R T Ormsby, A R Zelmer, D Yang, N J Gunn, Y Starczak, S P Kidd, R Nelson, L B Solomon, G J Atkins
Osteomyelitis associated with periprosthetic joint infection (PJI) signals a chronic infection and the need for revision surgery. An osteomyelitic bone exhibits distinct morphological features, including evidence for osteolysis and an accelerated bone remodelling into poorly organised, poor-quality bone. In addition to immune cells, various bone cell-types have been implicated in the pathology. The present study sought to determine the types of bone-cell activities in human PJI bones. Acetabular biopsies from peri-implant bone from patients undergoing revision total hip replacement (THR) for chronic PJI (with several identified pathogens) as well as control bone from the same patients and from patients undergoing primary THR were analysed. Histological analysis confirmed that PJI bone presented increased osteoclastic activity compared to control bone. Analysis of osteocyte parameters showed no differences in osteocyte lacunar area between the acetabular bone taken from PJI patients or primary THR controls. Analysis of bone matrix composition using Masson's trichrome staining and second-harmonic generation microscopy revealed widespread lack of mature collagen, commonly surrounding osteocytes, in PJI bone. Increased expression of known collagenases, such as matrix metallopeptidase (MMP) 13, MMP1 and cathepsin K (CTSK), was measured in infected bone compared to non-infected bone. Human bone and cultured osteocyte-like cells experimentally exposed to Staphylococcus aureus exhibited strongly upregulated expression of MMP1, MMP3 and MMP13 compared to non-exposed controls. In conclusion, the study identified previously unrecognised bone-matrix changes in PJI caused by multiple organisms deriving from osteocytes. Histological examination of bone collagen composition may provide a useful adjunct diagnostic measure of PJI.
{"title":"Evidence for osteocyte-mediated bone-matrix degradation associated with periprosthetic joint infection (PJI)","authors":"R T Ormsby, A R Zelmer, D Yang, N J Gunn, Y Starczak, S P Kidd, R Nelson, L B Solomon, G J Atkins","doi":"10.22203/eCM.v042a19","DOIUrl":"https://doi.org/10.22203/eCM.v042a19","url":null,"abstract":"<p><p>Osteomyelitis associated with periprosthetic joint infection (PJI) signals a chronic infection and the need for revision surgery. An osteomyelitic bone exhibits distinct morphological features, including evidence for osteolysis and an accelerated bone remodelling into poorly organised, poor-quality bone. In addition to immune cells, various bone cell-types have been implicated in the pathology. The present study sought to determine the types of bone-cell activities in human PJI bones. Acetabular biopsies from peri-implant bone from patients undergoing revision total hip replacement (THR) for chronic PJI (with several identified pathogens) as well as control bone from the same patients and from patients undergoing primary THR were analysed. Histological analysis confirmed that PJI bone presented increased osteoclastic activity compared to control bone. Analysis of osteocyte parameters showed no differences in osteocyte lacunar area between the acetabular bone taken from PJI patients or primary THR controls. Analysis of bone matrix composition using Masson's trichrome staining and second-harmonic generation microscopy revealed widespread lack of mature collagen, commonly surrounding osteocytes, in PJI bone. Increased expression of known collagenases, such as matrix metallopeptidase (MMP) 13, MMP1 and cathepsin K (CTSK), was measured in infected bone compared to non-infected bone. Human bone and cultured osteocyte-like cells experimentally exposed to Staphylococcus aureus exhibited strongly upregulated expression of MMP1, MMP3 and MMP13 compared to non-exposed controls. In conclusion, the study identified previously unrecognised bone-matrix changes in PJI caused by multiple organisms deriving from osteocytes. Histological examination of bone collagen composition may provide a useful adjunct diagnostic measure of PJI.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"264-280"},"PeriodicalIF":3.1,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39499103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Treatment strategies for progressive intervertebral-disc degeneration often alleviate pain and other symptoms. With the goal of developing strategies to promote the regeneration of the nucleus pulposus (NP), the present study tried to identify the biological effects of hydrostatic (HP) and osmotic pressures on NP cells. The study hypothesis was that a repetitive regimen of cyclic HP followed by constant HP in high-osmolality medium would increase anabolic molecules in NP cells. Bovine NP cells/clusters were enclosed within semi-permeable membrane pouches and incubated under a regimen of cyclic HP for 2 d followed by constant HP for 1 d, repeated 6 times over 18 d. NP cells showed a significantly increased expression of anabolic genes over time: aggrecan, chondroitin sulfate N-acetylgalactosaminyltransferase 1, hyaluronan synthase 2, collagen type 2 (p < 0.05). In addition, the expression of catabolic or degenerative genes (matrix metalloproteinase 13, collagen type 1) and cellular characteristic genes (proliferating cell nucleic antigen, E-cadherin) was suppressed. The amount of sulfated glycosaminoglycan increased significantly at day 18 compared to day 3 (p < 0.01). Immunostaining revealed deposition of extracellular-matrix molecules and localization of other specific molecules corresponding to their genetic expression. An improved understanding of how cells respond to physicochemical stresses will help to better treat the degenerating disc using either cell- or gene-based therapies as well as other potential matrix-enhancing therapies. Efforts to apply these tissue-engineering and regenerative-medicine strategies will need to consider these important physicochemical stresses that may have a major impact on the survivability of such treatments.
{"title":"Hydrostatic pressure mimicking diurnal spinal movements maintains anabolic turnover in bovine nucleus pulposus cells in vitro.","authors":"F Vieira, J Kang, L Ferreira, S Mizuno","doi":"10.22203/eCM.v042a18","DOIUrl":"https://doi.org/10.22203/eCM.v042a18","url":null,"abstract":"<p><p>Treatment strategies for progressive intervertebral-disc degeneration often alleviate pain and other symptoms. With the goal of developing strategies to promote the regeneration of the nucleus pulposus (NP), the present study tried to identify the biological effects of hydrostatic (HP) and osmotic pressures on NP cells. The study hypothesis was that a repetitive regimen of cyclic HP followed by constant HP in high-osmolality medium would increase anabolic molecules in NP cells. Bovine NP cells/clusters were enclosed within semi-permeable membrane pouches and incubated under a regimen of cyclic HP for 2 d followed by constant HP for 1 d, repeated 6 times over 18 d. NP cells showed a significantly increased expression of anabolic genes over time: aggrecan, chondroitin sulfate N-acetylgalactosaminyltransferase 1, hyaluronan synthase 2, collagen type 2 (p < 0.05). In addition, the expression of catabolic or degenerative genes (matrix metalloproteinase 13, collagen type 1) and cellular characteristic genes (proliferating cell nucleic antigen, E-cadherin) was suppressed. The amount of sulfated glycosaminoglycan increased significantly at day 18 compared to day 3 (p < 0.01). Immunostaining revealed deposition of extracellular-matrix molecules and localization of other specific molecules corresponding to their genetic expression. An improved understanding of how cells respond to physicochemical stresses will help to better treat the degenerating disc using either cell- or gene-based therapies as well as other potential matrix-enhancing therapies. Efforts to apply these tissue-engineering and regenerative-medicine strategies will need to consider these important physicochemical stresses that may have a major impact on the survivability of such treatments.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"246-263"},"PeriodicalIF":3.1,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39495364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M F Fiordalisi, A J Silva, M Barbosa, R M Gonçalves, J Caldeira
Intervertebral disc (IVD) degeneration and the consequent low-back pain (LBP) affect over 80 % of people in western societies, constituting a tremendous socio-economic burden worldwide and largely impairing patients' life quality. Extracellular matrix (ECM)-based scaffolds, derived from decellularised tissues, are being increasingly explored in regenerative medicine for tissue repair. Decellularisation plays an essential role for host cells and antigen removal, while maintaining native microenvironmental signals, including ECM structure, composition and mechanical properties, which are essential for driving tissue regeneration. With the lack of clinical solutions for IVD repair/regeneration, implantation of decellularised IVD tissues has been explored to halt and/or revert the degenerative cascade and the associated LBP symptoms. Over the last few years, several researchers have focused on the optimisation of IVD decellularisation methods, combining physical, chemical and enzymatic treatments, in order to successfully develop a cell-free matrix. Recellularisation of IVD-based scaffolds with different cell types has been attempted and numerous methods have been explored to address proper IVD regeneration. Herein, the advances in IVD decellularisation methods, sterilisation procedures, repopulation and biocompatibility tests are reviewed. Additionally, the importance of the donor profile for therapeutic success is also addressed. Finally, the perspectives and major hurdles for clinical use of the decellularised ECM-based biomaterials for IVD are discussed. The studies reviewed support the notion that tissue-engineering-based strategies resorting to decellularised IVD may represent a major advancement in the treatment of disc degeneration and consequent LBP.
{"title":"Intervertebral disc decellularisation: progress and challenges.","authors":"M F Fiordalisi, A J Silva, M Barbosa, R M Gonçalves, J Caldeira","doi":"10.22203/eCM.v042a15","DOIUrl":"https://doi.org/10.22203/eCM.v042a15","url":null,"abstract":"<p><p>Intervertebral disc (IVD) degeneration and the consequent low-back pain (LBP) affect over 80 % of people in western societies, constituting a tremendous socio-economic burden worldwide and largely impairing patients' life quality. Extracellular matrix (ECM)-based scaffolds, derived from decellularised tissues, are being increasingly explored in regenerative medicine for tissue repair. Decellularisation plays an essential role for host cells and antigen removal, while maintaining native microenvironmental signals, including ECM structure, composition and mechanical properties, which are essential for driving tissue regeneration. With the lack of clinical solutions for IVD repair/regeneration, implantation of decellularised IVD tissues has been explored to halt and/or revert the degenerative cascade and the associated LBP symptoms. Over the last few years, several researchers have focused on the optimisation of IVD decellularisation methods, combining physical, chemical and enzymatic treatments, in order to successfully develop a cell-free matrix. Recellularisation of IVD-based scaffolds with different cell types has been attempted and numerous methods have been explored to address proper IVD regeneration. Herein, the advances in IVD decellularisation methods, sterilisation procedures, repopulation and biocompatibility tests are reviewed. Additionally, the importance of the donor profile for therapeutic success is also addressed. Finally, the perspectives and major hurdles for clinical use of the decellularised ECM-based biomaterials for IVD are discussed. The studies reviewed support the notion that tissue-engineering-based strategies resorting to decellularised IVD may represent a major advancement in the treatment of disc degeneration and consequent LBP.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"196-219"},"PeriodicalIF":3.1,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39489661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N Angrisani, R Willumeit-Römer, H Windhagen, B Mavila Chathoth, V Scheper, B Wiese, H Helmholz, J Reifenrath
No optimal therapy exists to stop or cure chondral degeneration in osteoarthritis (OA). While the pathogenesis is unclear, there is consensus on the etiological involvement of both articular cartilage and subchondral bone. Compared to original bone, the substance of sclerotic bone is mechanically less solid. The osteoproliferative effect of Mg has been shown repeatedly during development of Mg-based osteosynthesis implants. The aim of the present study was to examine the influence of implanted high-purity Mg cylinders on subchondral bone quality in a rabbit OA model. 10 New Zealand White rabbits received into the knee either 20 empty drill holes or 20 drill holes, which were additionally filled with one Mg cylinder each. Follow-up was at 8 weeks. Micro-computed tomography (µCT) was performed. After euthanasia, cartilage condition was determined, bone samples were collected and processed for histological evaluation and elemental imaging by micro-X-ray fluorescence spectrometry (µXRF). Articular cartilage collected post-mortem showed different stages of lesions, from mild alterations up to exposed subchondral bone, which tended to be slightly lower in animals with implanted Mg cylinders. µCT showed significantly increased bone volume in the Mg group. Also, histological evaluation revealed distinct differences. While right, operated limbs did not show any significant difference, left, non-operated controls showed significantly less changes in articular cartilage in the Mg group. A distinct influence of implanted cylinders of pure Mg on subchondral bone of osteoarthritic rabbits was shown. Subsequent evaluations, including other time points and alternative alloys, will show if this could alter OA progression.
{"title":"Small-sized magnesium cylinders influence subchondral bone quality in osteoarthritic rabbits - an in vivo pilot study.","authors":"N Angrisani, R Willumeit-Römer, H Windhagen, B Mavila Chathoth, V Scheper, B Wiese, H Helmholz, J Reifenrath","doi":"10.22203/eCM.v042a14","DOIUrl":"https://doi.org/10.22203/eCM.v042a14","url":null,"abstract":"<p><p>No optimal therapy exists to stop or cure chondral degeneration in osteoarthritis (OA). While the pathogenesis is unclear, there is consensus on the etiological involvement of both articular cartilage and subchondral bone. Compared to original bone, the substance of sclerotic bone is mechanically less solid. The osteoproliferative effect of Mg has been shown repeatedly during development of Mg-based osteosynthesis implants. The aim of the present study was to examine the influence of implanted high-purity Mg cylinders on subchondral bone quality in a rabbit OA model. 10 New Zealand White rabbits received into the knee either 20 empty drill holes or 20 drill holes, which were additionally filled with one Mg cylinder each. Follow-up was at 8 weeks. Micro-computed tomography (µCT) was performed. After euthanasia, cartilage condition was determined, bone samples were collected and processed for histological evaluation and elemental imaging by micro-X-ray fluorescence spectrometry (µXRF). Articular cartilage collected post-mortem showed different stages of lesions, from mild alterations up to exposed subchondral bone, which tended to be slightly lower in animals with implanted Mg cylinders. µCT showed significantly increased bone volume in the Mg group. Also, histological evaluation revealed distinct differences. While right, operated limbs did not show any significant difference, left, non-operated controls showed significantly less changes in articular cartilage in the Mg group. A distinct influence of implanted cylinders of pure Mg on subchondral bone of osteoarthritic rabbits was shown. Subsequent evaluations, including other time points and alternative alloys, will show if this could alter OA progression.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"179-195"},"PeriodicalIF":3.1,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39467553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N Bouhsina, C Decante, J B Hardel, S Madec, J Abadie, A Hamel, C Le Visage, J Lesoeur, J Guicheux, J Clouet, M Fusellier
Sheep are one of the many animal models used to investigate the pathophysiology of disc degeneration and the regenerative strategies for intervertebral disc (IVD) disease. To date, few studies have thoroughly explored ageing of ovine lumbar IVDs. Hence, the objective of the present study was to concomitantly assess the development of spontaneous age-related lumbar IVD degeneration in sheep using X-ray, magnetic resonance imaging (MRI) as well as histological analyses. 8 young ewes (< 48 months old) and 4 skeletally mature ewes (> 48 months old) were included. Disc height, Pfirrmann and modified Pfirrmann grades as well as T2-wsi and T2 times were assessed by X-ray and MRI. The modified Boos score was also determined using histology sections. Pfirrmann (2 to 3) and modified Pfirrmann (2 to 4) grades as well as Boos scores (7 to 13) gradually increased with ageing, while T2-weighted signal intensity (1.18 to 0.75), T2 relaxation time (114.36 to 70.65 ms) and disc height (4.1 to 3.2 mm) decreased significantly. All the imaging modalities strongly correlated with the histology (p < 0.0001). The present study described the suitability of sheep as a model of age-related IVD degeneration by correlation of histological tissue alterations with the changes observed using X-ray and MRI. Given the structural similarities with humans, the study demonstrated that sheep warrant being considered as a pertinent animal model to investigate IVD regenerative strategies without induction of degeneration.
{"title":"Correlation between magnetic resonance, X-ray imaging alterations and histological changes in an ovine model of age-related disc degeneration.","authors":"N Bouhsina, C Decante, J B Hardel, S Madec, J Abadie, A Hamel, C Le Visage, J Lesoeur, J Guicheux, J Clouet, M Fusellier","doi":"10.22203/eCM.v042a13","DOIUrl":"https://doi.org/10.22203/eCM.v042a13","url":null,"abstract":"<p><p>Sheep are one of the many animal models used to investigate the pathophysiology of disc degeneration and the regenerative strategies for intervertebral disc (IVD) disease. To date, few studies have thoroughly explored ageing of ovine lumbar IVDs. Hence, the objective of the present study was to concomitantly assess the development of spontaneous age-related lumbar IVD degeneration in sheep using X-ray, magnetic resonance imaging (MRI) as well as histological analyses. 8 young ewes (< 48 months old) and 4 skeletally mature ewes (> 48 months old) were included. Disc height, Pfirrmann and modified Pfirrmann grades as well as T2-wsi and T2 times were assessed by X-ray and MRI. The modified Boos score was also determined using histology sections. Pfirrmann (2 to 3) and modified Pfirrmann (2 to 4) grades as well as Boos scores (7 to 13) gradually increased with ageing, while T2-weighted signal intensity (1.18 to 0.75), T2 relaxation time (114.36 to 70.65 ms) and disc height (4.1 to 3.2 mm) decreased significantly. All the imaging modalities strongly correlated with the histology (p < 0.0001). The present study described the suitability of sheep as a model of age-related IVD degeneration by correlation of histological tissue alterations with the changes observed using X-ray and MRI. Given the structural similarities with humans, the study demonstrated that sheep warrant being considered as a pertinent animal model to investigate IVD regenerative strategies without induction of degeneration.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"166-178"},"PeriodicalIF":3.1,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39444541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J R Owen, M P Campbell, M D Mott, C A Beck, C Xie, G Muthukrishnan, J L Daiss, E M Schwarz, S L Kates
The most prevalent pathogen in bone infections is Staphylococcus aureus; its incidence and severity are partially determined by host factors. Prior studies showed that anti-glucosaminidase (Gmd) antibodies are protective in animals, and 93.3 % of patients with culture-confirmed S. aureus osteomyelitis do not have anti-Gmd levels > 10 ng/mL in serum. Infection in patients with high anti-Gmd remains unexplained. Are anti-Gmd antibodies in osteomyelitis patients of the non-opsonising, non-complement-fixing IgG4 isotype? The relative amounts of IgG4 and total IgG against Gmd and 7 other S. aureus antigens: iron-surface determinants (Isd) IsdA, IsdB, and IsdH, amidase (Amd), α-haemolysin (Hla), chemotaxis inhibitory protein from S. aureus (CHIPS), and staphylococcal-complement inhibitor (SCIN) were determined in sera from healthy controls (Ctrl, n = 92), osteomyelitis patients whose surgical treatment resulted in infection control (IC, n = 95) or an adverse outcome (AD, n = 40), and post-mortem (PM, n = 7) blood samples from S. aureus septic-death patients. Anti-Gmd IgG4 levels were generally lower in infected patients compared to controls; however, levels among the infected were higher in AD than IC patients. Anti-IsdA, IsdB and IsdH IgG4 levels were increased in infected patients versus controls, and Jonckheere-Terpstra tests of levels revealed an increasing order of infection (Ctrl < IC < AD < PM) for anti-Isd IgG4 antibodies and a decreasing order of infection (Ctrl > IC > AD > PM) for anti-autolysin (Atl) IgG4 antibodies. Collectively, this does not support an immunosuppressive role of IgG4 in S. aureus osteomyelitis but is consistent with a paradigm of high anti-Isd and low anti-Atl responses in these patients.
骨感染中最常见的病原体是金黄色葡萄球菌;其发病率和严重程度部分取决于宿主因素。先前的研究表明,抗葡萄糖苷酶(Gmd)抗体在动物中具有保护作用,93.3%的培养确诊金黄色葡萄球菌骨髓炎患者血清中抗Gmd水平不> 10 ng/mL。高抗gmd患者的感染仍未得到解释。骨髓炎患者的抗gmd抗体是非调理、非补体固定的IgG4同型吗?IgG4和总IgG对Gmd及其他7种金黄色葡萄球菌抗原的相对量:对健康对照(对照组,n = 92)、手术治疗后感染得到控制的骨髓炎患者(对照组,n = 95)或出现不良结果的骨髓炎患者(AD, n = 40)和金黄色葡萄球菌败血症死亡患者的死后血液样本(PM, n = 7)进行了铁表面决定因子(Isd)、IsdA、IsdB和IsdH、酰胺酶(Amd)、α-溶血素(Hla)、趋化抑制蛋白(CHIPS)和葡萄球菌补体抑制剂(SCIN)的检测。与对照组相比,感染患者的抗gmd IgG4水平普遍较低;然而,AD感染者的水平高于IC患者。与对照组相比,感染患者的抗isda、IsdB和IsdH IgG4水平升高,jonckheer - terpstra检测显示,抗isd IgG4抗体的感染顺序为递增(Ctrl < IC < AD < PM),抗自溶素(Atl) IgG4抗体的感染顺序为递减(Ctrl > IC > AD > PM)。总的来说,这并不支持IgG4在金黄色葡萄球菌骨髓炎中的免疫抑制作用,但与这些患者的高抗isd和低抗atl反应的范式一致。
{"title":"IgG4-specific responses in patients with Staphylococcus aureus bone infections are not predictive of postoperative complications.","authors":"J R Owen, M P Campbell, M D Mott, C A Beck, C Xie, G Muthukrishnan, J L Daiss, E M Schwarz, S L Kates","doi":"10.22203/eCM.v042a12","DOIUrl":"https://doi.org/10.22203/eCM.v042a12","url":null,"abstract":"<p><p>The most prevalent pathogen in bone infections is Staphylococcus aureus; its incidence and severity are partially determined by host factors. Prior studies showed that anti-glucosaminidase (Gmd) antibodies are protective in animals, and 93.3 % of patients with culture-confirmed S. aureus osteomyelitis do not have anti-Gmd levels > 10 ng/mL in serum. Infection in patients with high anti-Gmd remains unexplained. Are anti-Gmd antibodies in osteomyelitis patients of the non-opsonising, non-complement-fixing IgG4 isotype? The relative amounts of IgG4 and total IgG against Gmd and 7 other S. aureus antigens: iron-surface determinants (Isd) IsdA, IsdB, and IsdH, amidase (Amd), α-haemolysin (Hla), chemotaxis inhibitory protein from S. aureus (CHIPS), and staphylococcal-complement inhibitor (SCIN) were determined in sera from healthy controls (Ctrl, n = 92), osteomyelitis patients whose surgical treatment resulted in infection control (IC, n = 95) or an adverse outcome (AD, n = 40), and post-mortem (PM, n = 7) blood samples from S. aureus septic-death patients. Anti-Gmd IgG4 levels were generally lower in infected patients compared to controls; however, levels among the infected were higher in AD than IC patients. Anti-IsdA, IsdB and IsdH IgG4 levels were increased in infected patients versus controls, and Jonckheere-Terpstra tests of levels revealed an increasing order of infection (Ctrl < IC < AD < PM) for anti-Isd IgG4 antibodies and a decreasing order of infection (Ctrl > IC > AD > PM) for anti-autolysin (Atl) IgG4 antibodies. Collectively, this does not support an immunosuppressive role of IgG4 in S. aureus osteomyelitis but is consistent with a paradigm of high anti-Isd and low anti-Atl responses in these patients.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"156-165"},"PeriodicalIF":3.1,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7e/ec/nihms-1777034.PMC8886799.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39437567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W-J Metsemakers, H C van der Mei, R G Richards, T F Moriarty
The orthopaedic and trauma community have faced the threat of infection since the introduction of operative fracture fixation many decades ago. The parallel emergence and spread of antimicrobial resistance in clinically relevant pathogens has the potential to significantly complicate patient care. This editorial serves to provide a global context to the issue of antimicrobial resistance and how infectious disease research in general plays a crucial role both on a global scale as evidenced by the current pandemic, but also on a more personal scale for the daily management of orthopaedic trauma patients. The special issue on Orthopaedic Infection in the eCM journal provides a snapshot of the clinically relevant basic research that is being performed in this field.
{"title":"Editorial - Infectious-disease research during a pandemic: the importance of global unity.","authors":"W-J Metsemakers, H C van der Mei, R G Richards, T F Moriarty","doi":"10.22203/eCM.v042a11","DOIUrl":"https://doi.org/10.22203/eCM.v042a11","url":null,"abstract":"<p><p>The orthopaedic and trauma community have faced the threat of infection since the introduction of operative fracture fixation many decades ago. The parallel emergence and spread of antimicrobial resistance in clinically relevant pathogens has the potential to significantly complicate patient care. This editorial serves to provide a global context to the issue of antimicrobial resistance and how infectious disease research in general plays a crucial role both on a global scale as evidenced by the current pandemic, but also on a more personal scale for the daily management of orthopaedic trauma patients. The special issue on Orthopaedic Infection in the eCM journal provides a snapshot of the clinically relevant basic research that is being performed in this field.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"154-155"},"PeriodicalIF":3.1,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39397342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B Q Le, J H Too, T C Tan, R Aa Smith, V Nurcombe, S M Cool, N Yu
Periodontitis is the most common inflammatory disease that leads to periodontal defects and tooth loss. Regeneration of alveolar bone and soft tissue in periodontal defects is highly desirable but remains challenging. A heparan sulphate variant (HS3) with enhanced affinity for bone morphogenetic protein-2 (BMP2) that, when combined with collagen or ceramic biomaterials, enhances bone tissue regeneration in the axial and cranial skeleton in several animal models was reported previously. In the current study, establishing the efficacy of a collagen/HS3 device for the regeneration of alveolar bone and the adjacent periodontal apparatus and related structures was sought. Collagen sponges loaded with phosphate-buffered saline, HS3, BMP2, or HS3 + BMP2 were implanted into surgically-created intra-bony periodontal defects in rat maxillae. At the 6 week end- point the maxillae were decalcified, and the extent of tissue regeneration determined by histomorphometrical analysis. The combination of collagen/HS3, collagen/BMP2 or collagen/HS3 + BMP2 resulted in a three to four-fold increase in bone regeneration and up to a 1.5 × improvement in functional ligament restoration compared to collagen alone. Moreover, the combination of collagen/HS3 + BMP2 improved the alveolar bone height and reduced the amount of epithelial growth in the apical direction. The implantation of a collagen/ HS3 combination device enhanced the regeneration of alveolar bone and associated periodontal tissues at amounts comparable to collagen in combination with the osteogenic factor BMP2. This study highlights the efficacy of a collagen/HS3 combination device for periodontal regeneration that warrants further development as a point-of-care treatment for periodontitis-related bone and soft tissue loss.
{"title":"Application of a BMP2-binding heparan sulphate to promote periodontal regeneration.","authors":"B Q Le, J H Too, T C Tan, R Aa Smith, V Nurcombe, S M Cool, N Yu","doi":"10.22203/eCM.v042a10","DOIUrl":"https://doi.org/10.22203/eCM.v042a10","url":null,"abstract":"<p><p>Periodontitis is the most common inflammatory disease that leads to periodontal defects and tooth loss. Regeneration of alveolar bone and soft tissue in periodontal defects is highly desirable but remains challenging. A heparan sulphate variant (HS3) with enhanced affinity for bone morphogenetic protein-2 (BMP2) that, when combined with collagen or ceramic biomaterials, enhances bone tissue regeneration in the axial and cranial skeleton in several animal models was reported previously. In the current study, establishing the efficacy of a collagen/HS3 device for the regeneration of alveolar bone and the adjacent periodontal apparatus and related structures was sought. Collagen sponges loaded with phosphate-buffered saline, HS3, BMP2, or HS3 + BMP2 were implanted into surgically-created intra-bony periodontal defects in rat maxillae. At the 6 week end- point the maxillae were decalcified, and the extent of tissue regeneration determined by histomorphometrical analysis. The combination of collagen/HS3, collagen/BMP2 or collagen/HS3 + BMP2 resulted in a three to four-fold increase in bone regeneration and up to a 1.5 × improvement in functional ligament restoration compared to collagen alone. Moreover, the combination of collagen/HS3 + BMP2 improved the alveolar bone height and reduced the amount of epithelial growth in the apical direction. The implantation of a collagen/ HS3 combination device enhanced the regeneration of alveolar bone and associated periodontal tissues at amounts comparable to collagen in combination with the osteogenic factor BMP2. This study highlights the efficacy of a collagen/HS3 combination device for periodontal regeneration that warrants further development as a point-of-care treatment for periodontitis-related bone and soft tissue loss.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"139-153"},"PeriodicalIF":3.1,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39370141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J L Hamilton, M F Mohamed, B R Witt, M A Wimmer, S H Shafikhani
Despite many preventive measures, including prophylactic antibiotics, periprosthetic joint infection (PJI) remains a devastating complication following arthroplasty, leading to pain, suffering, morbidity and substantial economic burden. Humans have a powerful innate immune system that can effectively control infections, if alerted quickly. Unfortunately, pathogens use many mechanisms to dampen innate immune responses. The study hypothesis was that immunomodulators that can jumpstart and direct innate immune responses (particularly neutrophils) at the surgical site of implant placement would boost immune responses and reduce PJI, even in the absence of antibiotics. To test this hypothesis, N-formyl-methionyl-leucyl-phenylalanine (fMLP) (a potent chemoattractant for phagocytic leukocytes including neutrophils) was used in a mouse model of PJI with Staphylococcus aureus (S. aureus). Mice receiving intramedullary femoral implants were divided into three groups: i) implant alone; ii) implant + S. aureus; iii) implant + fMLP + S. aureus. fMLP treatment reduced S. aureus infection levels by ~ 2-Log orders at day 3. Moreover, fMLP therapy reduced infection-induced peri-implant periosteal reaction, focal cortical loss and areas of inflammatory infiltrate in mice distal femora at day 10. Finally, fMLP treatment reduced pain behaviour and increased weight-bearing at the implant leg in infected mice at day 10. Data indicated that fMLP therapy is a promising novel approach for reducing PJI, if administered locally at surgical sites. Future work will be toward further enhancement and optimisation of an fMLP-based therapeutic approach through combination with antibiotics and/or implant coating with fMLP.
{"title":"Therapeutic assessment of N-formyl-methionyl-leucyl-phenylalanine (fMLP) in reducing periprosthetic joint infection.","authors":"J L Hamilton, M F Mohamed, B R Witt, M A Wimmer, S H Shafikhani","doi":"10.22203/eCM.v042a09","DOIUrl":"https://doi.org/10.22203/eCM.v042a09","url":null,"abstract":"<p><p>Despite many preventive measures, including prophylactic antibiotics, periprosthetic joint infection (PJI) remains a devastating complication following arthroplasty, leading to pain, suffering, morbidity and substantial economic burden. Humans have a powerful innate immune system that can effectively control infections, if alerted quickly. Unfortunately, pathogens use many mechanisms to dampen innate immune responses. The study hypothesis was that immunomodulators that can jumpstart and direct innate immune responses (particularly neutrophils) at the surgical site of implant placement would boost immune responses and reduce PJI, even in the absence of antibiotics. To test this hypothesis, N-formyl-methionyl-leucyl-phenylalanine (fMLP) (a potent chemoattractant for phagocytic leukocytes including neutrophils) was used in a mouse model of PJI with Staphylococcus aureus (S. aureus). Mice receiving intramedullary femoral implants were divided into three groups: i) implant alone; ii) implant + S. aureus; iii) implant + fMLP + S. aureus. fMLP treatment reduced S. aureus infection levels by ~ 2-Log orders at day 3. Moreover, fMLP therapy reduced infection-induced peri-implant periosteal reaction, focal cortical loss and areas of inflammatory infiltrate in mice distal femora at day 10. Finally, fMLP treatment reduced pain behaviour and increased weight-bearing at the implant leg in infected mice at day 10. Data indicated that fMLP therapy is a promising novel approach for reducing PJI, if administered locally at surgical sites. Future work will be toward further enhancement and optimisation of an fMLP-based therapeutic approach through combination with antibiotics and/or implant coating with fMLP.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"122-138"},"PeriodicalIF":3.1,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/73/d2/nihms-1739712.PMC8459619.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39345208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Lenz, P Varga, D Mischler, B Gueorguiev, K Klos, A Fernandez dell'Oca, P Regazzoni, R G Richards, S M Perren
Single-plate fixation bridging bone defects provokes nonunion and risks plate-fatigue failure due to under- dimensioned implants. Adding a helical plate to bridge the fracture increases stiffness and balances load sharing. This study compares the stiffness and plate surface strain of different constructs in a transverse contact and gap femoral shaft fracture model. Eight groups of six synthetic femora each were formed: intact femora; intact femora with lateral locking plate; contact and gap transverse shaft osteotomies each with lateral locking plate, lateral locking plate and helical locking plate, and long proximal femoral nail. Constructs underwent non-destructive quasi-static axial and torsional loading. Plate surface strain evaluation was performed under 200 N axial loading. Constructs with both lateral and helical plates demonstrated similar axial and torsional stiffness- independent of the contact or gap situations - being significantly higher compared to lateral plating (p < 0.01). Torsional stiffness of the constructs, with both lateral and helical plates in the gap situation, was significantly higher compared to this situation stabilised by a nail (p < 0.01). Plate surface strain dropped from 0.3 % in the gap situation with a lateral plate to < 0.1 % in this situation with both a lateral and a helical plate. Additional helical plating increases axial and torsional construct stiffness in synthetic bone and seems to provide well-balanced load sharing. Its use should be considered in very demanding situations for gap or defect fractures, where single-plate osteosynthesis provides inadequate stiffness for fracture healing and induces nonunion.
{"title":"Helical plating - a novel technique to increase stiffness in defect fractures.","authors":"M Lenz, P Varga, D Mischler, B Gueorguiev, K Klos, A Fernandez dell'Oca, P Regazzoni, R G Richards, S M Perren","doi":"10.22203/eCM.v042a08","DOIUrl":"https://doi.org/10.22203/eCM.v042a08","url":null,"abstract":"<p><p>Single-plate fixation bridging bone defects provokes nonunion and risks plate-fatigue failure due to under- dimensioned implants. Adding a helical plate to bridge the fracture increases stiffness and balances load sharing. This study compares the stiffness and plate surface strain of different constructs in a transverse contact and gap femoral shaft fracture model. Eight groups of six synthetic femora each were formed: intact femora; intact femora with lateral locking plate; contact and gap transverse shaft osteotomies each with lateral locking plate, lateral locking plate and helical locking plate, and long proximal femoral nail. Constructs underwent non-destructive quasi-static axial and torsional loading. Plate surface strain evaluation was performed under 200 N axial loading. Constructs with both lateral and helical plates demonstrated similar axial and torsional stiffness- independent of the contact or gap situations - being significantly higher compared to lateral plating (p < 0.01). Torsional stiffness of the constructs, with both lateral and helical plates in the gap situation, was significantly higher compared to this situation stabilised by a nail (p < 0.01). Plate surface strain dropped from 0.3 % in the gap situation with a lateral plate to < 0.1 % in this situation with both a lateral and a helical plate. Additional helical plating increases axial and torsional construct stiffness in synthetic bone and seems to provide well-balanced load sharing. Its use should be considered in very demanding situations for gap or defect fractures, where single-plate osteosynthesis provides inadequate stiffness for fracture healing and induces nonunion.</p>","PeriodicalId":11849,"journal":{"name":"European cells & materials","volume":"42 ","pages":"110-121"},"PeriodicalIF":3.1,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39325706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}