例(骨折组);对照组)纳入前瞻性研究。采用RT-qPCR方法分析受影响ivd和邻近VBs的组织活检组织中18个靶基因的mrna表达水平,包括趋化因子、脂肪因子和参与骨代谢的基因。最重要的是,感染组VBs和ivd中NF-κB/osteoprotegerin受体激活因子(receptor activator of NF-κB/osteoprotegerin, RANK/OPG)的表达比均显著升高。同时,前列腺素e2依赖性前列腺系统基因的表达也被诱导。这些基因通过三联体OPG/RANK/RANKL以及趋化因子IL-8和CCL-20调节组织降解过程,其表达在感染后也被发现增加。在感染组的IVD组织中,促进炎症组织降解的脂肪因子瘦素的基因表达较高,而在感染的VBs中,其功能在感染性疾病背景下很大程度上未知的omentin和抵抗素基因的转录较低。综上所述,在VO患者的VBs和ivd中发现了相似的促炎因子和促破骨因子的表达模式。这表明,在VO期间,常见的免疫代谢途径参与了导致VBs和ivd组织降解的机制。
{"title":"Vertebral osteomyelitis is characterised by increased RANK/OPG and RANKL/OPG expression ratios in vertebral bodies and intervertebral discs.","authors":"S Lang, M Loibl, J Gläsner, M Simon, M Rupp, S Grad, C Neumann, V Alt, A Gessner, F Hanses","doi":"10.22203/eCM.v042a27","DOIUrl":"https://doi.org/10.22203/eCM.v042a27","url":null,"abstract":"<p><p>Vertebral osteomyelitis (VO) is an infection of the spine mainly caused by bacterial pathogens. The pathogenesis leading to destruction of intervertebral discs (IVDs) and adjacent vertebral bodies (VBs) is poorly described. The present study aimed at investigating the connection between infection and bone/disc metabolism in VO patients. 14 patients with VO (infection group) and 14 patients with burst fractures of the spine (fracture group; control) were included prospectively. Tissue biopsies from affected IVDs and adjacent VBs were analysed by RT-qPCR for mRNA-expression levels of 18 target genes including chemokines, adipokines and genes involved in bone metabolism. Most importantly, the receptor activator of NF-κB/osteoprotegerin (RANK/OPG) expression ratio was drastically elevated in both VBs and IVDs of the infection group. In parallel, expression of genes of the prostaglandin-E2-dependent prostanoid system was induced. Such genes regulate tissue degradation processes via the triad OPG/RANK/RANKL as well as via the chemokines IL-8 and CCL-20, whose expression was also found to be increased upon infection. The gene expression of the adipokine leptin, which promotes inflammatory tissue degradation, was higher in IVD tissue of the infection group, whereas the transcription of omentin and resistin genes, whose functions are largely unknown in the context of infectious diseases, was lower in infected VBs. In summary, similar expression patterns of pro-inflammatory cytokines and pro-osteoclastogenic factors were identified in VBs and IVDs of patients suffering from VO. This suggests that common immuno-metabolic pathways are involved in the mechanisms leading to tissue degradation in VBs and IVDs during VO.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"438-451"},"PeriodicalIF":3.1,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39945894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C Voskamp, L A Anderson, W J Koevoet, S Barnhoorn, P G Mastroberardino, G J van Osch, R Narcisi
Mesenchymal stem cells (MSCs) are promising cells for regenerative medicine therapies because they can differentiate towards multiple cell lineages. However, the occurrence of cellular senescence and the acquiring of the senescence-associated secretory phenotype (SASP) limit their clinical use. Since the transcription factor TWIST1 influences expansion of MSCs, its role in regulating cellular senescence was investigated. The present study demonstrated that silencing of TWIST1 in MSCs increased the occurrence of senescence, characterised by a SASP profile different from irradiation-induced senescent MSCs. Knowing that senescence alters cellular metabolism, cellular bioenergetics was monitored by using the Seahorse XF apparatus. Both TWIST1-silencing-induced and irradiation-induced senescent MSCs had a higher oxygen consumption rate compared to control MSCs, while TWIST1-silencing-induced senescent MSCs had a low extracellular acidification rate compared to irradiation-induced senescent MSCs. Overall, data indicated how TWIST1 regulation influenced senescence in MSCs and that TWIST1 silencing-induced senescence was characterised by a specific SASP profile and metabolic state.
{"title":"TWIST1 controls cellular senescence and energy metabolism in mesenchymal stem cells.","authors":"C Voskamp, L A Anderson, W J Koevoet, S Barnhoorn, P G Mastroberardino, G J van Osch, R Narcisi","doi":"10.22203/eCM.v042a25","DOIUrl":"https://doi.org/10.22203/eCM.v042a25","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) are promising cells for regenerative medicine therapies because they can differentiate towards multiple cell lineages. However, the occurrence of cellular senescence and the acquiring of the senescence-associated secretory phenotype (SASP) limit their clinical use. Since the transcription factor TWIST1 influences expansion of MSCs, its role in regulating cellular senescence was investigated. The present study demonstrated that silencing of TWIST1 in MSCs increased the occurrence of senescence, characterised by a SASP profile different from irradiation-induced senescent MSCs. Knowing that senescence alters cellular metabolism, cellular bioenergetics was monitored by using the Seahorse XF apparatus. Both TWIST1-silencing-induced and irradiation-induced senescent MSCs had a higher oxygen consumption rate compared to control MSCs, while TWIST1-silencing-induced senescent MSCs had a low extracellular acidification rate compared to irradiation-induced senescent MSCs. Overall, data indicated how TWIST1 regulation influenced senescence in MSCs and that TWIST1 silencing-induced senescence was characterised by a specific SASP profile and metabolic state.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"401-414"},"PeriodicalIF":3.1,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39660723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matrix metalloproteinases (MMPs) have been implicated not only in the regulation of developmental processes but also in the release of biologically active molecules and in the modulation of repair during tertiary dentine formation. Although efforts to preserve dentine have focused on inhibiting the activity of these proteases, their function is much more complex and necessary for dentine repair than expected. The present review explores the role of MMPs as bioactive components of the dentine matrix involved in dentine formation, repair and regeneration. Special consideration is given to the mechanical properties of dentine, including those of reactionary and reparative dentine, and the known roles of MMPs in their formation. MMPs are critical components of the dentine matrix and should be considered as important candidates in dentine regeneration.
{"title":"Dentine matrix metalloproteinases as potential mediators of dentine regeneration.","authors":"E Guirado, A George","doi":"10.22203/eCM.v042a24","DOIUrl":"10.22203/eCM.v042a24","url":null,"abstract":"<p><p>Matrix metalloproteinases (MMPs) have been implicated not only in the regulation of developmental processes but also in the release of biologically active molecules and in the modulation of repair during tertiary dentine formation. Although efforts to preserve dentine have focused on inhibiting the activity of these proteases, their function is much more complex and necessary for dentine repair than expected. The present review explores the role of MMPs as bioactive components of the dentine matrix involved in dentine formation, repair and regeneration. Special consideration is given to the mechanical properties of dentine, including those of reactionary and reparative dentine, and the known roles of MMPs in their formation. MMPs are critical components of the dentine matrix and should be considered as important candidates in dentine regeneration.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"392-400"},"PeriodicalIF":3.2,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ca/ff/nihms-1799632.PMC9158261.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39655545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruptures to tendons are common and costly, and no clinical consensus exists on the appropriate treatment and rehabilitation regimen to promote their healing as well as full recovery of functionality. Although mechanobiology is known to play an important role in tendon regeneration, the understanding of how mechano-regulated processes affect tendon healing needs further clarification. Many small-animal studies, particularly in rats and mice, have characterized the progression of healing in terms of geometrical, structural, compositional, mechanical, and cellular properties. Some of the properties are also studied under different mechanical loading regimens. The focus of this review is to summarize and generalize the information in the literature regarding spatial and temporal differentiation of tendon properties during rodent tendon healing following full-tendon transection, as well as how this is affected by altered in vivo loading regimens.
{"title":"Tendon mechanobiology in small-animal experiments during post-transection healing.","authors":"T Notermans, H Hammerman, P Eliasson, H Isaksson","doi":"10.22203/eCM.v042a23","DOIUrl":"https://doi.org/10.22203/eCM.v042a23","url":null,"abstract":"<p><p>Ruptures to tendons are common and costly, and no clinical consensus exists on the appropriate treatment and rehabilitation regimen to promote their healing as well as full recovery of functionality. Although mechanobiology is known to play an important role in tendon regeneration, the understanding of how mechano-regulated processes affect tendon healing needs further clarification. Many small-animal studies, particularly in rats and mice, have characterized the progression of healing in terms of geometrical, structural, compositional, mechanical, and cellular properties. Some of the properties are also studied under different mechanical loading regimens. The focus of this review is to summarize and generalize the information in the literature regarding spatial and temporal differentiation of tendon properties during rodent tendon healing following full-tendon transection, as well as how this is affected by altered in vivo loading regimens.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"375-391"},"PeriodicalIF":3.1,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39849591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Osteomyelitis is an inflammatory bone disease caused by an infecting microorganism leading to a gradual bone loss. Due to the difficulty in studying osteomyelitis directly in patients, animal models allow researchers to investigate the pathogenesis of the infection and the development of novel prophylactic, anti-inflammatory and antimicrobial treatment strategies. This review is specifically focused on the in vivo mouse osteomyelitis studies available in literature. Thus, a systematic search on Web of Science and PubMed was conducted using the query "(infection) AND (mice OR mouse OR murine) AND (model OR models) AND (arthroplasty OR fracture OR (internal fixator) OR (internal fixation OR prosthesis OR implant OR osteomyelitis)". After critical assessment of the studies according to the inclusion and exclusion criteria, 135 studies were included in the detailed analysis. Based on the model characteristics, the studies were classified into five subject groups: haematogenous osteomyelitis, post-traumatic osteomyelitis, bone-implant-related infection, peri-prosthetic joint infection, fracture-related infection. In addition, the characteristics of the mice used, such as inbred strain, age or gender, the characteristics of the pathogens used, the inoculation methods, the type of anaesthesia and analgesia used during surgery and the procedures for evaluating the pathogenicity of the infecting micro-organism were described. Overall, the mouse is an excellent first step in vivo model to study the pathogenesis, inflammation and healing process of osteomyelitis and to evaluate novel prophylaxis and treatment strategies.
骨髓炎是一种由感染微生物引起的炎症性骨病,导致骨质逐渐流失。由于直接研究骨髓炎患者的困难,动物模型使研究人员能够研究感染的发病机制,并开发新的预防、抗炎和抗菌治疗策略。本文综述了文献中关于小鼠体内骨髓炎的研究。因此,在Web of Science和PubMed上进行了系统的搜索,使用查询“(感染)and(小鼠或小鼠或小鼠)and(模型或模型)and(关节成形术或骨折或(内固定器)或(内固定术或假体或植入物或骨髓炎)”。根据纳入和排除标准对研究进行严格评估后,135项研究被纳入详细分析。根据模型特点,将研究分为五组:血源性骨髓炎、创伤后骨髓炎、骨植入物相关感染、假体周围关节感染、骨折相关感染。此外,还描述了所用小鼠的特征,如近交系、年龄或性别、所用病原体的特征、接种方法、手术中使用的麻醉和镇痛类型以及评估感染微生物致病性的程序。总之,小鼠是研究骨髓炎发病机制、炎症和愈合过程以及评估新的预防和治疗策略的良好的第一步体内模型。
{"title":"Current osteomyelitis mouse models, a systematic review.","authors":"C Guarch-Pérez, M Riool, S Aj Zaat","doi":"10.22203/eCM.v042a22","DOIUrl":"https://doi.org/10.22203/eCM.v042a22","url":null,"abstract":"<p><p>Osteomyelitis is an inflammatory bone disease caused by an infecting microorganism leading to a gradual bone loss. Due to the difficulty in studying osteomyelitis directly in patients, animal models allow researchers to investigate the pathogenesis of the infection and the development of novel prophylactic, anti-inflammatory and antimicrobial treatment strategies. This review is specifically focused on the in vivo mouse osteomyelitis studies available in literature. Thus, a systematic search on Web of Science and PubMed was conducted using the query \"(infection) AND (mice OR mouse OR murine) AND (model OR models) AND (arthroplasty OR fracture OR (internal fixator) OR (internal fixation OR prosthesis OR implant OR osteomyelitis)\". After critical assessment of the studies according to the inclusion and exclusion criteria, 135 studies were included in the detailed analysis. Based on the model characteristics, the studies were classified into five subject groups: haematogenous osteomyelitis, post-traumatic osteomyelitis, bone-implant-related infection, peri-prosthetic joint infection, fracture-related infection. In addition, the characteristics of the mice used, such as inbred strain, age or gender, the characteristics of the pathogens used, the inoculation methods, the type of anaesthesia and analgesia used during surgery and the procedures for evaluating the pathogenicity of the infecting micro-organism were described. Overall, the mouse is an excellent first step in vivo model to study the pathogenesis, inflammation and healing process of osteomyelitis and to evaluate novel prophylaxis and treatment strategies.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"334-374"},"PeriodicalIF":3.1,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39538575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T F Moriarty, G Muthukrishnan, J L Daiss, C Xie, K Nishitani, Y Morita, H Awad, K L de Mesy Bentley, E Masters, T Bui, M Yan, J Owen, B Mooney, S Gill, J Puetzler, J C Wenke, M Morgenstern, W-J Metsemakers, C Noll, A Joeris, R G Richards, E M Schwarz, S L Kates
Bone infection has received increasing attention in recent years as one of the main outstanding clinical problems in orthopaedic-trauma surgery that has not been successfully addressed. In fact, infection may develop across a spectrum of patient types regardless of the level of perioperative management, including antibiotic prophylaxis. Some of the main unknown factors that may be involved, and the main targets for future intervention, include more accurate and less invasive diagnostic options, more thorough and accurate debridement protocols, and more potent and targeted antimicrobials. The underlying biology dominates the clinical management of bone infections, with features such as biofilm formation, osteolysis and vascularisation being particularly influential. Based on the persistence of this problem, an improved understanding of the basic biology is deemed necessary to enable innovation in the field. Furthermore, from the clinical side, better evidence, documentation and outreach will be required to translate these innovations to the patient. This review presents the findings and progress of the AO Trauma Clinical Priority Program on the topic of bone infection.
{"title":"Bone infection: a clinical priority for clinicians, scientists and educators.","authors":"T F Moriarty, G Muthukrishnan, J L Daiss, C Xie, K Nishitani, Y Morita, H Awad, K L de Mesy Bentley, E Masters, T Bui, M Yan, J Owen, B Mooney, S Gill, J Puetzler, J C Wenke, M Morgenstern, W-J Metsemakers, C Noll, A Joeris, R G Richards, E M Schwarz, S L Kates","doi":"10.22203/eCM.v042a21","DOIUrl":"https://doi.org/10.22203/eCM.v042a21","url":null,"abstract":"<p><p>Bone infection has received increasing attention in recent years as one of the main outstanding clinical problems in orthopaedic-trauma surgery that has not been successfully addressed. In fact, infection may develop across a spectrum of patient types regardless of the level of perioperative management, including antibiotic prophylaxis. Some of the main unknown factors that may be involved, and the main targets for future intervention, include more accurate and less invasive diagnostic options, more thorough and accurate debridement protocols, and more potent and targeted antimicrobials. The underlying biology dominates the clinical management of bone infections, with features such as biofilm formation, osteolysis and vascularisation being particularly influential. Based on the persistence of this problem, an improved understanding of the basic biology is deemed necessary to enable innovation in the field. Furthermore, from the clinical side, better evidence, documentation and outreach will be required to translate these innovations to the patient. This review presents the findings and progress of the AO Trauma Clinical Priority Program on the topic of bone infection.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"312-333"},"PeriodicalIF":3.1,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39528870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R Puts, R Vico, N Beilfuß, M Shaka, F Padilla, K Raum
Impaired bone-fracture healing is associated with long-term musculoskeletal disability, pain and psychological distress. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive and side-effect-free treatment option for fresh, delayed- and non-union bone fractures, which has been used in patients since the early 1990s. Several clinical studies, however, have questioned the usefulness of the LIPUS treatment for the regeneration of long bones, including those with a compromised healing. This systematic review addresses the hurdles that the clinical application of LIPUS encounters. Low patient compliance might disguise the effects of the LIPUS therapy, as observed in several studies. Furthermore, large discrepancies in results, showing profound LIPUS effects in regeneration of small-animal bones in comparison to the clinical studies, could be caused by the suboptimal parameters of the clinical set-up. This raises the question of whether the so-called "acoustic dose" requires a thorough characterisation to reveal the mechanisms of the therapy. The adequate definition of the acoustic dose is especially important in the elderly population and patients with underlying medical conditions, where distinct biological signatures lead to a delayed regeneration. Non-industry-funded, randomised, double-blind, placebo-controlled clinical trials of the LIPUS application alone and as an adjuvant treatment for bones with complicated healing, where consistent control of patient compliance is ensured, are required.
{"title":"Pulsed ultrasound for bone regeneration - outcomes and hurdles in the clinical application: a systematic review.","authors":"R Puts, R Vico, N Beilfuß, M Shaka, F Padilla, K Raum","doi":"10.22203/eCM.v042a20","DOIUrl":"https://doi.org/10.22203/eCM.v042a20","url":null,"abstract":"<p><p>Impaired bone-fracture healing is associated with long-term musculoskeletal disability, pain and psychological distress. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive and side-effect-free treatment option for fresh, delayed- and non-union bone fractures, which has been used in patients since the early 1990s. Several clinical studies, however, have questioned the usefulness of the LIPUS treatment for the regeneration of long bones, including those with a compromised healing. This systematic review addresses the hurdles that the clinical application of LIPUS encounters. Low patient compliance might disguise the effects of the LIPUS therapy, as observed in several studies. Furthermore, large discrepancies in results, showing profound LIPUS effects in regeneration of small-animal bones in comparison to the clinical studies, could be caused by the suboptimal parameters of the clinical set-up. This raises the question of whether the so-called \"acoustic dose\" requires a thorough characterisation to reveal the mechanisms of the therapy. The adequate definition of the acoustic dose is especially important in the elderly population and patients with underlying medical conditions, where distinct biological signatures lead to a delayed regeneration. Non-industry-funded, randomised, double-blind, placebo-controlled clinical trials of the LIPUS application alone and as an adjuvant treatment for bones with complicated healing, where consistent control of patient compliance is ensured, are required.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"281-311"},"PeriodicalIF":3.1,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39516660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S von Kroge, E M Wölfel, L B Buravkova, D A Atiakshin, E A Markina, T Schinke, T Rolvien, B Busse, K Jähn-Rickert
Space missions provide the opportunity to investigate the influence of gravity on the dynamic remodelling processes in bone. Mice were examined following space flight and subsequent recovery to determine the effects on bone compartment-specific microstructure and composition. The resulting bone loss following microgravity recovered only in trabecular bone, while in cortical bone the tissue mineral density was restored after only one week on Earth. Detection of TRAP-positive bone surface cells in the trabecular compartment indicated increased resorption following space flight. In cortical bone, a persistent reduced viability of osteocytes suggested an impaired sensitivity to mechanical stresses. A compartment-dependent structural recovery from microgravity-induced bone loss was shown, with a direct osteocytic contribution to persistent low bone volume in the cortical region even after a recovery period. Trabecular recovery was not accompanied by changes in osteocyte characteristics. These post-space-flight findings will contribute to the understanding of compositional changes that compromise bone quality caused by unloading, immobilisation, or disuse.
{"title":"Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics.","authors":"S von Kroge, E M Wölfel, L B Buravkova, D A Atiakshin, E A Markina, T Schinke, T Rolvien, B Busse, K Jähn-Rickert","doi":"10.22203/eCM.v042a16","DOIUrl":"https://doi.org/10.22203/eCM.v042a16","url":null,"abstract":"<p><p>Space missions provide the opportunity to investigate the influence of gravity on the dynamic remodelling processes in bone. Mice were examined following space flight and subsequent recovery to determine the effects on bone compartment-specific microstructure and composition. The resulting bone loss following microgravity recovered only in trabecular bone, while in cortical bone the tissue mineral density was restored after only one week on Earth. Detection of TRAP-positive bone surface cells in the trabecular compartment indicated increased resorption following space flight. In cortical bone, a persistent reduced viability of osteocytes suggested an impaired sensitivity to mechanical stresses. A compartment-dependent structural recovery from microgravity-induced bone loss was shown, with a direct osteocytic contribution to persistent low bone volume in the cortical region even after a recovery period. Trabecular recovery was not accompanied by changes in osteocyte characteristics. These post-space-flight findings will contribute to the understanding of compositional changes that compromise bone quality caused by unloading, immobilisation, or disuse.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"220-231"},"PeriodicalIF":3.1,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39514236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}