首页 > 最新文献

Journal of Business & Economic Statistics最新文献

英文 中文
Bayesian nonparametric panel Markov-switching GARCH models 贝叶斯非参数面板马尔可夫切换GARCH模型
Pub Date : 2020-12-18 DOI: 10.1080/07350015.2023.2166049
R. Casarin, Mauro Costantini, Anthony Osuntuyi
Abstract This paper introduces a new model for panel data with Markov-switching GARCH effects. The model incorporates a series-specific hidden Markov chain process that drives the GARCH parameters. To cope with the high-dimensionality of the parameter space, the paper exploits the cross-sectional clustering of the series by first assuming a soft parameter pooling through a hierarchical prior distribution with two-step procedure, and then introducing clustering effects in the parameter space through a nonparametric prior distribution. The model and the proposed inference are evaluated through a simulation experiment. The results suggest that the inference is able to recover the true value of the parameters and the number of groups in each regime. An empirical application to 78 assets of the SP&100 index from 6 January 2000 to 3 October 2020 is also carried out by using a two-regime Markov switching GARCH model. The findings shows the presence of 2 and 3 clusters among the constituents in the first and second regime, respectively.
摘要本文介绍了一种新的马尔可夫切换GARCH效应面板数据模型。该模型结合了一个特定于系列的隐马尔可夫链过程,该过程驱动GARCH参数。为了应对参数空间的高维性,本文首先利用两步法通过分层先验分布假设软参数池化,然后通过非参数先验分布在参数空间中引入聚类效应,从而利用序列的截面聚类。通过仿真实验对模型和所提出的推理进行了验证。结果表明,该推理能够恢复参数的真实值和每个区域的群数。从2000年1月6日到2020年10月3日,对标准普尔100指数的78种资产进行了实证应用,并使用了一个双区马尔可夫切换GARCH模型。研究结果表明,在第一和第二体制的成分中分别存在2和3个簇。
{"title":"Bayesian nonparametric panel Markov-switching GARCH models","authors":"R. Casarin, Mauro Costantini, Anthony Osuntuyi","doi":"10.1080/07350015.2023.2166049","DOIUrl":"https://doi.org/10.1080/07350015.2023.2166049","url":null,"abstract":"Abstract This paper introduces a new model for panel data with Markov-switching GARCH effects. The model incorporates a series-specific hidden Markov chain process that drives the GARCH parameters. To cope with the high-dimensionality of the parameter space, the paper exploits the cross-sectional clustering of the series by first assuming a soft parameter pooling through a hierarchical prior distribution with two-step procedure, and then introducing clustering effects in the parameter space through a nonparametric prior distribution. The model and the proposed inference are evaluated through a simulation experiment. The results suggest that the inference is able to recover the true value of the parameters and the number of groups in each regime. An empirical application to 78 assets of the SP&100 index from 6 January 2000 to 3 October 2020 is also carried out by using a two-regime Markov switching GARCH model. The findings shows the presence of 2 and 3 clusters among the constituents in the first and second regime, respectively.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126211323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Identification of a triangular two equation system without instruments 无仪器三角双方程方程组的辨识
Pub Date : 2020-08-25 DOI: 10.47004/10.47004/wp.cem.2020.4120
Arthur Lewbel, Susanne M. Schennach, Linqi Zhang
We show that a standard linear triangular two equation system can be point identified, without the use of instruments or any other side information. We find that the only case where the model is not point identified is when a latent variable that causes endogeneity is normally distributed. In this non-identified case, we derive the sharp identified set. We apply our results to Acemoglu and Johnson’s (2007) model of life expectancy and GDP, obtaining point identification and comparable estimates to theirs, without using their (or any other) instrument.
我们证明了一个标准的线性三角形双方程系统可以在不使用仪器或任何其他侧信息的情况下进行点识别。我们发现,模型不被点识别的唯一情况是,导致内生性的潜在变量是正态分布的。在这种非辨识的情况下,我们推导出尖锐辨识集。我们将我们的结果应用到Acemoglu和Johnson(2007)的预期寿命和GDP模型中,在不使用他们(或任何其他)工具的情况下,获得与他们的点识别和可比估计。
{"title":"Identification of a triangular two equation system without instruments","authors":"Arthur Lewbel, Susanne M. Schennach, Linqi Zhang","doi":"10.47004/10.47004/wp.cem.2020.4120","DOIUrl":"https://doi.org/10.47004/10.47004/wp.cem.2020.4120","url":null,"abstract":"We show that a standard linear triangular two equation system can be point identified, without the use of instruments or any other side information. We find that the only case where the model is not point identified is when a latent variable that causes endogeneity is normally distributed. In this non-identified case, we derive the sharp identified set. We apply our results to Acemoglu and Johnson’s (2007) model of life expectancy and GDP, obtaining point identification and comparable estimates to theirs, without using their (or any other) instrument.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114112371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Estimation of a Structural Break Point in Linear Regression Models 线性回归模型结构断点的估计
Pub Date : 2018-11-08 DOI: 10.1080/07350015.2022.2154777
Y. Baek
This paper proposes a point estimator of the break location for a one-time structural break in linear regression models. If the break magnitude is small, the least-squares estimator of the break date has two modes at ends of the finite sample period, regardless of the true break location. I suggest a modification of the least-squares objective function to solve this problem. The modified objective function incorporates estimation uncertainty that varies across potential break dates. The new break point estimator is consistent and has a unimodal finite sample distribution under a small break magnitude. A limit distribution is provided under a in-fill asymptotic framework which verifies that the new estimator outperforms the least-squares estimator.
本文提出了线性回归模型中一次性结构断裂断裂位置的点估计。如果断裂幅度很小,那么无论真正的断裂位置如何,断裂日期的最小二乘估计量在有限样本周期的末端都有两个模态。我建议对最小二乘目标函数进行修改来解决这个问题。修改后的目标函数包含了在潜在中断日期之间变化的估计不确定性。新的断点估计量是一致的,并且在小的断点幅度下具有单峰有限样本分布。给出了在填充渐近框架下的极限分布,验证了新估计量优于最小二乘估计量。
{"title":"Estimation of a Structural Break Point in Linear Regression Models","authors":"Y. Baek","doi":"10.1080/07350015.2022.2154777","DOIUrl":"https://doi.org/10.1080/07350015.2022.2154777","url":null,"abstract":"This paper proposes a point estimator of the break location for a one-time structural break in linear regression models. If the break magnitude is small, the least-squares estimator of the break date has two modes at ends of the finite sample period, regardless of the true break location. I suggest a modification of the least-squares objective function to solve this problem. The modified objective function incorporates estimation uncertainty that varies across potential break dates. The new break point estimator is consistent and has a unimodal finite sample distribution under a small break magnitude. A limit distribution is provided under a in-fill asymptotic framework which verifies that the new estimator outperforms the least-squares estimator.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114688986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments 线性矩定义集识别参数泛函的简单推断
Pub Date : 2018-10-07 DOI: 10.1080/07350015.2023.2203768
JoonHwan Cho, Thomas M. Russell
This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which ``naively'' bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models.
本文考虑了部分辨识参数的线性泛函在辨识集由线性(在参数中)矩不等式定义的情况下的一致有效推理。提出了一种构造部分辨识参数线性泛函一致有效置信集的自举方法。提出的方法相当于自举线性优化问题的值函数,并将子向量推理作为一种特殊情况。换句话说,本文给出了对部分辨识的线性泛函,“天真地”自举线性规划可以构造一致正确覆盖的置信集的条件。与其他提出的子向量推理程序不同,我们的程序不需要研究人员反复反转假设检验,并且计算效率极高。除了新的过程外,本文还讨论了部分识别模型中优化文献与子向量推理文献之间的联系。
{"title":"Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Moments","authors":"JoonHwan Cho, Thomas M. Russell","doi":"10.1080/07350015.2023.2203768","DOIUrl":"https://doi.org/10.1080/07350015.2023.2203768","url":null,"abstract":"This paper considers uniformly valid (over a class of data generating processes) inference for linear functionals of partially identified parameters in cases where the identified set is defined by linear (in the parameter) moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the value functions of a linear optimization problem, and subsumes subvector inference as a special case. In other words, this paper shows the conditions under which ``naively'' bootstrapping a linear program can be used to construct a confidence set with uniform correct coverage for a partially identified linear functional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new procedure, the paper also discusses connections between the literature on optimization and the literature on subvector inference in partially identified models.","PeriodicalId":118766,"journal":{"name":"Journal of Business & Economic Statistics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114561071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Journal of Business & Economic Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1