首页 > 最新文献

European Journal of Mineralogy最新文献

英文 中文
Ferro-ferri-holmquistite, □Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+ analogue of holmquistite, from the Iwagi islet, Ehime, Japan fero -ferri- holmquisite,□Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+ holmquisite的类似物,产自日本爱母岛Iwagi岛
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-10-07 DOI: 10.5194/ejm-34-425-2022
M. Nagashima, T. Imaoka, T. Kano, J. Kimura, Q. Chang, Takashi Matsumoto
Abstract. Ferro-ferri-holmquistite (IMA2022-020), ideal formula□Li2(Fe32+Fe23+)Si8O22(OH)2, wasfound in albitized granite from the Iwagi islet, Ehime, Japan.Ferro-ferri-holmquistite is a CFe2+Fe3+ analogue ofholmquistite and belongs to the lithium-subgroup amphiboles. It commonlyoccurs as acicular aggregate and/or isolated crystals in quartz, albite andK-feldspar and is blue with a bluish-grey streak and a vitreous luster. Ithas a Mohs hardness of 5 1/2. Its cleavage is perfect on{210}. Measured and calculated densities areDmeas.=3.2 g cm−3 and Dcalc.=3.317 g cm−3,respectively. Ferro-ferri-holmquistite is optically biaxial (-), withα=1.685, β=1.713 and γ=1.727, and ispleochroic, with X= pale blue ∼ pale yellowish blue, Y= deep blue ∼ brownish blue and Z= deep blue ∼ deep bluish violet; X>Z>Y. The magneticsusceptibility is similar to the associated biotite.Ferro-ferri-holmquistite is insoluble in HCl, HNO3 and H2SO4.The empirical formula calculated on the basis of Σ(C+T) = 13 on the results obtained by electronmicroprobe analyzer (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) isA(K0.01Na0.06)Σ0.07B(Li1.95Na0.04Ca0.01)Σ2.00C(Fe2.822+Fe1.393+Al0.51Mg0.22Mn0.052+Ti0.01)Σ5.00T(Si7.98Al0.02)Σ8.00O22(OH)1.94F0.06. Structure refinement convergedto R1= 4.22 %. The space group is orthorhombic Pnma, and theunit-cell parameters are a= 18.5437(2) Å, b= 17.9222(1) Å, c= 5.3123(1) Å and V= 1765.51(1) Å3. Based on the refinedsite occupancies, the structural formula can be written asANa0.062M4(Li1.952Na0.048)Σ2.000M1(Fe1.7702+Mg0.230)Σ2.000M2(Fe1.4463+Fe0.1022+Al0.452)Σ2.000M3(Fe0.8912+Mg0.109)Σ1.000TSi8O22(OH)2 (Z= 4). Three OH-stretching IRbands, centered at 3614, 3631 and 3644 cm−1, are assigned to the localconfiguration M1M1M3= FeFeFe, MgFeFe (including FeMgFe and FeFeMg) andMgMgFe (including MgFeMg and FeMgMg), respectively, based on the IR studiesof the orthorhombic Pnma amphiboles.
摘要Ferro-ferri-holmquisite(IMA2022-020),理想配方□Li2(Fe32+Fe23+)Si8O22(OH。它通常以针状聚集体和/或孤立晶体的形式存在于石英、钠长石和钾长石中,呈蓝色,带蓝灰色条纹和玻璃光泽。其莫氏硬度为5 1/2。其解理在{210}上是完美的。测量和计算的密度为Dmeas=3.2 g cm−3和Dcalc=3.317 g cm−3。铁-铁-霍姆奎斯特是光学双轴(-),α=1.685,β=1.713和γ=1.727,并且是异时的,X= 淡蓝色~淡黄蓝色,Y= 深蓝色~棕蓝色和Z= 深蓝色~深蓝色紫色;X> Z>Y。磁化敏感性与伴生黑云母相似。铁-铁-钬不溶于HCl、HNO3和H2SO4。根据∑(C+T)计算的经验公式= 13电子探针分析仪(EPMA)和激光烧蚀电感耦合等离子体质谱仪(LA-ICP-MS)的结果是A(K0.01Na0.06)∑0.07B(Li1.95Na0.04Ca0.01)∑2.00C(Fe2.822+Fe1.393+Al0.51Mg0.22Mn0.052+Ti0.01)∑5.00T(Si7.98Al0.02)∑8.00O22(OH)1.94F0.06。结构精化收敛于R1= 4.22 %. 空间群为正交Pnma,晶胞参数为= 18.5437(2) Å,b= 17.9222(1) Å,c= 5.3123(1) Å和V= 1765.51(1) Å3.根据细化的占据率,结构式可以写成ANa0.062M4(Li1.952Na0.048)∑2.000M1(Fe1.7702+Mg0.230)∑2.000M2(Fe1.4463+Fe0.1022+Al0.452)∑2.000M3(Fe0.8912+Mg0.109)∑1.000TSi8O22(OH)2(Z= 4) 。三个OH伸缩IR带,中心位于3614、3631和3644 cm−1,分配给本地配置M1M1M3= 基于正交Pnma角闪石的红外光谱研究,分别为FeFeFe、MgFeFe(包括FeMgFe和FeFeMg)和MgMgFe(包括MgFeMg和FeMgMg)。
{"title":"Ferro-ferri-holmquistite, □Li2(Fe2+3Fe3+2)Si8O22(OH)2, Fe2+Fe3+ analogue of holmquistite, from the Iwagi islet, Ehime, Japan","authors":"M. Nagashima, T. Imaoka, T. Kano, J. Kimura, Q. Chang, Takashi Matsumoto","doi":"10.5194/ejm-34-425-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-425-2022","url":null,"abstract":"Abstract. Ferro-ferri-holmquistite (IMA2022-020), ideal formula\u0000□Li2(Fe32+Fe23+)Si8O22(OH)2, was\u0000found in albitized granite from the Iwagi islet, Ehime, Japan.\u0000Ferro-ferri-holmquistite is a CFe2+Fe3+ analogue of\u0000holmquistite and belongs to the lithium-subgroup amphiboles. It commonly\u0000occurs as acicular aggregate and/or isolated crystals in quartz, albite and\u0000K-feldspar and is blue with a bluish-grey streak and a vitreous luster. It\u0000has a Mohs hardness of 5 1/2. Its cleavage is perfect on\u0000{210}. Measured and calculated densities are\u0000Dmeas.=3.2 g cm−3 and Dcalc.=3.317 g cm−3,\u0000respectively. Ferro-ferri-holmquistite is optically biaxial (-), with\u0000α=1.685, β=1.713 and γ=1.727, and is\u0000pleochroic, with X= pale blue ∼ pale yellowish blue, Y= deep blue ∼ brownish blue and Z= deep blue ∼ deep bluish violet; X>Z>Y. The magnetic\u0000susceptibility is similar to the associated biotite.\u0000Ferro-ferri-holmquistite is insoluble in HCl, HNO3 and H2SO4.\u0000The empirical formula calculated on the basis of Σ(C+T) = 13 on the results obtained by electron\u0000microprobe analyzer (EPMA), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is\u0000A(K0.01Na0.06)Σ0.07B(Li1.95Na0.04Ca0.01)Σ2.00C(Fe2.822+Fe1.393+Al0.51Mg0.22Mn0.052+Ti0.01)Σ5.00T(Si7.98Al0.02)Σ8.00O22(OH)1.94F0.06. Structure refinement converged\u0000to R1= 4.22 %. The space group is orthorhombic Pnma, and the\u0000unit-cell parameters are a= 18.5437(2) Å, b= 17.9222(1) Å, c= 5.3123(1) Å and V= 1765.51(1) Å3. Based on the refined\u0000site occupancies, the structural formula can be written as\u0000ANa0.062M4(Li1.952Na0.048)Σ2.000M1(Fe1.7702+Mg0.230)Σ2.000M2(Fe1.4463+Fe0.1022+Al0.452)Σ2.000M3(Fe0.8912+Mg0.109)Σ1.000TSi8O22(OH)2 (Z= 4). Three OH-stretching IR\u0000bands, centered at 3614, 3631 and 3644 cm−1, are assigned to the local\u0000configuration M1M1M3= FeFeFe, MgFeFe (including FeMgFe and FeFeMg) and\u0000MgMgFe (including MgFeMg and FeMgMg), respectively, based on the IR studies\u0000of the orthorhombic Pnma amphiboles.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43461737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies Ca-Mg碳酸盐熔炼关系及9 GPa以下碳酸盐熔炼微量元素特征——碳酸化地幔岩性熔炼的表征
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-10-06 DOI: 10.5194/ejm-34-411-2022
Melanie J. Sieber, M. Wilke, Oona Appelt, M. Oelze, M. Koch‐Müller
Abstract. The most profound consequences of the presence of Ca–Mg carbonates (CaCO3–MgCO3) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO2-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO3–MgCO3 system facilitates the interpretation of natural carbonate-bearing silicate systems. We report the melting relations of the CaCO3–MgCO3 system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300–1800 ∘C) using a rocking multi-anvil press. In the absence of water, Ca–Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca–Mg carbonates (∼ Mg0.1–0.9Ca0.9–0.1CO3) partially melt beneath mid-ocean ridges and in plume settings. Ca–Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite–magnesite join of the CaCO3–MgCO3 system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.
摘要地球上地幔中存在Ca–Mg碳酸盐(CaCO3–MgCO3)最深远的后果可能是降低地幔的熔融温度并控制熔体成分。含碳酸盐地幔的低温部分熔融产生富含二氧化碳、贫二氧化硅的熔体,这是由碳酸盐的熔融关系造成的。因此,了解CaCO3–MgCO3系统中的熔融关系有助于解释天然含碳酸盐硅酸盐系统。我们报道了CaCO3–MgCO3体系的熔融关系,以及碳酸盐和碳酸盐矿之间微量元素的分配系数 GPa)和温度(1300–1800 ∘C) 使用摇摆式多砧压力机。在没有水的情况下,Ca–Mg碳酸盐沿着俯冲板块典型的地热辐射是稳定的。Ca–Mg碳酸盐(~ Mg0.1–0.9Ca0.9–0.1CO3)部分融化在大洋中脊和羽流环境中。Ca–Mg碳酸盐不协调地熔融,形成方镁石晶体,碳酸盐在4和9之间熔融 GPa。此外,我们发现I组金伯利岩的稀土元素(REE)特征,即相对于原始地幔的强REE分馏和重REE的贫化,与6和9时与含Ca菱镁矿和方镁石平衡的碳酸盐化作用相似 GPa。这表明,CaCO3–MgCO3系统的白云石-菱镁矿结合可能有助于近似金伯利岩母体富含碳酸盐的熔体的REE特征。
{"title":"Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies","authors":"Melanie J. Sieber, M. Wilke, Oona Appelt, M. Oelze, M. Koch‐Müller","doi":"10.5194/ejm-34-411-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-411-2022","url":null,"abstract":"Abstract. The most profound consequences of the presence of Ca–Mg carbonates (CaCO3–MgCO3) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO2-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO3–MgCO3 system facilitates the interpretation of natural carbonate-bearing silicate systems. We report the melting relations of the CaCO3–MgCO3 system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300–1800 ∘C) using a rocking multi-anvil press. In the absence of water, Ca–Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca–Mg carbonates (∼ Mg0.1–0.9Ca0.9–0.1CO3) partially melt beneath mid-ocean ridges and in plume settings. Ca–Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite–magnesite join of the CaCO3–MgCO3 system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49276286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hierarchical internal structure of labradorite 拉布拉多岩的分层内部结构
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-09-28 DOI: 10.5194/ejm-34-393-2022
Emilia Götz, H. Kleebe, U. Kolb
Abstract. The different structural features of labradorite and itsincommensurate atomic structure have long been in the eye of science. Inthis transmission electron microscopy (TEM) study, all of the structural properties of labradorite could beinvestigated on a single crystal with an anorthite–albite–orthoclasecomposition of An53.4Ab41.5Or5.1. The various properties oflabradorite could thus be visualized and connected to form a hierarchicalstructure. Both albite and pericline twins occur in the labradorite. Thesize of alternating Ca-rich and Ca-poor lamellae could be measured and linked tothe composition and the color of labradorescence. Furthermore, amodulation vector of 0.0580(15)a* + 0.0453(33)b* − 0.1888(28)c* with aperiod of 3.23 nm was determined. The results indicate an eαlabradorite structure, which was achieved by forming Ca-rich and Ca-poorlamellae. The average structure and subsequently the incommensurate crystalstructure were solved with a three-dimensional electron diffraction (3DED)data set acquired with automated diffraction tomography (ADT) from a singlelamella. The results are in good agreement with the structure solved byX-ray diffraction and demonstrate that 3DED–ADT is suitable for solving evenincommensurate structures.
摘要拉布拉多陨石的不同结构特征及其不可通约的原子结构一直是科学界关注的焦点。在透射电子显微镜(TEM)研究中,可以在一个钙长石-钠长石-正长石位置为An53.4Ab41.5Or5.1的单晶上研究拉伯陨石的所有结构性质。因此,可以将陨石的各种性质可视化并连接起来,形成一个层次结构。钠长石和中柱晶孪晶都出现在拉伯拉多岩中。富钙和贫钙交替片层的大小可以测量,并与labradorescence的组成和颜色有关。此外,0.0580(15)a的调制矢量* + 0.0453(33)b* − 0.1888(28)c*,开胃酒3.23 nm。结果表明,形成了富钙和贫钙的拉伯拉多石结构。平均结构和随后的不通约晶体结构用三维电子衍射(3DED)数据集求解,该数据集是用自动衍射断层扫描(ADT)从单个片层获得的。结果与X射线衍射求解的结构相一致,表明3DED–ADT适用于求解均匀不公度结构。
{"title":"The hierarchical internal structure of labradorite","authors":"Emilia Götz, H. Kleebe, U. Kolb","doi":"10.5194/ejm-34-393-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-393-2022","url":null,"abstract":"Abstract. The different structural features of labradorite and its\u0000incommensurate atomic structure have long been in the eye of science. In\u0000this transmission electron microscopy (TEM) study, all of the structural properties of labradorite could be\u0000investigated on a single crystal with an anorthite–albite–orthoclase\u0000composition of An53.4Ab41.5Or5.1. The various properties of\u0000labradorite could thus be visualized and connected to form a hierarchical\u0000structure. Both albite and pericline twins occur in the labradorite. The\u0000size of alternating Ca-rich and Ca-poor lamellae could be measured and linked to\u0000the composition and the color of labradorescence. Furthermore, a\u0000modulation vector of 0.0580(15)a* + 0.0453(33)b* − 0.1888(28)c* with a\u0000period of 3.23 nm was determined. The results indicate an eα\u0000labradorite structure, which was achieved by forming Ca-rich and Ca-poor\u0000lamellae. The average structure and subsequently the incommensurate crystal\u0000structure were solved with a three-dimensional electron diffraction (3DED)\u0000data set acquired with automated diffraction tomography (ADT) from a single\u0000lamella. The results are in good agreement with the structure solved by\u0000X-ray diffraction and demonstrate that 3DED–ADT is suitable for solving even\u0000incommensurate structures.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46279524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tomsquarryite, NaMgAl3(PO4)2(OH)6 ● 8H2O, a new crandallite-derivative mineral from Tom's phosphate quarry, Kapunda, South Australia Tomsquarryite, NaMgAl3(PO4)2(OH)6●8H2O,一种新的辉长石衍生矿物,产自南澳大利亚Kapunda Tom's磷矿场
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-08-17 DOI: 10.5194/ejm-34-375-2022
P. Elliott, I. Grey, W. G. Mumme, C. MacRae, A. R. Kampf
Abstract. Tomsquarryite, NaMgAl3(PO4)2(OH)6 ⚫ 8H2O,is a new secondary phosphate mineral from Tom's phosphate quarry, Kapunda,South Australia. It occurs as colourless, talc-like hexagonal platelets,with diameters of a few tens of micrometres when formed from thedecomposition of minyulite and as thicker (∼ 10 µm)hexagonal crystals when formed from alteration of gordonite. Associatedminerals are penriceite, elliottite, minyulite, angastonite and wavellite.The calculated density is 2.22 g cm−3. Tomsquarryite crystals areuniaxial (+) with ω=1.490(3), ε=1.497(3)(white light). Dispersion was not observed. The partial orientation is Z≈c. Electron microprobe analyses of the holotype specimen give theempirical formulaNa1.02K0.02Ca0.08Mg1.26Al2.86(PO4)2.00(OH)3.82F2.48 ⚫ 7.70H2O, based on 22 anions. Tomsquarryite belongs to the trigonalcrystal system, space group R–3m, with hexagonal unit-cell parameters a=6.9865(5) Å, c=30.634(3) Å and V=1294.9(4) Å3 and withZ=3. The crystal structure was refined using single-crystal diffractiondata; R1=0.069 for 303 reflections with I>2σ(I) to aresolution of 0.80 Å. The crystal structure is a derivative of thecrandallite structure, with Ca2+ cations replaced by hydrated magnesiumions, [Mg(H2O)6]2+, resulting in an expansion of theinterlayer separation from 5.4 Å in crandallite to 10.2 Å intomsquarryite. The results for tomsquarryite are compared with those for thechemically and structurally related minerals penriceite and elliottite.
摘要Tomsquarryite (NaMgAl3(PO4)2(OH)6⚫8H2O)是一种新的次生磷矿,产自南澳大利亚Kapunda Tom磷矿场。它以无色的、滑石样的六角形片状物的形式出现,直径为几十微米,当由镁铝榴石分解形成时,直径为几十微米,当由高锰矿蚀变形成时,直径为更厚(~ 10微米)的六角形晶体。伴生矿物有辉石岩、辉石岩、微白云石、硅灰石和小波石。计算密度为2.22 g cm−3。Tomsquarryite晶体为单轴(+),ω=1.490(3), ε=1.497(3)(白光)。未观察到弥散。偏取向为Z≈c。基于22个阴离子,对样品进行电子探针分析得到经验式:an1.02 k0.02 ca0.08 mg1.26 al2.86 (PO4)2.00(OH)3.82F2.48⚫7.70H2O。Tomsquarryite属于三角晶系,空间群R-3m,单位胞参数为六角形,a=6.9865(5) Å, c=30.634(3) Å, V=1294.9(4) Å3, z =3。利用单晶衍射数据对晶体结构进行了细化;R1=0.069的303反射与I>2σ(I)的分辨率为0.80 Å。晶体结构是辉橄榄石结构的衍生物,Ca2+阳离子被水合镁离子[Mg(H2O)6]2+取代,导致层间分离从辉橄榄石中的5.4 Å扩展到辉橄榄石中的10.2 Å。并将tomsquarryite的结果与化学和结构相关的辉石岩和辉石岩的结果进行了比较。
{"title":"Tomsquarryite, NaMgAl3(PO4)2(OH)6 ● 8H2O, a new crandallite-derivative mineral from Tom's phosphate quarry, Kapunda, South Australia","authors":"P. Elliott, I. Grey, W. G. Mumme, C. MacRae, A. R. Kampf","doi":"10.5194/ejm-34-375-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-375-2022","url":null,"abstract":"Abstract. Tomsquarryite, NaMgAl3(PO4)2(OH)6 ⚫ 8H2O,\u0000is a new secondary phosphate mineral from Tom's phosphate quarry, Kapunda,\u0000South Australia. It occurs as colourless, talc-like hexagonal platelets,\u0000with diameters of a few tens of micrometres when formed from the\u0000decomposition of minyulite and as thicker (∼ 10 µm)\u0000hexagonal crystals when formed from alteration of gordonite. Associated\u0000minerals are penriceite, elliottite, minyulite, angastonite and wavellite.\u0000The calculated density is 2.22 g cm−3. Tomsquarryite crystals are\u0000uniaxial (+) with ω=1.490(3), ε=1.497(3)\u0000(white light). Dispersion was not observed. The partial orientation is Z≈c. Electron microprobe analyses of the holotype specimen give the\u0000empirical formula\u0000Na1.02K0.02Ca0.08Mg1.26Al2.86(PO4)2.00(OH)3.82F2.48 ⚫ 7.70H2O, based on 22 anions. Tomsquarryite belongs to the trigonal\u0000crystal system, space group R–3m, with hexagonal unit-cell parameters a=6.9865(5) Å, c=30.634(3) Å and V=1294.9(4) Å3 and with\u0000Z=3. The crystal structure was refined using single-crystal diffraction\u0000data; R1=0.069 for 303 reflections with I>2σ(I) to a\u0000resolution of 0.80 Å. The crystal structure is a derivative of the\u0000crandallite structure, with Ca2+ cations replaced by hydrated magnesium\u0000ions, [Mg(H2O)6]2+, resulting in an expansion of the\u0000interlayer separation from 5.4 Å in crandallite to 10.2 Å in\u0000tomsquarryite. The results for tomsquarryite are compared with those for the\u0000chemically and structurally related minerals penriceite and elliottite.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44006290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Graulichite-(La), LaFe3+3(AsO4)2(OH)6, a new addition to the alunite supergroup from the Patte d'Oie mine, Bou Skour mining district, Morocco 褐铁矿-(La), LaFe3+3(AsO4)2(OH)6,是摩洛哥Bou Skour矿区Patte d'Oie矿明矾石超群的新成员
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-06-27 DOI: 10.5194/ejm-34-365-2022
C. Biagioni, M. Ciriotti, G. Favreau, D. Mauro, F. Zaccarini
Abstract. The new mineral species graulichite-(La), ideallyLaFe33+(AsO4)2(OH)6, has been discovered in thePatte d'Oie mine, Bou Skour mining district, Morocco. It occurs as yellowrhombohedral crystals, up to 0.1 mm in size, with a resinous luster,associated with malachite, agardite-(La), conichalcite, and a stillundetermined REE carbonate. Crystals are chemically zoned and twohomogeneous domains were identified, corresponding to the empirical chemicalformulae (calculated on the basis of 6 cations per formula unit, assumingthe occurrence of 14 O atoms)(La0.34Ce0.20Ca0.11Sr0.07Pb0.05K0.04)Σ0.81(Fe2.163+Al0.84Cu0.20)Σ3.20(As1.23P0.39S0.37)Σ1.99O14H6.13(domain #1) and(La0.38Ce0.22Sr0.10Ca0.09Pb0.05K0.06)Σ0.90(Fe2.603+Al0.49Cu0.20)Σ3.29(As0.91P0.50S0.40)Σ1.81O14H6.53(domain #2). Single-crystal unit-cell parameters are a=7.252(13), c=16.77(3) Å, V=764(3) Å3, space group R-3m. The eight strongestreflections in the observed X-ray powder diffraction pattern are (d in Å,visually estimated intensity): 5.86, medium; 3.045, strong; 2.511,medium-weak; 2.239, medium; 1.960, medium-weak; 1.813, medium-weak; 1.689,medium-weak; 1.478, medium. Graulichite-(La) belongs to the dussertite groupwithin the alunite supergroup. It is the La analogue of graulichite-(Ce) andthe Fe3+ analogue of arsenoflorencite-(La).
摘要在摩洛哥Bou Skour矿区的Patte d'Oie矿中发现了一种新的矿物——水滑石-(La),即LaFe33+(AsO4)2(OH)6。它以黄色菱形晶体的形式出现,最高可达0.1 mm,具有树脂光泽,与孔雀石、玛瑙石-(La)、分生孢子石和一种尚未确定的REE碳酸盐有关。晶体被化学分区,并鉴定出两个均匀的结构域,对应于经验化学式(基于每个化学式单元6个阳离子计算,假设存在14个O原子)(La0.34Ce0.20Ca0.11Sr0.07Pb0.05K0.04)∑0.81(Fe2.163+Al0.84Cu0.20)∑3.20(As1.23P30.39S0.37)∑1.99O14H6.13(结构域#1)和(La0.38Ce0.22Sr0.10Ca0.09Pb0.05K0.06)∑0.90(Fe2.603+Al0.49Cu0.20)σ3.29(As0.91P0.50S0.40)∑1.81O14H6.53(结构域#2)。单晶晶胞参数为a=7.252(13),c=16.77(3) Å,V=764(3) Å3,空间群R-3m。在观察到的X射线粉末衍射图中的八个强反射是(d inÅ,视觉估计的强度):5.86,中等;3.045,强;2.511,中等偏弱;2.239,中等;1.960,中等偏弱;1.813,中等偏弱;1.689,中等偏弱;1.478,中等。Graulichite-(La)属于明矾石超群中的暗长石组。它是绿柱石-(Ce)的La类似物,也是砷黄铁矿-(La)的Fe3+类似物。
{"title":"Graulichite-(La), LaFe<sup>3+</sup><sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>(OH)<sub>6</sub>, a new addition to the alunite supergroup from the Patte d'Oie mine, Bou Skour mining district, Morocco","authors":"C. Biagioni, M. Ciriotti, G. Favreau, D. Mauro, F. Zaccarini","doi":"10.5194/ejm-34-365-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-365-2022","url":null,"abstract":"Abstract. The new mineral species graulichite-(La), ideally\u0000LaFe33+(AsO4)2(OH)6, has been discovered in the\u0000Patte d'Oie mine, Bou Skour mining district, Morocco. It occurs as yellow\u0000rhombohedral crystals, up to 0.1 mm in size, with a resinous luster,\u0000associated with malachite, agardite-(La), conichalcite, and a still\u0000undetermined REE carbonate. Crystals are chemically zoned and two\u0000homogeneous domains were identified, corresponding to the empirical chemical\u0000formulae (calculated on the basis of 6 cations per formula unit, assuming\u0000the occurrence of 14 O atoms)\u0000(La0.34Ce0.20Ca0.11Sr0.07Pb0.05K0.04)Σ0.81(Fe2.163+Al0.84Cu0.20)Σ3.20(As1.23P0.39S0.37)Σ1.99O14H6.13\u0000(domain #1) and\u0000(La0.38Ce0.22Sr0.10Ca0.09Pb0.05K0.06)Σ0.90(Fe2.603+Al0.49Cu0.20)Σ3.29(As0.91P0.50S0.40)Σ1.81O14H6.53\u0000(domain #2). Single-crystal unit-cell parameters are a=7.252(13), c=16.77(3) Å, V=764(3) Å3, space group R-3m. The eight strongest\u0000reflections in the observed X-ray powder diffraction pattern are (d in Å,\u0000visually estimated intensity): 5.86, medium; 3.045, strong; 2.511,\u0000medium-weak; 2.239, medium; 1.960, medium-weak; 1.813, medium-weak; 1.689,\u0000medium-weak; 1.478, medium. Graulichite-(La) belongs to the dussertite group\u0000within the alunite supergroup. It is the La analogue of graulichite-(Ce) and\u0000the Fe3+ analogue of arsenoflorencite-(La).\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45238238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
High-pressure and high-temperature structure and equation of state of Na3Ca2La(CO3)5 burbankite Na3Ca2La(CO3)5硼镁石的高压高温结构及状态方程
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-06-13 DOI: 10.5194/ejm-34-351-2022
S. Milani, Deborah Spartà, P. Fumagalli, Boby Joseph, R. Borghes, V. Chenda, J. Maurice, G. Bais, M. Merlini
Abstract. In this study we report the synthesis of single crystals ofburbankite, Na3Ca2La(CO3)5, at 5 GPa and 1073 K.The structural evolution, bulk modulus and thermal expansion of burbankite werestudied and determined by two separate high-pressure (0–7.07(5) GPa) andhigh-temperature (298–746 K) in situ single-crystal X-ray diffractionexperiments. The refined parameters of a second-order Birch–Murnaghanequation of state (EoS) are V0= 593.22(3) Å3 and KT0= 69.8(4) GPa. The thermal expansion coefficients of a Berman-type EoS areα0= 6.0(2) ×10-5 K−1, α1= 5.7(7) ×10-8 K−2 and V0= 591.95(8) Å3. The thermoelasticparameters determined in this study allow us to estimate the larger densityof burbankite in the pressure-temperature range of 5.5–6 GPa and1173–1273 K, with respect to the density of carbonatitic magmas at the sameconditions. For this reason, we suggest that burbankite might fractionatefrom the magma and play a key role as an upper-mantle reservoir of lighttrivalent rare earth elements (REE3+).
摘要在这项研究中,我们报道了在5 GPa和1073 K.通过两种不同的高压(0–7.07(5) GPa)和高温(298–746 K) 原位单晶X射线衍射实验。二阶Birch–Murnaghane状态方程(EoS)的精细参数为V0= 593.22(3) Å3和KT0= 69.8(4) GPa。Berman型EoS的热膨胀系数为α0= 6.0(2) ×10-5 K−1,α1= 5.7(7) ×10-8 K−2和V0= 591.95(8) Å3.本研究中确定的热弹性参数使我们能够在5.5–6的压力-温度范围内估计出更大的burbankite密度 GPa 1173-1273 K、 关于相同条件下碳酸盐岩岩浆的密度。因此,我们认为burbankite可能从岩浆中分馏出来,并作为轻三价稀土元素(REE3+)的上地幔储层发挥关键作用。
{"title":"High-pressure and high-temperature structure and equation of state of Na<sub>3</sub>Ca<sub>2</sub>La(CO<sub>3</sub>)<sub>5</sub> burbankite","authors":"S. Milani, Deborah Spartà, P. Fumagalli, Boby Joseph, R. Borghes, V. Chenda, J. Maurice, G. Bais, M. Merlini","doi":"10.5194/ejm-34-351-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-351-2022","url":null,"abstract":"Abstract. In this study we report the synthesis of single crystals of\u0000burbankite, Na3Ca2La(CO3)5, at 5 GPa and 1073 K.\u0000The structural evolution, bulk modulus and thermal expansion of burbankite were\u0000studied and determined by two separate high-pressure (0–7.07(5) GPa) and\u0000high-temperature (298–746 K) in situ single-crystal X-ray diffraction\u0000experiments. The refined parameters of a second-order Birch–Murnaghan\u0000equation of state (EoS) are V0= 593.22(3) Å3 and KT0= 69.8(4) GPa. The thermal expansion coefficients of a Berman-type EoS are\u0000α0= 6.0(2) ×10-5 K−1, α1= 5.7(7) ×10-8 K−2 and V0= 591.95(8) Å3. The thermoelastic\u0000parameters determined in this study allow us to estimate the larger density\u0000of burbankite in the pressure-temperature range of 5.5–6 GPa and\u00001173–1273 K, with respect to the density of carbonatitic magmas at the same\u0000conditions. For this reason, we suggest that burbankite might fractionate\u0000from the magma and play a key role as an upper-mantle reservoir of light\u0000trivalent rare earth elements (REE3+).\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43604724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-pressure homogenization of olivine-hosted CO2-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts 活塞柱中富含橄榄石的富CO2熔体包裹体的高压均质化:初级地幔熔体挥发性含量的洞察
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-05-24 DOI: 10.5194/ejm-34-325-2022
R. Buso, D. Laporte, F. Schiavi, N. Cluzel, Claire Fonquernie
Abstract. Experimental homogenization of olivine-hosted melt inclusionsrepresentative of near-primary basic and ultrabasic magmas is a powerfulapproach to investigate the nature of their source regions and the meltingconditions in Earth's mantle. There is growing evidence that the totalCO2 contents of olivine-hosted melt inclusions may reach values of theorder of a single to several weight percent, especially in intraplate continentalbasalts. To be able to homogenize melt inclusions with such high CO2contents, we developed a technique allowing for heat treating of the meltinclusions under hydrostatic pressures up to 3–4 GPa in a piston cylinder,using thick-walled Au80–Pd20 containers and molten NaCl asthe surrounding medium for the inclusion-bearing olivines. We applied thistechnique to olivine phenocrysts from Thueyts basanite, Bas-Vivaraisvolcanic province, French Massif Central. Thueyts melt inclusions werechosen because of their high CO2 contents, as indicated by up to1.19 wt % dissolved CO2 in the glasses and by the presence ofshrinkage bubbles containing abundant carbonate microcrystals in addition toa CO2 fluid phase. The homogenization experiments were conducted atpressures of 1.5 to 2.5 GPa, temperatures of 1275 and 1300 ∘C,and run durations of 30 min. In all the melt inclusions treated at 2.5 GPa–1300 ∘C and half ofthose treated at 2 GPa–1300 ∘C, we were able to completelyhomogenize the inclusions, as indicated by the disappearance of the startingbubbles, and we obtained total CO2 contents ranging from 3.2 wt % to4.3 wt % (3.7 wt % on average). In all the other melt inclusions(equilibrated at 1.5 or 2 GPa and 1300 ∘C or at2.5 GPa–1275 ∘C), we obtained lower and more variable totalCO2 contents (1.4 wt % to 2.9 wt %). In the inclusions with the highesttotal CO2 contents, the size of the shrinkage bubble was in most casessmall (<5 vol %) to medium (<10 vol %): this is astrong argument in favor of an origin of these melt inclusions byhomogeneous entrapment of very CO2-rich basanitic liquids(∼ 4 wt %) at pressures of 2 to 2.5 GPa. The lower totalCO2 contents measured in some inclusions could reflect a naturalvariability in the initial CO2 contents, due for instance to meltentrapment at different pressures, or CO2 loss by decrepitation. Analternative scenario is heterogeneous entrapment of basanitic liquid plusdense CO2 fluid at lower pressures but still at least on the order of1 GPa as indicated by dissolved CO2 contents up to 1.19 wt % in theglasses of unheated melt inclusions. Whatever the scenario, the basanitesfrom the Bas-Vivarais volcanic province were generated in a mantleenvironment extremely rich in carbon dioxide.
摘要代表近原生基性和超基性岩浆的橄榄石熔融包体的实验均匀化是研究其源区性质和地幔熔融条件的有力方法。越来越多的证据表明,以橄榄石为主体的熔体包裹体的总CO2含量可能达到单一到几个重量百分比的理论值,尤其是在板内大陆盐中。为了能够使具有如此高CO2含量的熔融夹杂物均匀化,我们开发了一种技术,允许在高达3-4的静水压力下对熔融夹杂物进行热处理 活塞柱中的GPa,使用厚壁Au80–Pd20容器和熔融NaCl作为含夹杂物橄榄石的周围介质。我们将这项技术应用于法国中部大区下维瓦雷斯火山省Thueyts碧玄岩的橄榄石斑晶。选择Thueyts熔体包裹体是因为它们的CO2含量高,如高达1.19所示 wt % 溶解在玻璃中的CO2,以及除了CO2流体相之外还含有大量碳酸盐微晶的收缩气泡的存在。均化实验在1.5至2.5的压力下进行 GPa,温度为1275和1300 ∘C、 运行持续时间为30 最小值在2.5下处理的所有熔体夹杂物中 GPa–1300 ∘C和2时治疗的一半 GPa–1300 ∘C、 我们能够完全均匀化夹杂物,正如启动气泡的消失所表明的那样,我们获得了3.2范围内的总二氧化碳含量 wt % 至4.3 wt % (3.7 wt % 平均而言)。在所有其他熔体夹杂物中(在1.5或2下平衡 GPa和1300 ∘C或2.5 GPa–1275 ∘C) ,我们获得了更低、更可变的总CO2含量(1.4 wt % 至2.9 wt %). 在总CO2含量最高的包裹体中,收缩气泡的大小在大多数情况下都很小(<5 vol %) 至中等(<10 vol %): 这是一个有力的论点,有利于这些熔体包裹体的起源,通过均匀包裹富含二氧化碳的碱性液体(~ 4. wt %) 在2至2.5的压力下 GPa。在一些包裹体中测得的较低的总CO2含量可能反映了初始CO2含量的自然变化,例如,由于在不同压力下的熔融,或由于爆裂而导致的CO2损失。另一种情况是在较低的压力下,碱性液体加上致密CO2流体的非均匀包埋,但仍至少在1的数量级 GPa,由高达1.19的溶解CO2含量表示 wt % 在未加热的熔融夹杂物的玻璃中。无论在什么情况下,来自下维瓦赖火山省的碧玄岩都是在二氧化碳含量极为丰富的地幔环境中产生的。
{"title":"High-pressure homogenization of olivine-hosted CO<sub>2</sub>-rich melt inclusions in a piston cylinder: insight into the volatile content of primary mantle melts","authors":"R. Buso, D. Laporte, F. Schiavi, N. Cluzel, Claire Fonquernie","doi":"10.5194/ejm-34-325-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-325-2022","url":null,"abstract":"Abstract. Experimental homogenization of olivine-hosted melt inclusions\u0000representative of near-primary basic and ultrabasic magmas is a powerful\u0000approach to investigate the nature of their source regions and the melting\u0000conditions in Earth's mantle. There is growing evidence that the total\u0000CO2 contents of olivine-hosted melt inclusions may reach values of the\u0000order of a single to several weight percent, especially in intraplate continental\u0000basalts. To be able to homogenize melt inclusions with such high CO2\u0000contents, we developed a technique allowing for heat treating of the melt\u0000inclusions under hydrostatic pressures up to 3–4 GPa in a piston cylinder,\u0000using thick-walled Au80–Pd20 containers and molten NaCl as\u0000the surrounding medium for the inclusion-bearing olivines. We applied this\u0000technique to olivine phenocrysts from Thueyts basanite, Bas-Vivarais\u0000volcanic province, French Massif Central. Thueyts melt inclusions were\u0000chosen because of their high CO2 contents, as indicated by up to\u00001.19 wt % dissolved CO2 in the glasses and by the presence of\u0000shrinkage bubbles containing abundant carbonate microcrystals in addition to\u0000a CO2 fluid phase. The homogenization experiments were conducted at\u0000pressures of 1.5 to 2.5 GPa, temperatures of 1275 and 1300 ∘C,\u0000and run durations of 30 min. In all the melt inclusions treated at 2.5 GPa–1300 ∘C and half of\u0000those treated at 2 GPa–1300 ∘C, we were able to completely\u0000homogenize the inclusions, as indicated by the disappearance of the starting\u0000bubbles, and we obtained total CO2 contents ranging from 3.2 wt % to\u00004.3 wt % (3.7 wt % on average). In all the other melt inclusions\u0000(equilibrated at 1.5 or 2 GPa and 1300 ∘C or at\u00002.5 GPa–1275 ∘C), we obtained lower and more variable total\u0000CO2 contents (1.4 wt % to 2.9 wt %). In the inclusions with the highest\u0000total CO2 contents, the size of the shrinkage bubble was in most cases\u0000small (<5 vol %) to medium (<10 vol %): this is a\u0000strong argument in favor of an origin of these melt inclusions by\u0000homogeneous entrapment of very CO2-rich basanitic liquids\u0000(∼ 4 wt %) at pressures of 2 to 2.5 GPa. The lower total\u0000CO2 contents measured in some inclusions could reflect a natural\u0000variability in the initial CO2 contents, due for instance to melt\u0000entrapment at different pressures, or CO2 loss by decrepitation. An\u0000alternative scenario is heterogeneous entrapment of basanitic liquid plus\u0000dense CO2 fluid at lower pressures but still at least on the order of\u00001 GPa as indicated by dissolved CO2 contents up to 1.19 wt % in the\u0000glasses of unheated melt inclusions. Whatever the scenario, the basanites\u0000from the Bas-Vivarais volcanic province were generated in a mantle\u0000environment extremely rich in carbon dioxide.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42282024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Firing and post-firing dynamics of Mg- and Ca-rich bricks used in the built heritage of the city of Padua (northeastern Italy) 帕多瓦市(意大利东北部)建筑遗产中使用的富镁和富钙砖的烧制和烧制后动态
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-05-19 DOI: 10.5194/ejm-34-301-2022
E. Pérez-Monserrat, L. Maritan, G. Cultrone
Abstract. Diverse types of bricks from monuments in the city ofPadua (northeastern Italy) were studied using a multi-analytical approachbased on spectrophotometry, X-ray fluorescence (XRF), X-ray powderdiffraction (XRPD), polarized-light optical microscopy (POM) and/orhigh-resolution scanning electron microscopy with coupled energy-dispersive X-ray spectroscopy (HRSEM-EDS). The mostrepresentative bricks were yellow or beige and in well-preserved condition.The results showed that they were made of Mg- and Ca-rich illitic clays,were fired at high temperatures (from 900 to over 950 ∘C), andachieved an incipient vitrification. Two main processes took place duringfiring: (i) the development of a Ca-aluminosilicate amorphous phase wherevery abundant pyroxene-type crystals were nucleated and (ii) thetransformation of the pristine Mg-rich clayey grains into Mg-silicatemineral phases. The analyses suggest a firing dynamic within a highlyreactive and supersaturated unstable system, particularly rich in calciumand magnesium. There are also signs of the rapid heating and/or soaking ofthe bricks and the irregular heat distribution and/or different residencetimes inside the kilns. The formation of zeolite and calcite secondaryphases was also observed. The former was largely promoted by the highcalcium content of the bodies and the very humid conditions, while thelatter was mainly precipitated from Ca-rich solutions. The preservation ofthe bricks was enhanced by processes that took place both during and afterfiring. Firstly, the significant development of a Ca-rich amorphous phaseand of high-temperature pyroxene-type crystals has provided strength tothe bricks. Secondly, the porosity yielded by the firing of thecarbonate-rich clays was almost filled by secondary calcite, which acted asa cementing agent. The information attained has increased the knowledge of(i) the mineralogical and microstructural changes that take place during thefiring over 900 ∘C of Ca- and Mg-rich illitic clays and (ii) theformation of secondary phases within highly calcareous bricks laid in veryhumid environments and affected by Ca-rich solutions. The key role of theCa- and Mg-rich raw clays and of the high firing temperatures, in producinghigh-quality bricks, and of the secondary calcite, which increased theirdurability, is highlighted. All these factors have contributed to the betterpreservation of the built heritage of the city.
摘要采用基于分光光度法、X射线荧光(XRF)、X射线粉末衍射(XRPD)、偏振光光学显微镜(POM)和/或高分辨率扫描电子显微镜结合能量色散X射线光谱(HRSEM-EDS)的多分析方法,研究了意大利东北部帕多瓦市纪念碑中不同类型的砖块。最具代表性的砖是黄色或米色的,保存完好。结果表明,它们是由富含镁和钙的伊利石粘土制成的,在高温下烧制(从900到950以上 ∘C) ,并实现了初步的玻璃化。烧制过程中发生了两个主要过程:(i)Ca铝硅酸盐非晶相的形成,其中大量的辉石型晶体成核;(ii)原始富含镁的粘土颗粒转化为镁-硅矿物相。分析表明,在高反应性和过饱和的不稳定系统中,特别是富含钙和镁的系统中,存在燃烧动力学。还有砖快速加热和/或浸泡的迹象,以及窑内不规则的热量分布和/或不同的居住时间。还观察到沸石和方解石第二相的形成。前者在很大程度上受到水体中高钙含量和非常潮湿的条件的促进,而后者主要从富钙溶液中沉淀。烧制过程中和烧制后的过程都加强了砖块的保存。首先,富钙无定形相和高温辉石型晶体的显著发展为砖提供了强度。其次,富含碳酸盐的粘土烧制产生的孔隙几乎被作为胶结剂的次生方解石填充。所获得的信息增加了对以下方面的了解:(i)在900多年的采矿过程中发生的矿物学和微观结构变化 ∘富含Ca和Mg的伊利石粘土的C,以及(ii)在非常潮湿的环境中铺设并受富含Ca的溶液影响的高钙质砖中次生相的形成。强调了富含Ca和Mg的原粘土和高烧制温度在生产高质量砖中的关键作用,以及提高其耐久性的次生方解石。所有这些因素都有助于更好地保护这座城市的建筑遗产。
{"title":"Firing and post-firing dynamics of Mg- and Ca-rich bricks used in the built heritage of the city of Padua (northeastern Italy)","authors":"E. Pérez-Monserrat, L. Maritan, G. Cultrone","doi":"10.5194/ejm-34-301-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-301-2022","url":null,"abstract":"Abstract. Diverse types of bricks from monuments in the city of\u0000Padua (northeastern Italy) were studied using a multi-analytical approach\u0000based on spectrophotometry, X-ray fluorescence (XRF), X-ray powder\u0000diffraction (XRPD), polarized-light optical microscopy (POM) and/or\u0000high-resolution scanning electron microscopy with coupled energy-dispersive X-ray spectroscopy (HRSEM-EDS). The most\u0000representative bricks were yellow or beige and in well-preserved condition.\u0000The results showed that they were made of Mg- and Ca-rich illitic clays,\u0000were fired at high temperatures (from 900 to over 950 ∘C), and\u0000achieved an incipient vitrification. Two main processes took place during\u0000firing: (i) the development of a Ca-aluminosilicate amorphous phase where\u0000very abundant pyroxene-type crystals were nucleated and (ii) the\u0000transformation of the pristine Mg-rich clayey grains into Mg-silicate\u0000mineral phases. The analyses suggest a firing dynamic within a highly\u0000reactive and supersaturated unstable system, particularly rich in calcium\u0000and magnesium. There are also signs of the rapid heating and/or soaking of\u0000the bricks and the irregular heat distribution and/or different residence\u0000times inside the kilns. The formation of zeolite and calcite secondary\u0000phases was also observed. The former was largely promoted by the high\u0000calcium content of the bodies and the very humid conditions, while the\u0000latter was mainly precipitated from Ca-rich solutions. The preservation of\u0000the bricks was enhanced by processes that took place both during and after\u0000firing. Firstly, the significant development of a Ca-rich amorphous phase\u0000and of high-temperature pyroxene-type crystals has provided strength to\u0000the bricks. Secondly, the porosity yielded by the firing of the\u0000carbonate-rich clays was almost filled by secondary calcite, which acted as\u0000a cementing agent. The information attained has increased the knowledge of\u0000(i) the mineralogical and microstructural changes that take place during the\u0000firing over 900 ∘C of Ca- and Mg-rich illitic clays and (ii) the\u0000formation of secondary phases within highly calcareous bricks laid in very\u0000humid environments and affected by Ca-rich solutions. The key role of the\u0000Ca- and Mg-rich raw clays and of the high firing temperatures, in producing\u0000high-quality bricks, and of the secondary calcite, which increased their\u0000durability, is highlighted. All these factors have contributed to the better\u0000preservation of the built heritage of the city.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43715078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy 用拉曼光谱法绘制丽霞石蛇纹岩的结晶取向图
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-05-11 DOI: 10.5194/ejm-34-285-2022
M. Tarling, M. Demurtas, Steven A. Smith, J. Rooney, M. Negrini, C. Viti, J. Petriglieri, K. Gordon
Abstract. The serpentine mineral lizardite displays strong Ramananisotropy in the OH-stretching region, resulting in significant wavenumbershifts (up to ca. 14.5 cm−1) that depend on the orientation of theimpinging excitation laser relative to the crystallographic axes. Wequantified the relationship between crystallographic orientation and Ramanwavenumber using well-characterised samples of Monte Fico lizardite byapplying Raman spectroscopy and electron backscatter diffraction (EBSD)mapping on thin sections of polycrystalline samples and grain mounts ofselected single crystals, as well as by a spindle stage Raman study of anoriented cylinder drilled from a single crystal. We demonstrate that themain band in the OH-stretching region undergoes a systematic shift thatdepends on the inclination of the c-axis of the lizardite crystal. The dataare used to derive an empirical relationship between the position of thismain band and the c-axis inclination of a measured lizardite crystal: y=14.5cos 4 (0.013x+0.02)+(3670±1), where y is theinclination of the c-axis with respect to the normal vector (in degrees), andx is the main band position (wavenumber in cm −1) in the OH-stretchingregion. This new method provides a simple and cost-effective technique formeasuring and quantifying the crystallographic orientation oflizardite-bearing serpentinite fault rocks, which can be difficult toachieve using EBSD alone. In addition to the samples used to determine theabove empirical relationship, we demonstrate the applicability of thetechnique by mapping the orientations of lizardite in a more complex sampleof deformed serpentinite from Elba Island, Italy.
摘要蛇纹石矿物lizardite在OH拉伸区域表现出强烈的Ramanan各向同性,导致显著的波数偏移(高达约14.5 cm−1),这取决于激发激光相对于结晶轴的取向。通过在多晶样品的薄片和选定单晶的晶粒数量上应用拉曼光谱和电子背散射衍射(EBSD)映射,我们使用表征良好的Monte Fico lizardite样品量化了晶体取向和Ramanwavenumber之间的关系,以及通过从单晶钻取的定向圆柱体的纺锤级拉曼研究。我们证明了OH伸缩区的主带发生了系统性的位移,这取决于lizardite晶体的c轴的倾斜。这些数据用于推导出该主带的位置与测量的lizardite晶体的c轴倾角之间的经验关系:y=14.5cos 4(0.013x+0.02)+(3670±1),其中y是c轴相对于法向矢量的倾斜(以度为单位),x是OH拉伸区中的主带位置(波数,以cm−1为单位)。这种新方法提供了一种简单且具有成本效益的技术来测量和量化含锂蛇纹岩断层岩石的晶体取向,而单独使用EBSD可能很难实现这一点。除了用于确定上述经验关系的样品外,我们还通过绘制意大利厄尔巴岛变形蛇纹岩的更复杂样品中的丽霞石晶向图来证明该技术的适用性。
{"title":"Crystallographic orientation mapping of lizardite serpentinite by Raman spectroscopy","authors":"M. Tarling, M. Demurtas, Steven A. Smith, J. Rooney, M. Negrini, C. Viti, J. Petriglieri, K. Gordon","doi":"10.5194/ejm-34-285-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-285-2022","url":null,"abstract":"Abstract. The serpentine mineral lizardite displays strong Raman\u0000anisotropy in the OH-stretching region, resulting in significant wavenumber\u0000shifts (up to ca. 14.5 cm−1) that depend on the orientation of the\u0000impinging excitation laser relative to the crystallographic axes. We\u0000quantified the relationship between crystallographic orientation and Raman\u0000wavenumber using well-characterised samples of Monte Fico lizardite by\u0000applying Raman spectroscopy and electron backscatter diffraction (EBSD)\u0000mapping on thin sections of polycrystalline samples and grain mounts of\u0000selected single crystals, as well as by a spindle stage Raman study of an\u0000oriented cylinder drilled from a single crystal. We demonstrate that the\u0000main band in the OH-stretching region undergoes a systematic shift that\u0000depends on the inclination of the c-axis of the lizardite crystal. The data\u0000are used to derive an empirical relationship between the position of this\u0000main band and the c-axis inclination of a measured lizardite crystal: y=14.5cos 4 (0.013x+0.02)+(3670±1), where y is the\u0000inclination of the c-axis with respect to the normal vector (in degrees), and\u0000x is the main band position (wavenumber in cm −1) in the OH-stretching\u0000region. This new method provides a simple and cost-effective technique for\u0000measuring and quantifying the crystallographic orientation of\u0000lizardite-bearing serpentinite fault rocks, which can be difficult to\u0000achieve using EBSD alone. In addition to the samples used to determine the\u0000above empirical relationship, we demonstrate the applicability of the\u0000technique by mapping the orientations of lizardite in a more complex sample\u0000of deformed serpentinite from Elba Island, Italy.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49637707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM) 使用高光谱透射成像显微镜(HyperTIM)自动检测薄片中的元素和矿物
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2022-05-10 DOI: 10.5194/ejm-34-275-2022
Helge L. C. Daempfling, Christian Mielke, N. Koellner, M. Lorenz, C. Rogass, U. Altenberger, D. Harlov, M. Knoper
Abstract. In this study we present a novel method for the automaticdetection of minerals and elements using hyperspectral transmittance imagingmicroscopy measurements of complete thin sections (HyperTIM). This isaccomplished by using a hyperspectral camera system that operates in thevisible and near-infrared (VNIR) range with a specifically designed sampleholder, scanning setup, and a microscope lens. We utilize this method on amonazite ore thin section from Steenkampskraal (South Africa), which weanalyzed for the rare earth element (REE)-bearing mineral monazite ((Ce,Nd,La)PO4), with highconcentrations of Nd. The transmittance analyses with the hyperspectral VNIRcamera can be used to identify REE minerals and Nd in thin sections. Wepropose a three-point band depth index, the Nd feature depth index (NdFD),and its related product the Nd band depth index (NdBDI), which enablesautomatic mineral detection and classification for the Nd-bearing monazitesin thin sections. In combination with the average concentration of therelative Nd content, it permits a destruction-free, total concentrationcalculation for Nd across the entire thin section.
摘要在这项研究中,我们提出了一种新的方法来自动检测矿物和元素使用高光谱透射成像显微镜测量完整的薄片(HyperTIM)。这是通过使用高光谱相机系统来完成的,该系统在可见光和近红外(VNIR)范围内工作,带有专门设计的样品支架,扫描装置和显微镜镜头。本文利用该方法对南非Steenkampskraal的单氮石矿石薄片进行了分析,得到了含稀土元素(REE)的矿物单氮石((Ce,Nd,La)PO4),其中Nd含量较高。利用高光谱vnir相机进行透光率分析,可以识别薄片中的稀土矿物和钕。提出了三点带深度指数Nd特征深度指数(NdFD)及其相关产品Nd带深度指数(NdBDI),实现了含Nd单脱石薄片矿物的自动探测和分类。结合相对Nd含量的平均浓度,它允许在整个薄截面上进行无破坏的Nd总浓度计算。
{"title":"Automatic element and mineral detection in thin sections using hyperspectral transmittance imaging microscopy (HyperTIM)","authors":"Helge L. C. Daempfling, Christian Mielke, N. Koellner, M. Lorenz, C. Rogass, U. Altenberger, D. Harlov, M. Knoper","doi":"10.5194/ejm-34-275-2022","DOIUrl":"https://doi.org/10.5194/ejm-34-275-2022","url":null,"abstract":"Abstract. In this study we present a novel method for the automatic\u0000detection of minerals and elements using hyperspectral transmittance imaging\u0000microscopy measurements of complete thin sections (HyperTIM). This is\u0000accomplished by using a hyperspectral camera system that operates in the\u0000visible and near-infrared (VNIR) range with a specifically designed sample\u0000holder, scanning setup, and a microscope lens. We utilize this method on a\u0000monazite ore thin section from Steenkampskraal (South Africa), which we\u0000analyzed for the rare earth element (REE)-bearing mineral monazite ((Ce,Nd,La)PO4), with high\u0000concentrations of Nd. The transmittance analyses with the hyperspectral VNIR\u0000camera can be used to identify REE minerals and Nd in thin sections. We\u0000propose a three-point band depth index, the Nd feature depth index (NdFD),\u0000and its related product the Nd band depth index (NdBDI), which enables\u0000automatic mineral detection and classification for the Nd-bearing monazites\u0000in thin sections. In combination with the average concentration of the\u0000relative Nd content, it permits a destruction-free, total concentration\u0000calculation for Nd across the entire thin section.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41736793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
European Journal of Mineralogy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1