首页 > 最新文献

European Journal of Mineralogy最新文献

英文 中文
Dislocation and disclination densities in experimentally deformed polycrystalline olivine 实验变形多晶橄榄石中的位错和向错密度
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-31 DOI: 10.5194/ejm-35-219-2023
S. Demouchy, M. Thieme, F. Barou, B. Beausir, V. Taupin, P. Cordier
Abstract. We report a comprehensive data set characterizing andquantifying the geometrically necessary dislocation (GND) density in thecrystallographic frame (ραc) and disclination density(ρθ) in fine-grained polycrystalline olivine deformed inuniaxial compression or torsion, at 1000 and 1200 ∘C, under a confining pressure of 300 MPa. Finite strains range from 0.11 upto 8.6 %, and stresses reach up to 1073 MPa. The data set is a selectionof 19 electron backscatter diffraction maps acquired with conventionalangular resolution (0.5∘) but at high spatial resolution (stepsize ranging between 0.05 and 0.1 µm). Thanks to analyticalimprovement for data acquisition and treatment, notably with the use of ATEX (Analysis Tools for Electron and X-ray diffraction)software, we report the spatial distribution of both GND and disclinationdensities. Areas with the highest GND densities define sub-grain boundaries.The type of GND densities involved also indicates that most olivine sub-grainboundaries have a mixed character. Moreover, the strategy for visualization alsopermits identifying minor GND that is not well organized as sub-grain boundariesyet. A low-temperature and high-stress sample displays a higher but less organized GND density than in a sample deformed at high temperature for a similarfinite strain, grain size, and identical strain rate, confirming the actionof dislocation creep in these samples, even for micrometric grains (2 µm). Furthermore, disclination dipoles along grain boundaries are identifiedin every undeformed and deformed electron backscatter diffraction (EBSD) map, mostly at the junction of agrain boundary with a sub-grain but also along sub-grain boundaries and atsub-grain boundary tips. Nevertheless, for the range of experimentalparameters investigated, there is no notable correlation of the disclinationdensity with stress, strain, or temperature. However, a broad positivecorrelation between average disclination density and average GND density pergrain is found, confirming their similar role as defects producingintragranular misorientation. Furthermore, a broad negative correlationbetween the disclination density and the grain size or perimeter is found,providing a first rule of thumb on the distribution of disclinations. Fielddislocation and disclination mechanics (FDDM) of the elastic fields due toexperimentally measured dislocations and disclinations (e.g., strains/rotations and stresses) provides further evidence of the interplaybetween both types of defects. At last, our results also support thatdisclinations act as a plastic deformation mechanism, by allowing rotationof a very small crystal volume.
摘要我们报告了一个全面的数据集,该数据集表征和量化了1000和1200下晶粒图框中的几何必要位错(GND)密度(ραc)和细粒多晶橄榄石变形的双轴压缩或扭转中的向错密度(ρθ) ∘C、 在300的围压下 MPa。有限应变范围从0.11到8.6 %, 应力高达1073 MPa。该数据集是以传统语言分辨率(0.5∘)但以高空间分辨率(步长在0.05和0.1之间)获得的19个电子背散射衍射图的选择 µm)。由于数据采集和处理的分析改进,特别是使用了ATEX(电子和X射线衍射分析工具)软件,我们报告了GND和向错密度的空间分布。具有最高GND密度的区域定义子晶粒边界。所涉及的GND密度类型也表明大多数橄榄石亚晶界具有混合特征。此外,可视化策略还允许识别尚未很好地组织为亚晶界的次要GND。低温和高应力样品显示出比在类似有限应变、晶粒尺寸和相同应变速率的高温下变形的样品更高但组织性较差的GND密度,证实了这些样品中位错蠕变的作用,即使是微米晶粒(2 µm)。此外,在每个未变形和变形的电子背散射衍射(EBSD)图中,都可以识别出沿晶界的向错偶极子,主要在agrain边界与亚晶粒的交界处,也可以沿亚晶粒边界和亚晶粒边界尖端。然而,对于所研究的实验参数范围,向错密度与应力、应变或温度没有显著的相关性。然而,在每晶粒的平均向错密度和平均GND密度之间发现了广泛的正相关关系,证实了它们与产生晶间取向不良的缺陷的相似作用。此外,发现向错密度与晶粒尺寸或周长之间存在广泛的负相关性,从而提供了关于向错分布的第一经验法则。由实验测量的位错和向错(例如应变/旋转和应力)引起的弹性场的场位错和向差力学(FDDM)提供了两种类型缺陷之间相互作用的进一步证据。最后,我们的结果也支持向错是一种塑性变形机制,通过允许非常小的晶体体积旋转。
{"title":"Dislocation and disclination densities in experimentally deformed polycrystalline olivine","authors":"S. Demouchy, M. Thieme, F. Barou, B. Beausir, V. Taupin, P. Cordier","doi":"10.5194/ejm-35-219-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-219-2023","url":null,"abstract":"Abstract. We report a comprehensive data set characterizing and\u0000quantifying the geometrically necessary dislocation (GND) density in the\u0000crystallographic frame (ραc) and disclination density\u0000(ρθ) in fine-grained polycrystalline olivine deformed in\u0000uniaxial compression or torsion, at 1000 and 1200 ∘C, under a confining pressure of 300 MPa. Finite strains range from 0.11 up\u0000to 8.6 %, and stresses reach up to 1073 MPa. The data set is a selection\u0000of 19 electron backscatter diffraction maps acquired with conventional\u0000angular resolution (0.5∘) but at high spatial resolution (step\u0000size ranging between 0.05 and 0.1 µm). Thanks to analytical\u0000improvement for data acquisition and treatment, notably with the use of ATEX (Analysis Tools for Electron and X-ray diffraction)\u0000software, we report the spatial distribution of both GND and disclination\u0000densities. Areas with the highest GND densities define sub-grain boundaries.\u0000The type of GND densities involved also indicates that most olivine sub-grain\u0000boundaries have a mixed character. Moreover, the strategy for visualization also\u0000permits identifying minor GND that is not well organized as sub-grain boundaries\u0000yet. A low-temperature and high-stress sample displays a higher but less organized GND density than in a sample deformed at high temperature for a similar\u0000finite strain, grain size, and identical strain rate, confirming the action\u0000of dislocation creep in these samples, even for micrometric grains (2 µm). Furthermore, disclination dipoles along grain boundaries are identified\u0000in every undeformed and deformed electron backscatter diffraction (EBSD) map, mostly at the junction of a\u0000grain boundary with a sub-grain but also along sub-grain boundaries and at\u0000sub-grain boundary tips. Nevertheless, for the range of experimental\u0000parameters investigated, there is no notable correlation of the disclination\u0000density with stress, strain, or temperature. However, a broad positive\u0000correlation between average disclination density and average GND density per\u0000grain is found, confirming their similar role as defects producing\u0000intragranular misorientation. Furthermore, a broad negative correlation\u0000between the disclination density and the grain size or perimeter is found,\u0000providing a first rule of thumb on the distribution of disclinations. Field\u0000dislocation and disclination mechanics (FDDM) of the elastic fields due to\u0000experimentally measured dislocations and disclinations (e.g., strains/rotations and stresses) provides further evidence of the interplay\u0000between both types of defects. At last, our results also support that\u0000disclinations act as a plastic deformation mechanism, by allowing rotation\u0000of a very small crystal volume.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43192760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction 合成锂云母和锂白云母中的阳离子和阴离子有序性:OH的影响 ∕ F和李 ∕ 用NMR(核磁共振)光谱和X射线衍射研究云母形成中的Al比率
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-30 DOI: 10.5194/ejm-35-199-2023
Lara Sulcek, B. Marler, M. Fechtelkord
Abstract. A large number of lepidolitesK(LixAl3−x)[Si2xAl4−2xO10](OH)yF2−yand Li-muscovites K(LixAl2-x/3□1-2x/3)[Si3AlO10](OH)yF2−y were synthesised by a gelling method in combination with hydrothermalsyntheses at a pressure of 2 kbar and a temperature of 873 K. The nominalcomposition ranged between 0.0≤x≤2.0 and 0.0≤y≤2.0, i.e. from polylithioniteK[Li2.0Al][Si4.0O10](OH)yF2−y overtrilithioniteK[Li1.5Al1.5][AlSi3.0O10](OH)yF2−y to muscovite K[Al2.0□][AlSi3.0O10](OH)yF2−y. 1H, 19F,29Si and 27Al magic-angle spinning nuclear magnetic resonance (MASNMR) and 27Al multiple-quantum magic-angle spinning (MQMAS) NMRspectroscopy has been performed to investigate the order and/or disorder state ofSi and Al in the tetrahedral layers and of Li, Al, OH and F in theoctahedral layer. The synthetic mica crystals are very small, ranging from0.1 to 5 µm. With increasing Al content, the crystal sizesdecrease. Rietveld structure analyses on 12 samples showed that nearly allsamples consist of two mica polytypes (1M and 2M1) of varyingproportions. In the case of lepidolites, the 1M / 2M1 ratio depends onthe Li/Al ratio of the reaction mixture. The refinement of the occupancyfactors of octahedral sites shows that lepidolites (1.5≤x≤2.0)represent a solid solution series with polylithionite and trilithionite asthe endmembers. In the case of the Li-muscovites (0.0≤x≤1.5),the 1M / 2M1 ratio depends on the number of impurity phases likeeucryptite or sanidine depleting the reaction mixture of Li or Al. There isno solid solution between trilithionite and muscovite; instead, theLi-muscovite crystals consist of domains differing in the relativeproportions of muscovite and trilithionite. The overall composition of the synthesised micas which consist of twopolytypes can be characterised by 29Si, 1H and 19F MAS NMRspectroscopy. The Si/Al ratio in the tetrahedral layers and thus the contentof [4]Al were calculated by analysing the signal intensities of the29Si MAS NMR experiments. The Li content xest was calculated fromthe measured tetrahedral Si/Al ratio of the 29Si MAS NMR signals. Thecalculated Li contents xest of samples between polylithionite andtrilithionite agree with the expected values. The F-rich samples show slightlyincreased values and the OH samples lower values. Lepidolites with only F(x = 1.5 to 2.0, y = 0.0), but not lepidolites with only OH (x = 1.5 to 2.0and y = 2.0), were observed after synthesis. With decreasing Li content, x≤1.2, Li-muscovites containing mostly hydroxyl (y>1.0) areformed. It was possible to synthesise fluorine containing micas with aLi content as low as 0.3 and y = 0.2 to 1.8. The 19F and 1H MAS NMRexperiments reveal that F and OH are not distributed statistically but localstructural preferences exist. F is attracted by Li-rich and OH by Al-richenvironments. The quadrupolar coupling constant which represents theanisotropy of the Al coordination is low for polylithionite with CQ=1.5 MHz and increases to CQ
摘要大量的锂云母K(LixAl3−x)[Si2xAl4−2xO10](OH)yF2−和锂白云母K(LixMal2-x/3□1-2x/3)[Si3AlO10](OH)yF2−y通过胶凝法结合水热合成在2的压力下合成 kbar和873的温度 K.名义成分范围在0.0≤x≤2.0和0.0≤y≤2.0之间,即从聚锂离子K[Li2.0Al][Si4.0O10](OH)yF2−y过锂离子K[Li1.5Al1.5][AlSi3.0O10](OH]yF2−y-到白云母K[Al2.0□][AlSi3.0O10](OH)yF2−y.1H、19F、29Si和27Al魔角自旋核磁共振(MASNMR)和27Al多量子魔角自旋(MQMAS)NMR光谱研究了Si和Al在四面体层中以及Li、Al、OH和F在八面体层中的有序和/或无序状态。合成云母晶体非常小,从0.1到5 µm。随着Al含量的增加,晶体尺寸增大。对12个样品的Rietveld结构分析表明,几乎所有样品都由两种不同比例的云母多型体(1M和2M1)组成。在锂云母的情况下,1M / 2M1的比例取决于反应混合物的Li/Al比例。对八面体位置占据因子的细化表明,锂云母(1.5≤x≤2.0)是以聚锂云母和三锂云母为端基的固溶体系列。在Li白云母(0.0≤x≤1.5)的情况下,1M / 2M1的比例取决于消耗Li或Al反应混合物的杂质相的数量,如绿柱石或三苯胺。三锂辉石和白云母之间没有固溶体;相反,Li白云母晶体由白云母和三锂辉石相对比例不同的畴组成。由两种多型组成的合成云母的总体组成可以通过29Si、1H和19F MAS NMR光谱来表征。通过分析29Si-MAS NMR实验的信号强度,计算了四面体层中的Si/Al比,从而计算了[4]Al的含量。根据测得的29Si-MAS NMR信号的四面体Si/Al比计算Li含量xest。计算得到的聚锂矿和三锂矿样品的Li含量符合预期值。富F样品的值略有增加,而OH样品的值较低。只有F(x = 1.5至2.0,y = 0.0),但不是只有OH(x = 1.5至2.0和y = 2.0)。随着Li含量的降低,x≤1.2,形成了以羟基为主(y>1.0)的Li白云母。可以合成aLi含量低至0.3和y的含氟云母 = 0.2至1.8。19F和1H-MAS-NMR实验表明,F和OH在统计学上没有分布,但存在局部结构偏好。F被富Li环境吸引,OH被富Al环境吸引。对于CQ=1.5的聚锂离子石,代表Al配位各向同性的四极耦合常数较低 MHz,并增加到CQ=3.8 三锂石的MHz。四面体Al的CQ从1.7小幅增加到2.8 MHz。从三锂辉石向白云母推进,两个四极耦合常数均降至2.5 八面体和1.5的MHz MHz强八面体Al。在聚锂辉石中,八面体铝的各向同性环境最强;八面体片中只有由F配位的Li2Al位,四面体片中只有O配位,这些位置是规则的,只含Si。四面体和八面体中Al的畸变和各向异性随着Al含量的增加而增加。最具各向异性的环境存在于三锂石中,尤其是八面体铝。
{"title":"Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction","authors":"Lara Sulcek, B. Marler, M. Fechtelkord","doi":"10.5194/ejm-35-199-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-199-2023","url":null,"abstract":"Abstract. A large number of lepidolites\u0000K(LixAl3−x)[Si2xAl4−2xO10](OH)yF2−y\u0000and Li-muscovites K(LixAl2-x/3□1-2x/3)[Si3AlO10](OH)yF2−y were synthesised by a gelling method in combination with hydrothermal\u0000syntheses at a pressure of 2 kbar and a temperature of 873 K. The nominal\u0000composition ranged between 0.0≤x≤2.0 and 0.0≤y≤2.0, i.e. from polylithionite\u0000K[Li2.0Al][Si4.0O10](OH)yF2−y over\u0000trilithionite\u0000K[Li1.5Al1.5][AlSi3.0O10](OH)yF2−y to muscovite K[Al2.0□][AlSi3.0O10](OH)yF2−y. 1H, 19F,\u000029Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS\u0000NMR) and 27Al multiple-quantum magic-angle spinning (MQMAS) NMR\u0000spectroscopy has been performed to investigate the order and/or disorder state of\u0000Si and Al in the tetrahedral layers and of Li, Al, OH and F in the\u0000octahedral layer. The synthetic mica crystals are very small, ranging from\u00000.1 to 5 µm. With increasing Al content, the crystal sizes\u0000decrease. Rietveld structure analyses on 12 samples showed that nearly all\u0000samples consist of two mica polytypes (1M and 2M1) of varying\u0000proportions. In the case of lepidolites, the 1M / 2M1 ratio depends on\u0000the Li/Al ratio of the reaction mixture. The refinement of the occupancy\u0000factors of octahedral sites shows that lepidolites (1.5≤x≤2.0)\u0000represent a solid solution series with polylithionite and trilithionite as\u0000the endmembers. In the case of the Li-muscovites (0.0≤x≤1.5),\u0000the 1M / 2M1 ratio depends on the number of impurity phases like\u0000eucryptite or sanidine depleting the reaction mixture of Li or Al. There is\u0000no solid solution between trilithionite and muscovite; instead, the\u0000Li-muscovite crystals consist of domains differing in the relative\u0000proportions of muscovite and trilithionite. The overall composition of the synthesised micas which consist of two\u0000polytypes can be characterised by 29Si, 1H and 19F MAS NMR\u0000spectroscopy. The Si/Al ratio in the tetrahedral layers and thus the content\u0000of [4]Al were calculated by analysing the signal intensities of the\u000029Si MAS NMR experiments. The Li content xest was calculated from\u0000the measured tetrahedral Si/Al ratio of the 29Si MAS NMR signals. The\u0000calculated Li contents xest of samples between polylithionite and\u0000trilithionite agree with the expected values. The F-rich samples show slightly\u0000increased values and the OH samples lower values. Lepidolites with only F\u0000(x = 1.5 to 2.0, y = 0.0), but not lepidolites with only OH (x = 1.5 to 2.0\u0000and y = 2.0), were observed after synthesis. With decreasing Li content, x≤1.2, Li-muscovites containing mostly hydroxyl (y>1.0) are\u0000formed. It was possible to synthesise fluorine containing micas with a\u0000Li content as low as 0.3 and y = 0.2 to 1.8. The 19F and 1H MAS NMR\u0000experiments reveal that F and OH are not distributed statistically but local\u0000structural preferences exist. F is attracted by Li-rich and OH by Al-rich\u0000environments. The quadrupolar coupling constant which represents the\u0000anisotropy of the Al coordination is low for polylithionite with CQ=1.5 MHz and increases to CQ","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47074832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Pleysteinite, [(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10  ⋅  4H2O, the Al analogue of benyacarite, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany Pleysteinite,[(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10  ⋅  4H2O,benyacarite的Al类似物,来自德国巴伐利亚州奥伯普法尔茨Hagendorf-Süd伟晶岩
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-27 DOI: 10.5194/ejm-35-189-2023
I. Grey, R. Hochleitner, Christian Rewitzer, A. R. Kampf, C. MacRae, R. Gable, W. G. Mumme, E. Keck, C. Davidson
Abstract. Pleysteinite,[(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10 ⚫ 4H2O, is the aluminium analogue of benyacarite, from theHagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany. It was found inspecimens of altered zwieselite, in association with nordgauite, fluellite,rockbridgeite, pyrite and columbite. Pleysteinite occurs as isolated andsmall aggregates of colourless, stubby prisms that are typically 10 to 30 µm wide and up to 100 µm long. The crystals are flattened on{010} and bounded by {111}, {100} and {001} planes. The calculated density is 2.34 g cm−3. Optically, pleysteinite crystals are biaxial (+), with α=1.566(2), β=1.580(2), γ=1.600(2) (measured inwhite light) and 2V(meas.) = 80(1)∘. The empirical formula fromelectron microprobe analyses and structure refinement is[(H2O)0.50K0.50]2(Mn1.20Mg0.49Fe0.272+Zn0.05)∑2.01(Al1.63Fe0.203+Ti0.194+)∑2.02(Al0.56Ti0.444+)(PO4)4.02[F0.58O0.31(OH)0.11]2(H2O)10 ⚫ 3.92H2O. Pleysteinite has orthorhombic symmetry, with space groupPbca and unit-cell parameters a = 10.4133(8) Å, b=20.5242(17) Å, c=12.2651(13) Å,V=2621.4(4) Å3 and Z=4. The crystal structure was refinedusing single-crystal data to wRobs=0.054 for 1692 reflections withI>3σ(I). The crystal structure contains corner-connectedlinear trimers of Al-centred octahedra that share corners with PO4tetrahedra to form 10-member rings parallel to (010). K+ cations andwater molecules are located in the rings. Additional corner-sharing of thePO4 tetrahedra with Mn(H2O)4O2 octahedra occurs along[010] to complete the 3D framework structure.
摘要Pleysteinite,[(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10 ⚫ 4H2O,是benyacarite的铝类似物,来自德国巴伐利亚州Oberpfalz的Hagendorf-Süd伟晶岩。它是在蚀变zwieseite的样品中发现的,与北欧绿泥石、流橄榄岩、岩桥绿泥石、黄铁矿和铌铁矿有关。Pleysteinite以无色、短粗棱柱的孤立小聚集体的形式出现,通常为10至30 µm宽,最大可达100 µm长。晶体在{010}上被平坦化,并由{111}、{100}和{001}平面界定。计算密度为2.34 g cm−3。在光学上,多晶闪锌矿晶体为双轴(+),α=1.566(2),β=1.580(2)、γ=1.600(2)(在白光中测量)和2V(测量值) = 80(1)∘。电子探针分析和结构细化的经验公式为[(H2O)0.50K0.50]2(Mn1.20Mg0.49Fe0.272+Zn0.05)∑2.01(Al1.63Fe0.203+Ti0.194+)∑2.02(Al0.56Ti0.444+)(PO4)4.02[F0.58O0.31(OH)0.11]2(H2O)10 ⚫ 3.92H2O。Pleysteinite具有正交对称性,空间群Pbca,晶胞参数a = 10.4133(8) Å,b=20.5242(17) Å,c=12.2651(13) Å,V=2621.4(4) Å3和Z=4。对1692次I>3σ(I)的反射,利用单晶数据将晶体结构细化为wRobs=0.054。晶体结构包含以Al为中心的八面体的角连接的近三聚体,其与PO4四面体共享角以形成平行于(010)的10元环。K+阳离子和水分子位于环中。PO4四面体与Mn(H2O)4O2八面体沿[010]发生额外的角共享,以完成3D框架结构。
{"title":"Pleysteinite, [(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10  ⋅  4H2O, the Al analogue of benyacarite, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany","authors":"I. Grey, R. Hochleitner, Christian Rewitzer, A. R. Kampf, C. MacRae, R. Gable, W. G. Mumme, E. Keck, C. Davidson","doi":"10.5194/ejm-35-189-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-189-2023","url":null,"abstract":"Abstract. Pleysteinite,\u0000[(H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10 ⚫ 4H2O, is the aluminium analogue of benyacarite, from the\u0000Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany. It was found in\u0000specimens of altered zwieselite, in association with nordgauite, fluellite,\u0000rockbridgeite, pyrite and columbite. Pleysteinite occurs as isolated and\u0000small aggregates of colourless, stubby prisms that are typically 10 to 30 µm wide and up to 100 µm long. The crystals are flattened on\u0000{010} and bounded by {111}, {100} and {001} planes. The calculated density is 2.34 g cm−3. Optically, pleysteinite crystals are biaxial (+), with α=1.566(2), β=1.580(2), γ=1.600(2) (measured in\u0000white light) and 2V(meas.) = 80(1)∘. The empirical formula from\u0000electron microprobe analyses and structure refinement is\u0000[(H2O)0.50K0.50]2(Mn1.20Mg0.49Fe0.272+Zn0.05)∑2.01(Al1.63Fe0.203+Ti0.194+)∑2.02(Al0.56Ti0.444+)\u0000(PO4)4.02[F0.58O0.31(OH)0.11]2(H2O)10 ⚫ 3.92H2O. Pleysteinite has orthorhombic symmetry, with space group\u0000Pbca and unit-cell parameters a = 10.4133(8) Å, b=20.5242(17) Å, c=12.2651(13) Å,\u0000V=2621.4(4) Å3 and Z=4. The crystal structure was refined\u0000using single-crystal data to wRobs=0.054 for 1692 reflections with\u0000I>3σ(I). The crystal structure contains corner-connected\u0000linear trimers of Al-centred octahedra that share corners with PO4\u0000tetrahedra to form 10-member rings parallel to (010). K+ cations and\u0000water molecules are located in the rings. Additional corner-sharing of the\u0000PO4 tetrahedra with Mn(H2O)4O2 octahedra occurs along\u0000[010] to complete the 3D framework structure.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48329195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning 橄榄岩到橄榄石(阿曼苏丹塞梅尔蛇绿岩)的普遍碳酸化:来自铁分配和化学分带的线索
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-21 DOI: 10.5194/ejm-35-171-2023
Thierry Decrausaz, M. Godard, M. Menzel, F. Parat, E. Oliot, Romain Lafay, F. Barou
Abstract. Earth's long-term cycling of carbon is regulated frommid-ocean ridges to convergent plate boundaries by mass transfers involvingmantle rocks. Here we examine the conversion of peridotite to listvenite(magnesite + quartz rock) during CO2 metasomatism along the basalthrust of the Semail Ophiolite (Fanja, Sultanate of Oman). At the outcropscale, this transformation defines reaction zones, from serpentinizedperidotites to carbonated serpentinites and listvenites. Based on adetailed petrological and chemical study, we show that carbonationprogressed through three main stages involving the development of replacivetextures ascribed to early stages, whilst carbonate (± quartz) veiningbecomes predominant in the last stage. The pervasive replacement ofserpentine by magnesite is characterized by the formation of spheroids,among which two types are identified based on the composition of their coreregions: Fe-core and Mg-core spheroids. Fe zoning is a type feature ofmatrix and vein magnesite formed during the onset carbonation (Stage 1).While Fe-rich magnesite is predicted to form at low fluid XCO2 from apoorly to moderately oxidized protolith, our study evidences that the localnon-redox destabilization of Fe oxides into Fe-rich magnesite is essential tothe development of Fe-core spheroids. The formation of Fe-core spheroids isfollowed by the pervasive (over-)growth of Mg-rich spheroids and aggregates(Stage 2) at near-equilibrium conditions in response to increasing fluidXCO2. Furthermore, the compositions of carbonates indicate that mostsiderophile transition elements released by the dissolution of primaryminerals are locally trapped in carbonate and oxides during matrixcarbonation, while elements with a chalcophile affinity are the most likelyto be leached out of reaction zones.
摘要地球碳的长期循环是通过地幔岩石的质量转移从大洋中脊到会聚板块边界进行调节的。在这里,我们研究了橄榄岩向菱铁矿(菱镁矿 + 石英岩)。在露头尺度上,这种转变定义了反应区,从蛇纹石化的eridotite到碳酸化的蛇纹岩和listvenite。基于详细的岩石学和化学研究,我们表明碳酸盐作用经历了三个主要阶段,包括早期的复盖构造的发展,而碳酸盐(±石英)脉在最后阶段占主导地位。菱镁矿普遍取代萜的特征是形成球状体,其中根据其核心区的组成可识别出两种类型:铁核球状体和镁核球状体。铁分带是在碳酸化开始阶段(第1阶段)形成的基质和脉状菱镁矿的一种类型特征。虽然富铁菱镁矿预计将在低流体XCO2下从低氧化到中等氧化的原岩形成,但我们的研究表明,铁氧化物向富铁菱镁矿的局部非氧化还原失稳对铁芯球体的发展至关重要。随着流体XCO2的增加,在接近平衡的条件下,富镁球体和聚集体(第2阶段)普遍(过度)生长,形成了铁芯球体。此外,碳酸盐的组成表明,在基质碳化过程中,由一元矿物溶解释放的亲硫过渡元素被局部捕获在碳酸盐和氧化物中,而具有亲硫亲和力的元素最有可能被浸出出反应区。
{"title":"Pervasive carbonation of peridotite to listvenite (Semail Ophiolite, Sultanate of Oman): clues from iron partitioning and chemical zoning","authors":"Thierry Decrausaz, M. Godard, M. Menzel, F. Parat, E. Oliot, Romain Lafay, F. Barou","doi":"10.5194/ejm-35-171-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-171-2023","url":null,"abstract":"Abstract. Earth's long-term cycling of carbon is regulated from\u0000mid-ocean ridges to convergent plate boundaries by mass transfers involving\u0000mantle rocks. Here we examine the conversion of peridotite to listvenite\u0000(magnesite + quartz rock) during CO2 metasomatism along the basal\u0000thrust of the Semail Ophiolite (Fanja, Sultanate of Oman). At the outcrop\u0000scale, this transformation defines reaction zones, from serpentinized\u0000peridotites to carbonated serpentinites and listvenites. Based on a\u0000detailed petrological and chemical study, we show that carbonation\u0000progressed through three main stages involving the development of replacive\u0000textures ascribed to early stages, whilst carbonate (± quartz) veining\u0000becomes predominant in the last stage. The pervasive replacement of\u0000serpentine by magnesite is characterized by the formation of spheroids,\u0000among which two types are identified based on the composition of their core\u0000regions: Fe-core and Mg-core spheroids. Fe zoning is a type feature of\u0000matrix and vein magnesite formed during the onset carbonation (Stage 1).\u0000While Fe-rich magnesite is predicted to form at low fluid XCO2 from a\u0000poorly to moderately oxidized protolith, our study evidences that the local\u0000non-redox destabilization of Fe oxides into Fe-rich magnesite is essential to\u0000the development of Fe-core spheroids. The formation of Fe-core spheroids is\u0000followed by the pervasive (over-)growth of Mg-rich spheroids and aggregates\u0000(Stage 2) at near-equilibrium conditions in response to increasing fluid\u0000XCO2. Furthermore, the compositions of carbonates indicate that most\u0000siderophile transition elements released by the dissolution of primary\u0000minerals are locally trapped in carbonate and oxides during matrix\u0000carbonation, while elements with a chalcophile affinity are the most likely\u0000to be leached out of reaction zones.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44053777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Thermodynamic and structural variations along the olivenite–libethenite solid solution 沿橄榄石-橄榄石固溶体的热力学和结构变化
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-03-21 DOI: 10.5194/ejm-35-157-2023
J. Majzlan, Alexandra M. Plumhoff, M. Števko, G. Steciuk, J. Plášil, E. Dachs, A. Benisek
Abstract. Many natural secondary arsenates contain a small fraction of phosphate. Inthis work, we investigated the olivenite–libethenite(Cu2(AsO4)(OH)–Cu2(PO4)(OH)) solid solution as a model systemfor the P–As substitution in secondary minerals. The synthetic samplesspanned the entire range from pure olivenite (Xlib=0) tolibethenite (Xlib=1). Acid-solution calorimetry determinedthat the excess enthalpies are non-ideal, with a maximum at Xlib=0.6 of +1.6 kJ mol−1. This asymmetry can be described by theRedlich–Kister equation of Hex= Xoli⋅Xlib [A+B(Xoli−Xlib)], with A=6.27 ± 0.16 and B=2.9 ± 0.5 kJ mol−1.Three-dimensional electron diffraction analysis on the intermediate memberwith Xlib=0.5 showed that there is no P–As ordering, meaningthat the configurational entropy (Sconf) can be calculated as-R(Xoliln⁡Xoli+Xlibln⁡Xlib). The excess vibrational entropies(Svibex), determined by relaxation calorimetry, aresmall and negative. The entropies of mixing (Sconf+Svibex) also show asymmetry, with a maximum nearXlib=0.6. Autocorrelation analysis of infrared spectrasuggests local heterogeneity that arises from strain relaxation aroundcations with different sizes (As5+ / P5+) in the intermediatemembers and explains the positive enthalpies of mixing. The length scale ofthis strain is around 5 Å, limited to the vicinity of the tetrahedra inthe structure. At longer length scales (≈15 Å), the strain ispartially compensated by the monoclinic–orthorhombic transformation. Thevolume of mixing shows complex behavior, determined by P–Assubstitution and symmetry change. A small (0.9 kJ mol−1) drop inenthalpies of mixing in the region of Xlib=0.7–0.8 confirmsthe change from monoclinic to orthorhombic symmetry.
摘要许多天然次生砷酸盐含有少量磷酸盐。在这项工作中,我们研究了橄榄石-利辉石(Cu2(AsO4)(OH) -Cu2 (PO4)(OH))固溶体作为二次矿物中P-As取代的模型体系。合成样品涵盖了从纯橄榄石(Xlib=0)到橄榄绿石(Xlib=1)的整个范围。酸-溶液量热法测定了过量焓值是非理想的,在Xlib=0.6 (+1.6 kJ mol−1)处最大。这种不对称性可以用Hex= Xoli⋅Xlib [A+B(Xoli−Xlib)]的theRedlich-Kister方程来描述,其中A=6.27±0.16,B=2.9±0.5 kJ mol−1。对Xlib=0.5的中间元的三维电子衍射分析表明,不存在P-As有序,这意味着构型熵(Sconf)可以计算为r (xollin (Xoli) +Xlibln (Xlib))。由松弛量热法测定的过量振动熵(Svibex)很小且为负值。混合熵(Sconf+Svibex)也表现出不对称性,最大接近xlib =0.6。红外光谱的自相关分析表明,在不同尺寸的中间成员(As5+ / P5+)周围的应变松弛引起了局部异质性,这解释了混合焓为正的原因。该应变的长度尺度在5 Å左右,限制在结构中的四面体附近。在较长的长度尺度上(≈15 Å),应变被单斜-正交变换部分补偿。混合体积表现出复杂的行为,这是由p - a取代和对称变化决定的。在Xlib= 0.7-0.8的区域,混合焓下降0.9 kJ mol−1,证实了从单斜对称到正交对称的变化。
{"title":"Thermodynamic and structural variations along the olivenite–libethenite solid solution","authors":"J. Majzlan, Alexandra M. Plumhoff, M. Števko, G. Steciuk, J. Plášil, E. Dachs, A. Benisek","doi":"10.5194/ejm-35-157-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-157-2023","url":null,"abstract":"Abstract. Many natural secondary arsenates contain a small fraction of phosphate. In\u0000this work, we investigated the olivenite–libethenite\u0000(Cu2(AsO4)(OH)–Cu2(PO4)(OH)) solid solution as a model system\u0000for the P–As substitution in secondary minerals. The synthetic samples\u0000spanned the entire range from pure olivenite (Xlib=0) to\u0000libethenite (Xlib=1). Acid-solution calorimetry determined\u0000that the excess enthalpies are non-ideal, with a maximum at Xlib=0.6 of +1.6 kJ mol−1. This asymmetry can be described by the\u0000Redlich–Kister equation of Hex= Xoli⋅Xlib [A+B(Xoli−Xlib)], with A=6.27 ± 0.16 and B=2.9 ± 0.5 kJ mol−1.\u0000Three-dimensional electron diffraction analysis on the intermediate member\u0000with Xlib=0.5 showed that there is no P–As ordering, meaning\u0000that the configurational entropy (Sconf) can be calculated as\u0000-R(Xoliln⁡Xoli+Xlibln⁡Xlib). The excess vibrational entropies\u0000(Svibex), determined by relaxation calorimetry, are\u0000small and negative. The entropies of mixing (Sconf+Svibex) also show asymmetry, with a maximum near\u0000Xlib=0.6. Autocorrelation analysis of infrared spectra\u0000suggests local heterogeneity that arises from strain relaxation around\u0000cations with different sizes (As5+ / P5+) in the intermediate\u0000members and explains the positive enthalpies of mixing. The length scale of\u0000this strain is around 5 Å, limited to the vicinity of the tetrahedra in\u0000the structure. At longer length scales (≈15 Å), the strain is\u0000partially compensated by the monoclinic–orthorhombic transformation. The\u0000volume of mixing shows complex behavior, determined by P–As\u0000substitution and symmetry change. A small (0.9 kJ mol−1) drop in\u0000enthalpies of mixing in the region of Xlib=0.7–0.8 confirms\u0000the change from monoclinic to orthorhombic symmetry.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45145174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mckelveyite group minerals – Part 2: Alicewilsonite-(YCe), Na2Sr2YCe(CO3)6  ⋅  3H2O, a new species
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-02-28 DOI: 10.5194/ejm-35-143-2023
I. Lykova, R. Rowe, G. Poirier, H. Friis, K. Helwig
Abstract. The new mckelveyite group mineral alicewilsonite-(YCe),ideally Na2Sr2YCe(CO3)6 ⋅ 3H2O, was foundat Mont Saint-Hilaire, Quebec, Canada, and subsequently at the Saint-Amablesill, Quebec, Canada, and the Khibiny Massif, Kola Peninsula, Russia.Alicewilsonite-(YCe) crystals are commonly hemimorphic pseudotrigonal andpseudohexagonal and show barrel-shaped, saucer-shaped, spindle-shaped,cone-shaped, columnar, tabular, and platy habits. They are usually up to 2–3 mm in size with some larger crystals reaching 2–3 cm. The crystals oftenform stacked or parallel growth aggregates and rosettes.Alicewilsonite-(YCe) colour varies from pale yellow to yellow, lemon yellow,green yellow, orange-yellow, pale green to green, pale grey to grey, greengrey, beige, and colourless. The streak is white; the lustre is vitreous.The cleavage is fair to indistinct, parallel to (001). The Mohs hardness is3. Dcalc is 3.37 g cm−3. Alicewilsonite-(YCe) is optically biaxial(+), with α=1.554(3), β=1.558(3), γ=1.644(2), 2V (calc.) = 26∘, 2V (meas.) = 20(3)∘ (589 nm).The IR spectrum is reported. Thecomposition (wt %, average of six analyses) is Na2O 7.42, CaO 0.72,SrO 21.49, BaO 1.41, Y2O3 8.52, La2O3 5.93,Ce2O3 9.52, Pr2O3 0.59, Nd2O3 1.75,Sm2O3 0.46, Gd2O3 0.83, Dy2O3 1.65,Ho2O3 0.34, Er2O3 1.21, Yb2O3 0.64, CO229.33, H2O 6.13, total 97.94. The empirical formula of the holotypecalculated on the basis of six cations isNa2.11Ca0.11Sr1.83Ba0.08Y0.67(Ce0.51La0.32Pr0.03Nd0.09Sm0.02Gd0.04Dy0.08Ho0.02Er0.06Yb0.03)Σ1.20(CO3)5.88 (H2O)3.00.The mineral is triclinic,P1, a=9.0036(6) Å, b=9.0175(6) Å, c=6.7712(5) Å, α=102.724(2)∘, β=116.398(2)∘, γ=60.003(2)∘, V=426.46(5) Å3,and Z=1. The strongestreflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are6.07(31)(001), 4.372(100)(120, 2‾1‾1, 11‾0), 4.037(25)(1‾11, 1‾2‾1, 210),3.201(25)(121, 2‾1‾2, 11‾1),2.831(67)(1‾12, 1‾2‾2, 211, 1‾21, 21‾0), 2.601(39)(030, 3‾3‾1,3‾01), 2.236(24)(2‾4‾1, 2‾21,4‾2‾1). 2.019(23)(003, 2‾22, 2‾4‾2‾, 420). 1.9742(24)(032, 3‾03,3‾3‾3, 331, 03‾2, 301). The crystalstructure, solved and refined from single-crystal X-ray diffraction data(R1=0.055), is of the weloganite type.
摘要新的mckelveyite族矿物alicewilsonite-(YCe),理想情况下为Na2Sr2YCe(CO3)6 ⋅ 3H2O,在加拿大魁北克省的圣希莱尔山发现,随后在加拿大魁北克的圣阿马布尔希尔和俄罗斯科拉半岛的基比尼地块发现。Alicewisonite-(YCe)晶体通常为半形假三角和准六边形,表现出桶形、碟形、纺锤形、锥形、柱状、板状和板状的习性。它们通常高达2-3 毫米,一些较大的晶体达到2–3 晶体通常形成堆叠或平行生长的聚集体和玫瑰花结。Alicewisonite(YCe)的颜色从浅黄色到黄色、柠檬黄色、绿黄色、橙黄色、浅绿色到绿色、浅灰色到灰色、绿灰色、米色和无色不等。条纹是白色的;光泽是玻璃状的。解理一般到模糊,平行于(001)。莫氏硬度是3。Dcalc为3.37 g cm−3。Alicewisonite-(YCe)为光学双轴(+),α=1.554(3),β=1.558(3)、γ=1.644(2),2V(计算值) = 26∘,2V(测量值) = 20(3)∘(589 nm)的红外光谱。成分(wt %, 六次分析的平均值)为Na2O 7.42、CaO 0.72、SrO 21.49、BaO 1.41、Y2O3 8.52、La2O3 5.93、Ce2O3 9.52、Pr2O3 0.59、Nd2O3 1.75、Sm2O3 0.46、Gd2O3 0.83、Dy2O3 1.65、Ho2O3 0.34、Er2O3 1.21、Yb2O3 0.64、CO229.33、H2O 6.13,总计97.94。基于六种阳离子计算的全息图经验公式为Na2.11Ca.11Sr1.83Ba.08Y0.67(Ce0.51La0.32Pr0.03Nd0.09Sm0.02Gd0.04Dy0.08Ho0.02Er0.06Yb0.03)∑1.20(CO3)5.88 6(5)Å3和Z=1。粉末X射线衍射图[d,Å(I)(hkl)]的强反射为6.07(31)(001),4.372(100)(120,2‾4; 21,21‾0),2.601(39)(030,3 82543‿1,3‖01),2.236(24)(2𔉰4 8254;1,2‼2※1)。2.019(23)(003,2,2,2,4,20)。1.9742(24)。从单晶X射线衍射数据(R1=0.055)中解析和细化得到的晶体结构为辉长岩型。
{"title":"Mckelveyite group minerals – Part 2: Alicewilsonite-(YCe), Na2Sr2YCe(CO3)6  ⋅  3H2O, a new species","authors":"I. Lykova, R. Rowe, G. Poirier, H. Friis, K. Helwig","doi":"10.5194/ejm-35-143-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-143-2023","url":null,"abstract":"Abstract. The new mckelveyite group mineral alicewilsonite-(YCe),\u0000ideally Na2Sr2YCe(CO3)6 ⋅ 3H2O, was found\u0000at Mont Saint-Hilaire, Quebec, Canada, and subsequently at the Saint-Amable\u0000sill, Quebec, Canada, and the Khibiny Massif, Kola Peninsula, Russia.\u0000Alicewilsonite-(YCe) crystals are commonly hemimorphic pseudotrigonal and\u0000pseudohexagonal and show barrel-shaped, saucer-shaped, spindle-shaped,\u0000cone-shaped, columnar, tabular, and platy habits. They are usually up to 2–3 mm in size with some larger crystals reaching 2–3 cm. The crystals often\u0000form stacked or parallel growth aggregates and rosettes.\u0000Alicewilsonite-(YCe) colour varies from pale yellow to yellow, lemon yellow,\u0000green yellow, orange-yellow, pale green to green, pale grey to grey, green\u0000grey, beige, and colourless. The streak is white; the lustre is vitreous.\u0000The cleavage is fair to indistinct, parallel to (001). The Mohs hardness is\u00003. Dcalc is 3.37 g cm−3. Alicewilsonite-(YCe) is optically biaxial\u0000(+), with α=1.554(3), β=1.558(3), γ=1.644(2), 2V (calc.) = 26∘, 2V (meas.) = 20(3)∘ (589 nm).\u0000The IR spectrum is reported. The\u0000composition (wt %, average of six analyses) is Na2O 7.42, CaO 0.72,\u0000SrO 21.49, BaO 1.41, Y2O3 8.52, La2O3 5.93,\u0000Ce2O3 9.52, Pr2O3 0.59, Nd2O3 1.75,\u0000Sm2O3 0.46, Gd2O3 0.83, Dy2O3 1.65,\u0000Ho2O3 0.34, Er2O3 1.21, Yb2O3 0.64, CO2\u000029.33, H2O 6.13, total 97.94. The empirical formula of the holotype\u0000calculated on the basis of six cations is\u0000Na2.11Ca0.11Sr1.83Ba0.08Y0.67(Ce0.51La0.32Pr0.03Nd0.09Sm0.02Gd0.04\u0000Dy0.08Ho0.02Er0.06Yb0.03)Σ1.20(CO3)5.88 (H2O)3.00.\u0000The mineral is triclinic,\u0000P1, a=9.0036(6) Å, b=9.0175(6) Å, c=6.7712(5) Å, α=102.724(2)∘, β=116.398(2)∘, γ=60.003(2)∘, V=426.46(5) Å3,\u0000and Z=1. The strongest\u0000reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are\u00006.07(31)(001), 4.372(100)(120, 2‾1‾1, 11‾0), 4.037(25)(1‾11, 1‾2‾1, 210),\u00003.201(25)(121, 2‾1‾2, 11‾1),\u00002.831(67)(1‾12, 1‾2‾2, 211, 1‾21, 21‾0), 2.601(39)(030, 3‾3‾1,3‾01), 2.236(24)(2‾4‾1, 2‾21,\u00004‾2‾1). 2.019(23)(003, 2‾22, 2‾4‾2‾, 420). 1.9742(24)(032, 3‾03,\u00003‾3‾3, 331, 03‾2, 301). The crystal\u0000structure, solved and refined from single-crystal X-ray diffraction data\u0000(R1=0.055), is of the weloganite type.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43803131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mckelveyite group minerals – Part 1: Nomenclature and new data on donnayite-(Y) Mckelveyite族矿物-第1部分:donnayite的命名和新数据-(Y)
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-02-28 DOI: 10.5194/ejm-35-133-2023
I. Lykova, R. Rowe, G. Poirier, G. Giester, Kelsie Ojaste, H. Friis
Abstract. The mckelveyite group consisting of seven carbonateminerals – mckelveyite-(Y), ewaldite, weloganite, donnayite-(Y),alicewilsonite-(YCe), alicewilsonite-(YLa), and bainbridgeite-(YCe) – isformally established. The general formula of the minerals isA3B3(CO3)6 ⋅ 3H2O, where A= Na, Ca, Y, and Zrand B= Sr, Ba, Ce, and La. Different order–disorder modifications are knownresulting in triclinic, monoclinic, hexagonal, and trigonal minerals withessentially the same structure. Re-examination of donnayite-(Y) typespecimens shows that the original description contains data collected on twodifferent species: donnayite-(Y) and alicewilsonite-(YCe). Donnayite-(Y),NaCaSr3Y(CO3)6 ⋅ 3H2O, was found in only onespecimen out of seven – CMNMC 39396 – housed at the Canadian Museum ofNature, Ottawa. This specimen becomes the holotype of donnayite-(Y). Thecrystal structure of donnayite-(Y) was solved and refined to R1= 0.055 for 3366 reflections with I>2σ(I). Donnayite-(Y) isshown to have a weloganite-type structure confirming its place in themckelveyite group.
摘要由七种碳酸盐矿物组成的mckelveyite组——mckelveyite-(Y)、ewaldite、weloganite、donnayite-(Y)、alicewilsonite-(YCe)、alice wilsonite(YLa)和bainbridgeite-(YCe)——已正式建立。矿物的通式为A3B3(CO3)6 ⋅ 3H2O,其中A= Na、Ca、Y、Zr和B= Sr、Ba、Ce和La。已知不同的有序-无序修饰导致具有基本相同结构的三斜、单斜、六方和三方矿物。对donnayite-(Y)型标本的重新检查表明,原始描述包含了两个不同物种的数据:Donnayitte-(Y)和alicewilsonite-(YCe)。Donnayite-(Y),NaCaSr3Y(CO3)6 ⋅ 3H2O,在渥太华加拿大自然博物馆收藏的CMNMC 39396七个标本中只有一个被发现。该标本成为donnayite-(Y)的正模标本。溶解了donnayite-(Y)的晶体结构,并将其提纯为R1= 对于I>2σ(I)的3366次反射,为0.055。Donnayite-(Y)被认为具有welognite型结构,这证实了它在钙铝榴石群中的位置。
{"title":"Mckelveyite group minerals – Part 1: Nomenclature and new data on donnayite-(Y)","authors":"I. Lykova, R. Rowe, G. Poirier, G. Giester, Kelsie Ojaste, H. Friis","doi":"10.5194/ejm-35-133-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-133-2023","url":null,"abstract":"Abstract. The mckelveyite group consisting of seven carbonate\u0000minerals – mckelveyite-(Y), ewaldite, weloganite, donnayite-(Y),\u0000alicewilsonite-(YCe), alicewilsonite-(YLa), and bainbridgeite-(YCe) – is\u0000formally established. The general formula of the minerals is\u0000A3B3(CO3)6 ⋅ 3H2O, where A= Na, Ca, Y, and Zr\u0000and B= Sr, Ba, Ce, and La. Different order–disorder modifications are known\u0000resulting in triclinic, monoclinic, hexagonal, and trigonal minerals with\u0000essentially the same structure. Re-examination of donnayite-(Y) type\u0000specimens shows that the original description contains data collected on two\u0000different species: donnayite-(Y) and alicewilsonite-(YCe). Donnayite-(Y),\u0000NaCaSr3Y(CO3)6 ⋅ 3H2O, was found in only one\u0000specimen out of seven – CMNMC 39396 – housed at the Canadian Museum of\u0000Nature, Ottawa. This specimen becomes the holotype of donnayite-(Y). The\u0000crystal structure of donnayite-(Y) was solved and refined to R1= 0.055 for 3366 reflections with I>2σ(I). Donnayite-(Y) is\u0000shown to have a weloganite-type structure confirming its place in the\u0000mckelveyite group.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49580136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CO2 diffusion in dry and hydrous leucititic melt 干湿白质熔体中CO2的扩散
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-02-27 DOI: 10.5194/ejm-35-117-2023
Lennart Koch, B. Schmidt
Abstract. Using the diffusion couple technique, diffusion ofCO2 in a leucititic melt from the Colli Albani Volcanic District inItaly was investigated at temperatures between 1200 and 1350 ∘Cin an internally heated pressure vessel at 300 MPa. To examine the effect ofdissolved H2O in the melt, experiments were performed for a nominallydry melt (0.18 ± 0.03 wt % H2O) and for a hydrous meltcontaining 3.36 ± 0.28 wt % H2O. Diffusion experiments were runfor 40 to 120 min and terminated by rapid quench. CO2 concentrationprofiles were subsequently measured via attenuated total reflectionFourier transform infrared spectroscopy (ATR-FTIR) and fitted with errorfunctions to obtain individual diffusion coefficients. For the anhydrous and hydrous sample series, seven diffusion coefficientswere determined each. Diffusivity was found to increase exponentially withtemperature for both melts following an Arrhenius behaviour. The Arrheniusequation for the nominally dry leucititic melt is described by log⁡DCO2=-1.44(±0.24)⋅10000T-1.95(±1.59), where DCO2 is the diffusion coefficient in m2 s−1 and T is thetemperature in K. In the experimental temperature range, H2O has anaccelerating effect on CO2 diffusion. At 1200 ∘C,diffusivity increases from 1.94 × 10−12 m2 s−1 inthe dry melt to 1.54 × 10−11 m2 s−1 in the hydrousmelt. The Arrhenius equation for the leucititic melt containing 3.36±0.28 wt % H2O is given by log⁡DCO2=-1.09(±0.30)⋅10000T-3.41(±1.99). The activation energies for CO2 were determined to be 275 ± 47 kJ mol−1 for the anhydrous melt and 209 ± 58 kJ mol−1 for thehydrous melt. The high CO2 activation energy in the leucititic melt indicates thatthe diffusion might be partly attributed to the carbonate species. At highmagmatic temperatures above 1200 ∘C, CO2 diffusivity in theleucititic melt is only slightly lower than CO2 diffusion in rhyoliticand basaltic melts, suggesting that CO2 diffusion in natural melts isrelatively independent from the bulk melt composition at such temperatures.CO2 diffuses slower than other volatile components such as halogens andH2O in depolymerized silicate melts. Thus, a fractionation of volatilescan occur during magma ascent and degassing. The experimental data onCO2 diffusion can be used for modelling the degassing mechanisms ofultrapotassic mafic melts.
摘要利用扩散耦合技术,在1200到1350的温度下,研究了CO2在意大利科利-奥尔巴尼火山区亮氨酸熔体中的扩散 ∘Cin内部加热压力容器,温度为300 MPa。为了检验熔体中溶解的H2O的影响,对名义熔体(0.18 ± 0.03 wt % H2O),并且对于含有3.36的含水熔体 ± 0.28 wt % 一氧化二氢扩散实验进行了40到120次 min,并通过快速淬火终止。随后通过衰减全反射傅里叶变换红外光谱(ATR-FTIR)测量CO2浓度分布,并用误差函数拟合以获得个体扩散系数。对于无水和含水样品系列,分别测定了七个扩散系数。在阿伦尼斯行为之后,发现两种熔体的扩散率随温度呈指数级增加。名义上干燥的白榴石熔体的阿伦纽斯方程由log描述⁡DCO2=-1.44(±0.24)·10000T-1.95(±1.59),其中DCO2是 m2 s−1,T是以K为单位的温度。在实验温度范围内,H2O对CO2的扩散有加速作用。1200 ∘C、 扩散率从1.94增加 × 10−12 m2 干熔体中的s−1至1.54 × 10−11 m2 含水熔体中的s−1。含3.36±0.28亮氨酸熔体的Arrhenius方程 wt % H2O由log表示⁡DCO2=-1.09(±0.30)·10000T-3.41(±1.99)。测得CO2的活化能为275 ± 47 kJ mol−1(无水熔体)和209 ± 58 kJ mol−1表示氢熔体。亮氨酸熔体中的高CO2活化能表明扩散可能部分归因于碳酸盐物种。在1200以上的高岩浆温度下 ∘C、 玄武岩熔体中的CO2扩散率仅略低于流纹质玄武岩熔体中CO2的扩散率,这表明在这种温度下,天然熔体中的二氧化碳扩散相对独立于大块熔体的组成。在解聚硅酸盐熔体中,CO2的扩散速度比其他挥发性成分(如卤素和H2O)慢。因此,在岩浆上升和脱气过程中会发生挥发物的分馏。CO2扩散实验数据可用于模拟超钾镁铁质熔体的脱气机制。
{"title":"CO2 diffusion in dry and hydrous leucititic melt","authors":"Lennart Koch, B. Schmidt","doi":"10.5194/ejm-35-117-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-117-2023","url":null,"abstract":"Abstract. Using the diffusion couple technique, diffusion of\u0000CO2 in a leucititic melt from the Colli Albani Volcanic District in\u0000Italy was investigated at temperatures between 1200 and 1350 ∘C\u0000in an internally heated pressure vessel at 300 MPa. To examine the effect of\u0000dissolved H2O in the melt, experiments were performed for a nominally\u0000dry melt (0.18 ± 0.03 wt % H2O) and for a hydrous melt\u0000containing 3.36 ± 0.28 wt % H2O. Diffusion experiments were run\u0000for 40 to 120 min and terminated by rapid quench. CO2 concentration\u0000profiles were subsequently measured via attenuated total reflection\u0000Fourier transform infrared spectroscopy (ATR-FTIR) and fitted with error\u0000functions to obtain individual diffusion coefficients. For the anhydrous and hydrous sample series, seven diffusion coefficients\u0000were determined each. Diffusivity was found to increase exponentially with\u0000temperature for both melts following an Arrhenius behaviour. The Arrhenius\u0000equation for the nominally dry leucititic melt is described by log⁡DCO2=-1.44(±0.24)⋅10000T-1.95(±1.59), where DCO2 is the diffusion coefficient in m2 s−1 and T is the\u0000temperature in K. In the experimental temperature range, H2O has an\u0000accelerating effect on CO2 diffusion. At 1200 ∘C,\u0000diffusivity increases from 1.94 × 10−12 m2 s−1 in\u0000the dry melt to 1.54 × 10−11 m2 s−1 in the hydrous\u0000melt. The Arrhenius equation for the leucititic melt containing 3.36±0.28 wt % H2O is given by log⁡DCO2=-1.09(±0.30)⋅10000T-3.41(±1.99). The activation energies for CO2 were determined to be 275 ± 47 kJ mol−1 for the anhydrous melt and 209 ± 58 kJ mol−1 for the\u0000hydrous melt. The high CO2 activation energy in the leucititic melt indicates that\u0000the diffusion might be partly attributed to the carbonate species. At high\u0000magmatic temperatures above 1200 ∘C, CO2 diffusivity in the\u0000leucititic melt is only slightly lower than CO2 diffusion in rhyolitic\u0000and basaltic melts, suggesting that CO2 diffusion in natural melts is\u0000relatively independent from the bulk melt composition at such temperatures.\u0000CO2 diffuses slower than other volatile components such as halogens and\u0000H2O in depolymerized silicate melts. Thus, a fractionation of volatiles\u0000can occur during magma ascent and degassing. The experimental data on\u0000CO2 diffusion can be used for modelling the degassing mechanisms of\u0000ultrapotassic mafic melts.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45155594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Fe–Fe interactions and X-site vacancy ordering on the OH-stretching spectrum of foitite Fe-Fe相互作用和x位空位排序对铁长石oh -拉伸谱的影响
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-02-16 DOI: 10.5194/ejm-35-105-2023
E. Balan, G. Radtke, C. Fourdrin, L. Paulatto, H. A. Horn, Y. Fuchs
Abstract. The OH-stretching infrared absorption spectrum of a tourmaline sample closeto the foitite end-member is interpreted in the light of the densityfunctional theory (DFT) modeling of iron-bearing Y3Z6 clusters intourmaline. The iron-bearing clusters reflect the Al-rich and Na-deficientcharacter of foitite and contain either two Fe2+ and one Al3+ orone Fe2+ and two Al3+ ions at the Y sites. The clusters areembedded in a tourmaline host structure with dravite composition. For theiron dimer models, the structural and vibrational properties correspondingto the ferromagnetic (FM) or anti-ferromagnetic (AFM) arrangement of theiron spins and the effect of vacancy ordering along the [001] axis areconsidered. A significant difference in the relaxed structure of the FM andAFM clusters is observed, stemming from the electron delocalization andFe–Fe bonding interactions in the FM cluster. These bonding interactions arenot allowed in the AFM cluster. In this case, the valence electrons withopposite spins remain separately localized on the two Fe atoms. The AFMconfiguration is more stable than the FM one in the theoretical models,provided that the description of the on-site Coulomb repulsion in Fe(3d)orbitals is improved within the DFT + U framework. Based on the theoreticalresults, the two bands at 3630 and 3644 cm−1 in the vibrational spectraof iron-rich and Na-deficient tourmalines are assigned to WOH groupsassociated with YFe22+YAl3+ environments with anAFM coupling of Fe ions and surrounded by one and two vacant X sites,respectively. The two major VOH bands of the experimental spectrum areinterpreted on the same basis, and these interpretations are extrapolated toMn-bearing tourmalines.
摘要根据含铁Y3Z6团簇在电气石中的密度泛函理论(DFT)模型,解释了电气石样品的OH拉伸红外吸收光谱。含铁团簇反映了铁铁矿的富铝和缺钠特征,在Y位含有两个Fe2+和一个Al3+或两个Al3+离子。这些团簇嵌入电气石主体结构中,具有dravite成分。对于它们的on-二聚体模型,考虑了与它们的on自旋的铁磁(FM)或反铁磁(AFM)排列相对应的结构和振动特性,以及沿[001]轴的空位有序效应。观察到FM和AFM团簇的弛豫结构存在显著差异,这源于FM团簇中的电子离域和Fe–Fe键合相互作用。这些键合相互作用在AFM簇中是不允许的。在这种情况下,具有相反自旋的价电子保持分别位于两个Fe原子上。在理论模型中,如果在DFT中改进了对Fe(3d)轨道中现场库仑排斥的描述,则AFM组态比FM组态更稳定 + U框架。根据理论结果,3630和3644两个波段 在富铁电气石和缺钠电气石的振动光谱中,cm−1被归属于WOH基团,该基团与具有Fe离子的AFM耦合的YFe22+YAl3+环境有关,并且分别被一个和两个空位X包围。实验光谱的两个主要VOH带是在相同的基础上解释的,这些解释被外推到含锰电气石。
{"title":"Effect of Fe–Fe interactions and X-site vacancy ordering on the OH-stretching spectrum of foitite","authors":"E. Balan, G. Radtke, C. Fourdrin, L. Paulatto, H. A. Horn, Y. Fuchs","doi":"10.5194/ejm-35-105-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-105-2023","url":null,"abstract":"Abstract. The OH-stretching infrared absorption spectrum of a tourmaline sample close\u0000to the foitite end-member is interpreted in the light of the density\u0000functional theory (DFT) modeling of iron-bearing Y3Z6 clusters in\u0000tourmaline. The iron-bearing clusters reflect the Al-rich and Na-deficient\u0000character of foitite and contain either two Fe2+ and one Al3+ or\u0000one Fe2+ and two Al3+ ions at the Y sites. The clusters are\u0000embedded in a tourmaline host structure with dravite composition. For the\u0000iron dimer models, the structural and vibrational properties corresponding\u0000to the ferromagnetic (FM) or anti-ferromagnetic (AFM) arrangement of the\u0000iron spins and the effect of vacancy ordering along the [001] axis are\u0000considered. A significant difference in the relaxed structure of the FM and\u0000AFM clusters is observed, stemming from the electron delocalization and\u0000Fe–Fe bonding interactions in the FM cluster. These bonding interactions are\u0000not allowed in the AFM cluster. In this case, the valence electrons with\u0000opposite spins remain separately localized on the two Fe atoms. The AFM\u0000configuration is more stable than the FM one in the theoretical models,\u0000provided that the description of the on-site Coulomb repulsion in Fe(3d)\u0000orbitals is improved within the DFT + U framework. Based on the theoretical\u0000results, the two bands at 3630 and 3644 cm−1 in the vibrational spectra\u0000of iron-rich and Na-deficient tourmalines are assigned to WOH groups\u0000associated with YFe22+YAl3+ environments with an\u0000AFM coupling of Fe ions and surrounded by one and two vacant X sites,\u0000respectively. The two major VOH bands of the experimental spectrum are\u0000interpreted on the same basis, and these interpretations are extrapolated to\u0000Mn-bearing tourmalines.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49237599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Whiteite-(CaMnFe), a new jahnsite-group mineral from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria Whiteite-(CaMnFe),来自巴伐利亚州奥伯普法尔茨Hagendorf-Süd伟晶岩的一种新的jahnsite族矿物
IF 2.1 3区 地球科学 Q2 MINERALOGY Pub Date : 2023-02-14 DOI: 10.5194/ejm-35-95-2023
R. Hochleitner, Christian Rewitzer, I. Grey, W. G. Mumme, C. MacRae, A. R. Kampf, E. Keck, R. Gable, A. Glenn
Abstract. Whiteite-(CaMnFe),CaMn2+Fe22+Al2(PO4)4(OH)2 ⋅ 8H2O, is a new whiteite-subgroup member of the jahnsite group from theHagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany. It was found invugs in an altered feldspar area of a specimen composed predominantly ofrockbridgeite, with hureaulite and relic triphylite. Other associatedminerals in small vugs in the specimen were strengite and laueite.Whiteite-(CaMnFe) occurs as sprays and clusters of colourless to paleyellow, rod-like crystals, with diameters of typically 10 to 50 µmand lengths up to ∼ 500 µm. The crystals are flattenedon {001} and elongated along [010]. The measureddensity is 2.80(2) g cm−3. Optically, whiteite-(CaMnFe)crystals are biaxial (+), with α=1.608(3), β=1.612(3), γ=1.624(3) and 2V(meas.) = 59(1)∘. Theempirical formula from electron microprobe analyses and structure refinementis(Ca0.70Mn0.30)Mn(Fe1.232+Mn0.49Mg0.29Zn0.06)(Al1.88Fe0.123+)(PO4)3.96(OH)2(H2O)8.Whiteite-(CaMnFe) is monoclinic, P2 /a, a=14.925(5), b=7.0100(14), c=10.053(2) Å, β=111.31(2)∘, V=979.9(4) Å3 and Z=2. The crystal structure was refined usingsingle-crystal data to wRobs=0.052 for 1613 reflections with I>3σ(I). Site occupancy refinements confirm the orderingof dominant Ca, Mn and Fe2+ in the X, M1 and M2 sites, respectively, ofthe general jahnsite-group formulaXM1M22M32(H2O)8(OH)2(PO4)4.
摘要白云石-(CaMnFe),CaMn2+Fe22+Al2(PO4)4(OH)2 ⋅ 8H2O,是德国巴伐利亚州奥伯普法尔茨Hagendorf-Süd伟晶岩中的一个新的白云岩亚群成员。它是在一个主要由岩桥镁石、绿柱石和遗迹三叶石组成的标本的蚀变长石区中发现的。试样中小洞穴中的其他伴生矿物为强铝石和劳埃特。Whiteite-(CaMnFe)以无色至浅黄色棒状晶体的喷雾和簇状出现,直径通常为10至50 µ需求长度可达~ 500 µm。晶体在{001}上变平并沿[010]伸长。测量的密度为2.80(2) g cm−3。在光学上,白云岩-(CaMnFe)晶体是双轴(+)晶体,α=1.608(3),β=1.612(3 = 59(1)∘。电子探针分析和结构细化的经验公式为(Ca0.70Mn0.30)Mn(Fe1.232+Mn0.49Mg0.29Zn0.06)(Al1.88Fe0.123+)(PO4)3.96(OH)2(H2O)8 /a、 a=14.925(5),b=7.0100(14),c=10.053(2) Å,β=111.31(2)∘,V=979.9(4) Å3和Z=2。使用单晶数据对晶体结构进行了细化,对于I>3σ(I)的1613次反射,wRobs=0.052。位点占据细化证实了一般的氮杂石群formulaXM1M22M32(H2O)8(OH)2(PO4)4的X、M1和M2位点中占主导地位的Ca、Mn和Fe2+的顺序。
{"title":"Whiteite-(CaMnFe), a new jahnsite-group mineral from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria","authors":"R. Hochleitner, Christian Rewitzer, I. Grey, W. G. Mumme, C. MacRae, A. R. Kampf, E. Keck, R. Gable, A. Glenn","doi":"10.5194/ejm-35-95-2023","DOIUrl":"https://doi.org/10.5194/ejm-35-95-2023","url":null,"abstract":"Abstract. Whiteite-(CaMnFe),\u0000CaMn2+Fe22+Al2(PO4)4(OH)2 ⋅ 8H2O, is a new whiteite-subgroup member of the jahnsite group from the\u0000Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany. It was found in\u0000vugs in an altered feldspar area of a specimen composed predominantly of\u0000rockbridgeite, with hureaulite and relic triphylite. Other associated\u0000minerals in small vugs in the specimen were strengite and laueite.\u0000Whiteite-(CaMnFe) occurs as sprays and clusters of colourless to pale\u0000yellow, rod-like crystals, with diameters of typically 10 to 50 µm\u0000and lengths up to ∼ 500 µm. The crystals are flattened\u0000on {001} and elongated along [010]. The measured\u0000density is 2.80(2) g cm−3. Optically, whiteite-(CaMnFe)\u0000crystals are biaxial (+), with α=1.608(3), β=1.612(3), γ=1.624(3) and 2V(meas.) = 59(1)∘. The\u0000empirical formula from electron microprobe analyses and structure refinement\u0000is\u0000(Ca0.70Mn0.30)Mn(Fe1.232+Mn0.49Mg0.29Zn0.06)(Al1.88Fe0.123+)(PO4)3.96(OH)2(H2O)8.\u0000Whiteite-(CaMnFe) is monoclinic, P2 /a, a=14.925(5), b=7.0100(14), c=10.053(2) Å, β=111.31(2)∘, V=979.9(4) Å3 and Z=2. The crystal structure was refined using\u0000single-crystal data to wRobs=0.052 for 1613 reflections with I>3σ(I). Site occupancy refinements confirm the ordering\u0000of dominant Ca, Mn and Fe2+ in the X, M1 and M2 sites, respectively, of\u0000the general jahnsite-group formula\u0000XM1M22M32(H2O)8(OH)2(PO4)4.\u0000","PeriodicalId":11971,"journal":{"name":"European Journal of Mineralogy","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49035447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Mineralogy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1