Macrophages remove apoptotic cells via phagocytosis, also known as efferocytosis, during inflammation to maintain tissue homeostasis. This process is accompanied by various metabolic changes in macrophages including the production of lipid metabolites by fatty acid oxygenases. Among these, highly reactive metabolites, called lipid-derived electrophiles (LDEs), modify cysteines and other nucleophilic amino acids in intracellular proteins. However, the landscape and functions of the modifications by these electrophilic metabolites have been poorly characterized. In this study, we used activity-based protein profiling to quantitatively profile the cysteine reactivity landscape and identify the potential targets of endogenous LDE modification during efferocytosis in mouse peritoneal macrophages. Using this methodology, we identified multiple cysteine sites that are highly likely to be modified by LDEs generated by 12/15-lipoxygenase (12/15-LOX), an efferocytosis-related fatty acid oxygenase that is highly expressed in peritoneal macrophages. Among these, actin-depolymerizing protein Cofilin-1 was found to be a target of 12/15-LOX-derived LDEs. In vitro Cofilin-1 activity was attenuated by 12/15-LOX-derived LDEs, and intracellular actin stabilization and efferocytosis were substantially enhanced by the LDE treatment of mouse peritoneal macrophages. These results highlighted the role of intracellular LDE modification during efferocytosis in macrophages.
{"title":"12/15-Lipoxygenase-Derived Electrophilic Lipid Modifications in Phagocytic Macrophages.","authors":"Kaiyuan Deng, Yosuke Isobe, Kazuya Tsumagari, Taiga Kato, Hiroyuki Arai, Koshi Imami, Makoto Arita","doi":"10.1021/acschembio.4c00624","DOIUrl":"10.1021/acschembio.4c00624","url":null,"abstract":"<p><p>Macrophages remove apoptotic cells via phagocytosis, also known as efferocytosis, during inflammation to maintain tissue homeostasis. This process is accompanied by various metabolic changes in macrophages including the production of lipid metabolites by fatty acid oxygenases. Among these, highly reactive metabolites, called lipid-derived electrophiles (LDEs), modify cysteines and other nucleophilic amino acids in intracellular proteins. However, the landscape and functions of the modifications by these electrophilic metabolites have been poorly characterized. In this study, we used activity-based protein profiling to quantitatively profile the cysteine reactivity landscape and identify the potential targets of endogenous LDE modification during efferocytosis in mouse peritoneal macrophages. Using this methodology, we identified multiple cysteine sites that are highly likely to be modified by LDEs generated by 12/15-lipoxygenase (12/15-LOX), an efferocytosis-related fatty acid oxygenase that is highly expressed in peritoneal macrophages. Among these, actin-depolymerizing protein Cofilin-1 was found to be a target of 12/15-LOX-derived LDEs. In vitro Cofilin-1 activity was attenuated by 12/15-LOX-derived LDEs, and intracellular actin stabilization and efferocytosis were substantially enhanced by the LDE treatment of mouse peritoneal macrophages. These results highlighted the role of intracellular LDE modification during efferocytosis in macrophages.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"357-368"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21Epub Date: 2025-01-21DOI: 10.1021/acschembio.4c00686
Enzo Petracco, Guillaume Ferré, Ivo Kabelka, Flavio Ballante, Jens Carlsson, Emma Mulry, Arka P Ray, James Collins, Florent Allais, Matthew T Eddy
Small molecules are essential for investigating the pharmacology of membrane proteins and remain the most common approach for therapeutically targeting them. However, most experimental small molecule screening methods require ligands containing radiolabels or fluorescent labels and often involve isolating proteins from their cellular environment. Additionally, most conventional screening methods are suited for identifying compounds with moderate to higher affinities (KD < 1 μM) and are less effective at detecting lower affinity compounds, such as weakly binding molecular fragments. To address these limitations, we demonstrated a proof-of-concept application of high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy with small molecules that bind the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor. Our approach leverages a streamlined workflow to prepare NMR samples with only milligrams of unpurified cell membranes containing ∼1 μM of A2AAR. Utilizing saturation transfer difference NMR, we identified bound small molecules from spectra recorded within minutes and further derived information on ligand binding poses without the need for detailed structure determination. After establishing optimal criteria for which the HRMAS approach is most sensitive, we leveraged our HRMAS approach to identify and characterize molecular fragments not previously known to be ligands of A2AAR. In molecular docking and simulations, we observed novel binding poses for these fragments, which revealed the potential to grow them into more complex ligands and confirmed HRMAS NMR as a valuable tool for lead compound identification in the context of fragment-based drug discovery.
{"title":"Development of an <i>In Situ</i> G Protein-Coupled Receptor Fragment Molecule Screening Approach with High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance.","authors":"Enzo Petracco, Guillaume Ferré, Ivo Kabelka, Flavio Ballante, Jens Carlsson, Emma Mulry, Arka P Ray, James Collins, Florent Allais, Matthew T Eddy","doi":"10.1021/acschembio.4c00686","DOIUrl":"10.1021/acschembio.4c00686","url":null,"abstract":"<p><p>Small molecules are essential for investigating the pharmacology of membrane proteins and remain the most common approach for therapeutically targeting them. However, most experimental small molecule screening methods require ligands containing radiolabels or fluorescent labels and often involve isolating proteins from their cellular environment. Additionally, most conventional screening methods are suited for identifying compounds with moderate to higher affinities (<i>K</i><sub>D</sub> < 1 μM) and are less effective at detecting lower affinity compounds, such as weakly binding molecular fragments. To address these limitations, we demonstrated a proof-of-concept application of high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) spectroscopy with small molecules that bind the human A<sub>2A</sub> adenosine receptor (A<sub>2A</sub>AR), a class A G protein-coupled receptor. Our approach leverages a streamlined workflow to prepare NMR samples with only milligrams of unpurified cell membranes containing ∼1 μM of A<sub>2A</sub>AR. Utilizing saturation transfer difference NMR, we identified bound small molecules from spectra recorded within minutes and further derived information on ligand binding poses without the need for detailed structure determination. After establishing optimal criteria for which the HRMAS approach is most sensitive, we leveraged our HRMAS approach to identify and characterize molecular fragments not previously known to be ligands of A<sub>2A</sub>AR. In molecular docking and simulations, we observed novel binding poses for these fragments, which revealed the potential to grow them into more complex ligands and confirmed HRMAS NMR as a valuable tool for lead compound identification in the context of fragment-based drug discovery.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"401-411"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21Epub Date: 2025-01-14DOI: 10.1021/acschembio.4c00813
Bei Liu
Small nucleolar RNAs (snoRNAs) are noncoding RNAs primarily known for guiding chemical modifications of RNA, but their broader cellular roles and contributions to human diseases remain elusive. This In Focus article introduces the development of snoRNA-enriched kethoxal-assisted RNA-RNA sequencing (snoKARR-seq), a transcriptome-wide approach to uncover snoRNA targets with enhanced sensitivity and specificity. This method revealed an unexpected role for snoRNAs in protein translocation and secretion, expanding our understanding of their noncanonical functions.
{"title":"Mapping snoRNA Targets Transcriptome-Wide with snoKARR-seq.","authors":"Bei Liu","doi":"10.1021/acschembio.4c00813","DOIUrl":"10.1021/acschembio.4c00813","url":null,"abstract":"<p><p>Small nucleolar RNAs (snoRNAs) are noncoding RNAs primarily known for guiding chemical modifications of RNA, but their broader cellular roles and contributions to human diseases remain elusive. This In Focus article introduces the development of snoRNA-enriched kethoxal-assisted RNA-RNA sequencing (snoKARR-seq), a transcriptome-wide approach to uncover snoRNA targets with enhanced sensitivity and specificity. This method revealed an unexpected role for snoRNAs in protein translocation and secretion, expanding our understanding of their noncanonical functions.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"242-244"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21Epub Date: 2025-02-02DOI: 10.1021/acschembio.4c00693
Abujunaid Habib Khan, Jabal Rahmat Haedar, Vic Kiselov, Viktors Romanuks, Gints Smits, Stefano Donadio, Chin-Soon Phan
Cross-link containing products from ribosomally synthesized and post-translationally modified peptides (RiPPs) are generated by radical SAM enzymes (rSAM). Here, we bioinformatically expanded rSAM enzymes based on the known families StrB, NxxcB, WgkB, RrrB, TqqB and GggB. Through in vivo functional studies in E. coli, the newly identified enzyme WprB from Xenorhabdus sp. psl was found to catalyze formation of a cross-link between Trp-C5 and Arg-Cγ at three WPR motifs on the precursor peptide WprA. This represents the first report of this type of cross-link by rSAM enzymes.
{"title":"Radical SAM Enzyme WprB Catalyzes Uniform Cross-Link Topology between Trp-C5 and Arg-Cγ on the Precursor Peptide.","authors":"Abujunaid Habib Khan, Jabal Rahmat Haedar, Vic Kiselov, Viktors Romanuks, Gints Smits, Stefano Donadio, Chin-Soon Phan","doi":"10.1021/acschembio.4c00693","DOIUrl":"10.1021/acschembio.4c00693","url":null,"abstract":"<p><p>Cross-link containing products from ribosomally synthesized and post-translationally modified peptides (RiPPs) are generated by radical SAM enzymes (rSAM). Here, we bioinformatically expanded rSAM enzymes based on the known families StrB, NxxcB, WgkB, RrrB, TqqB and GggB. Through <i>in vivo</i> functional studies in <i>E. coli</i>, the newly identified enzyme WprB from <i>Xenorhabdus</i> sp. psl was found to catalyze formation of a cross-link between Trp-C5 and Arg-Cγ at three WPR motifs on the precursor peptide WprA. This represents the first report of this type of cross-link by rSAM enzymes.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"259-265"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21Epub Date: 2025-02-05DOI: 10.1021/acschembio.4c00341
Julia Witkowska, Małgorzata Giżyńska, Przemysław Karpowicz, Daria Sowik, Karolina Trepczyk, Fabian Hennenberg, Ashwin Chari, Artur Giełdoń, Karolina Pierzynowska, Lidia Gaffke, Grzegorz Węgrzyn, Elżbieta Jankowska
Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the C-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.
{"title":"Blm10-Based Compounds Add to the Knowledge of How Allosteric Modulators Influence Human 20S Proteasome.","authors":"Julia Witkowska, Małgorzata Giżyńska, Przemysław Karpowicz, Daria Sowik, Karolina Trepczyk, Fabian Hennenberg, Ashwin Chari, Artur Giełdoń, Karolina Pierzynowska, Lidia Gaffke, Grzegorz Węgrzyn, Elżbieta Jankowska","doi":"10.1021/acschembio.4c00341","DOIUrl":"10.1021/acschembio.4c00341","url":null,"abstract":"<p><p>Proteasomes catalyze protein degradation in cells and play an integral role in cellular homeostasis. Its activity decreases with age alongside the load of defective proteins, resulting from mutations or oxidative stress-induced damage. Such proteins are prone to aggregation and, if not efficiently degraded, can form toxic oligomers and amyloid plaques. Developing an effective way to activate the proteasome could prevent such pathologies. Designing activators is not easy because they do not bind in the active site, which is well-defined and highly conserved, but away from it. The structures of proteasome complexes with natural activators can help here, but these are large proteins, some even multimeric, whose activity is difficult to replace with a small-molecule compound. Nevertheless, the use of fragments of such proteins makes it possible to accumulate knowledge about the relevance of various structural elements for efficient and selective activation. Here, we presented peptidic activators of the 20S proteasome, which were designed based on both the <i>C</i>-terminal sequence of the yeast proteasome activator, Blm10 protein, and the interactions predicted by molecular modeling. These Blm analogs were able to stimulate human 20S proteasome to more efficiently degrade both small fluorogenic substrates and proteins. The best activators also demonstrated their efficacy in cell lysates. X-ray crystallography indicated that an effective modulator can bind to several sites on the surface of the proteasome without causing permanent structural changes in its immediate vicinity but affecting the active sites.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"266-280"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21DOI: 10.1021/acschembio.4c00777
Sayan Chatterjee, Arvind Verma, Harsh Thakkar, Ravi P Shah, Amit Khairnar
Accumulation of misfolded α-synuclein (α-Syn) leads to the formation of Lewy bodies and is a major hallmark of Parkinson's disease (PD). The accumulation of α-Syn involves several post-translational modifications. Recently, though, glycation of α-Syn (advanced glycation end products) and activation of the receptor for advanced glycation end products (RAGE) have been linked to neuroinflammation, which leads to oxidative stress and accumulation of α-Syn. The present study aims to detect the effect of glycated α-Syn (gly-α-Syn)-induced synucleinopathy and loss of dopaminergic (DAergic) neurons in the development of PD. We isolated, purified, and prepared glycated recombinant human α-Syn using d-ribose. Gly-α-Syn was characterized by SDS-PAGE, intact mass analysis, and bottom-up peptide sequence through LC-HRMS/MS. The aggregation propensity of gly-α-Syn has been verified by morphological and shape analysis through Bio-AFM. The gly-α-Syn (2 μg/μL) was injected stereotaxically in the substantia nigra (SN) of ICR mice (3-4 months) and compared with the normal α-Syn, d ribose, and Tris-HCl/artificial CSF groups. 56 days postsurgery (DPS), an immunohistochemical examination was conducted to investigate gly-α-Syn-induced α-Syn accumulation, neuroinflammation, and neurodegeneration. The glycation of α-Syn led to the expression of transglutaminase 2 (TGM2), an enzyme that cross-linked with AGEs and may have caused the accumulation of α-Syn. Significant RAGE activation was also observed in gly-α-Syn, which might have induced glial cell activation, resulting in oxidative stress and, ultimately, apoptosis of dopaminergic neurons. It is important to note that TGM2, phosphorylated α-Syn, RAGE expression, and glial cell activation were only found in the gly-α-Syn group and not in the other groups. This suggests that gly-α-Syn plays a major role in synucleinopathy, neuroinflammation, and neurodegeneration. Overall, the present study demonstrated glycation of α-Syn as one of the important age-associated post-translational modifications that are involved in the degeneration of dopaminergic neurons, at least in a subset of the diabetic patients susceptible to developing PD.
{"title":"Glycated α-Synuclein Renders Glial Cell Activation and Induces Degeneration of Dopaminergic Neurons: A Potential Implication for the Development of Parkinson's Disease.","authors":"Sayan Chatterjee, Arvind Verma, Harsh Thakkar, Ravi P Shah, Amit Khairnar","doi":"10.1021/acschembio.4c00777","DOIUrl":"https://doi.org/10.1021/acschembio.4c00777","url":null,"abstract":"<p><p>Accumulation of misfolded α-synuclein (α-Syn) leads to the formation of Lewy bodies and is a major hallmark of Parkinson's disease (PD). The accumulation of α-Syn involves several post-translational modifications. Recently, though, glycation of α-Syn (advanced glycation end products) and activation of the receptor for advanced glycation end products (RAGE) have been linked to neuroinflammation, which leads to oxidative stress and accumulation of α-Syn. The present study aims to detect the effect of glycated α-Syn (gly-α-Syn)-induced synucleinopathy and loss of dopaminergic (DAergic) neurons in the development of PD. We isolated, purified, and prepared glycated recombinant human α-Syn using d-ribose. Gly-α-Syn was characterized by SDS-PAGE, intact mass analysis, and bottom-up peptide sequence through LC-HRMS/MS. The aggregation propensity of gly-α-Syn has been verified by morphological and shape analysis through Bio-AFM. The gly-α-Syn (2 μg/μL) was injected stereotaxically in the substantia nigra (SN) of ICR mice (3-4 months) and compared with the normal α-Syn, d ribose, and Tris-HCl/artificial CSF groups. 56 days postsurgery (DPS), an immunohistochemical examination was conducted to investigate gly-α-Syn-induced α-Syn accumulation, neuroinflammation, and neurodegeneration. The glycation of α-Syn led to the expression of transglutaminase 2 (TGM2), an enzyme that cross-linked with AGEs and may have caused the accumulation of α-Syn. Significant RAGE activation was also observed in gly-α-Syn, which might have induced glial cell activation, resulting in oxidative stress and, ultimately, apoptosis of dopaminergic neurons. It is important to note that TGM2, phosphorylated α-Syn, RAGE expression, and glial cell activation were only found in the gly-α-Syn group and not in the other groups. This suggests that gly-α-Syn plays a major role in synucleinopathy, neuroinflammation, and neurodegeneration. Overall, the present study demonstrated glycation of α-Syn as one of the important age-associated post-translational modifications that are involved in the degeneration of dopaminergic neurons, at least in a subset of the diabetic patients susceptible to developing PD.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21Epub Date: 2025-02-13DOI: 10.1021/acschembio.4c00720
Linnea S Dolph, Emma E Santa, Irene M Stoutland, Kelsey M Mesa, Cole C Dickson, Helen E Blackwell, Annaliese K Franz
We report silyl-lipid derivatives of N-acyl l-homoserine lactones (AHLs) that have nanomolar activities in LuxR-type quorum sensing receptors in Gram-negative bacterial pathogens. A collection of silyl-lipid AHLs were designed and synthesized to represent three general structural classes based on native AHL signals and synthetic LuxR-type receptor modulators. The synthetic routes feature straightforward hydrosilylation and aryl silylation reactions to access silyl-lipid groups that are not readily accessible in analogous all-carbon chemistry. Of the 17 compounds evaluated, eight silyl-lipid AHLs were identified with either nanomolar agonistic or submicromolar antagonistic activities in the LasR receptor from the common pathogen Pseudomonas aeruginosa using E. coli reporter gene assays. Several silyl-lipid AHL agonists retained high activities in LasR in a native P. aeruginosa reporter system and also were active in another related LuxR-type receptor, EsaR from Pantoea stewartii. Light scattering and computational experiments indicate that the silyl-lipid group can alter the aggregation capabilities and lipophilicities of AHLs relative to native all-carbon tails, engendering larger aggregate formation in water and higher lipophilicities on average. These properties, along with their strong activity profiles in LuxR-type receptors, suggest silyl-lipid AHLs could provide value as chemical probes to study the mechanisms of quorum sensing in Gram-negative bacteria and the roles of signal lipophilicity in this chemical communication process.
{"title":"Silyl-Lipid Functionalized <i>N</i>-Acyl Homoserine Lactones as Modulators of Bacterial Cell-Cell Communication.","authors":"Linnea S Dolph, Emma E Santa, Irene M Stoutland, Kelsey M Mesa, Cole C Dickson, Helen E Blackwell, Annaliese K Franz","doi":"10.1021/acschembio.4c00720","DOIUrl":"10.1021/acschembio.4c00720","url":null,"abstract":"<p><p>We report silyl-lipid derivatives of <i>N</i>-acyl l-homoserine lactones (AHLs) that have nanomolar activities in LuxR-type quorum sensing receptors in Gram-negative bacterial pathogens. A collection of silyl-lipid AHLs were designed and synthesized to represent three general structural classes based on native AHL signals and synthetic LuxR-type receptor modulators. The synthetic routes feature straightforward hydrosilylation and aryl silylation reactions to access silyl-lipid groups that are not readily accessible in analogous all-carbon chemistry. Of the 17 compounds evaluated, eight silyl-lipid AHLs were identified with either nanomolar agonistic or submicromolar antagonistic activities in the LasR receptor from the common pathogen <i>Pseudomonas aeruginosa</i> using <i>E. coli</i> reporter gene assays. Several silyl-lipid AHL agonists retained high activities in LasR in a native <i>P. aeruginosa</i> reporter system and also were active in another related LuxR-type receptor, EsaR from <i>Pantoea stewartii</i>. Light scattering and computational experiments indicate that the silyl-lipid group can alter the aggregation capabilities and lipophilicities of AHLs relative to native all-carbon tails, engendering larger aggregate formation in water and higher lipophilicities on average. These properties, along with their strong activity profiles in LuxR-type receptors, suggest silyl-lipid AHLs could provide value as chemical probes to study the mechanisms of quorum sensing in Gram-negative bacteria and the roles of signal lipophilicity in this chemical communication process.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"412-420"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ligand-conjugated small interfering RNAs (siRNAs) have emerged as a powerful approach to developing nucleic acid-based medicines. To achieve efficient mRNA knockdown, it is important to select targeting receptors with high expression and ligands that exhibit rapid internalization. However, the key characteristics of ligand-receptor sets involved in the postinternalization process remain largely unclear. In this study, we investigated the effect of ligand-receptor binding dissociation under low pH conditions, known as a postendocytic environment. Specifically, we chemically synthesized several modified epidermal growth factor (EGF) ligands that showed a variety of binding activities to the EGF receptor (EGFR) at low pH. Among these modified ligands, the siRNA conjugate with chemically synthesized EGF H10Y/H16Y, which is a less pH-responsive variant, exhibited reduced internalization and mRNA knockdown activity at high concentrations in EGFR-expressing cells. Additionally, we explored the use of antibody-related molecules (anti-EGFR IgG and Fab) as targeting moieties for siRNA conjugates. The anti-EGFR Fab-siRNA, which showed dissociation of EGF under low pH conditions, demonstrated stronger internalization and mRNA knockdown activity compared to the anti-EGFR IgG-siRNA, which strongly binds EGF at low pH. These data emphasize the importance of intracellular ligand-receptor dissociation and provide insights for future advancements in the field.
{"title":"Effect of pH-Responsive Ligands on mRNA Knockdown in EGFR-Targeting Ligand-Conjugated siRNAs.","authors":"Toshimasa Harumoto, Ryohei Kawai, Keiichi Motosawa, Junko Iwano, Yasuo Koda, Yuuki Hirata, Keiji Uehara","doi":"10.1021/acschembio.4c00507","DOIUrl":"10.1021/acschembio.4c00507","url":null,"abstract":"<p><p>Ligand-conjugated small interfering RNAs (siRNAs) have emerged as a powerful approach to developing nucleic acid-based medicines. To achieve efficient mRNA knockdown, it is important to select targeting receptors with high expression and ligands that exhibit rapid internalization. However, the key characteristics of ligand-receptor sets involved in the postinternalization process remain largely unclear. In this study, we investigated the effect of ligand-receptor binding dissociation under low pH conditions, known as a postendocytic environment. Specifically, we chemically synthesized several modified epidermal growth factor (EGF) ligands that showed a variety of binding activities to the EGF receptor (EGFR) at low pH. Among these modified ligands, the siRNA conjugate with chemically synthesized EGF H10Y/H16Y, which is a less pH-responsive variant, exhibited reduced internalization and mRNA knockdown activity at high concentrations in EGFR-expressing cells. Additionally, we explored the use of antibody-related molecules (anti-EGFR IgG and Fab) as targeting moieties for siRNA conjugates. The anti-EGFR Fab-siRNA, which showed dissociation of EGF under low pH conditions, demonstrated stronger internalization and mRNA knockdown activity compared to the anti-EGFR IgG-siRNA, which strongly binds EGF at low pH. These data emphasize the importance of intracellular ligand-receptor dissociation and provide insights for future advancements in the field.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"297-308"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143077848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-21Epub Date: 2025-02-09DOI: 10.1021/acschembio.4c00754
Nilanjana Chakraborty, Jelena Momirov, Aleksandar Radakovic, Shreyosree Chatterjee, Aaron M Kirchhoff, Anna-Lena Kolb, Thomas J West, Brittany B Sanchez, Salvador Martinez-Bartolome, Anthony Saviola, Daniel McClatchy, John R Yates, Jason S Chen, Luke L Lairson, Brunie H Felding, Dale L Boger
Acyclic and cyclic N-acyl O-aminophenol prodrugs of duocarmycin analogues were reported as members of a unique class of reductively cleaved prodrugs that map seamlessly onto the duocarmycin family of natural products. Although these prodrugs were explored with the expectations that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles, the remarkable stability of some such prodrugs suggests another mechanism of free drug release is operative. The prototype of such chemically unreactive N-acyl O-aminophenol prodrugs is 1, which proved remarkably efficacious in vivo in vertebrate tumor models; was found to lack the toxicity that is characteristic of traditional chemotherapeutic drugs as well as the free drugs in the class (e.g., myelosuppression); and displayed a preferential site (intracellular), a slow and sustained rate, and a potentially unique mechanism of free drug release. Herein, we detail studies that provide insights into this stereoselective mechanism of free drug release. Combined, the results of the studies are consistent with an exclusive protein-mediated (enantio)selective activation and free drug release from prodrug 1 by N-O bond cleavage preferentially in cancer cell lines versus cultured normal human cell lines effected by a cytosolic cysteine-based enzyme and suggest that the activating protein is one that is selectively expressed, upregulated, or preferentially activated in cancer cell lines, potentially constituting a new oncology targeted precision therapy.
{"title":"Insights into Free Drug Release from Efficacious <i>N</i>-Acyl <i>O</i>-Aminophenol Duocarmycin Prodrugs.","authors":"Nilanjana Chakraborty, Jelena Momirov, Aleksandar Radakovic, Shreyosree Chatterjee, Aaron M Kirchhoff, Anna-Lena Kolb, Thomas J West, Brittany B Sanchez, Salvador Martinez-Bartolome, Anthony Saviola, Daniel McClatchy, John R Yates, Jason S Chen, Luke L Lairson, Brunie H Felding, Dale L Boger","doi":"10.1021/acschembio.4c00754","DOIUrl":"10.1021/acschembio.4c00754","url":null,"abstract":"<p><p>Acyclic and cyclic <i>N</i>-acyl <i>O</i>-aminophenol prodrugs of duocarmycin analogues were reported as members of a unique class of reductively cleaved prodrugs that map seamlessly onto the duocarmycin family of natural products. Although these prodrugs were explored with the expectations that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles, the remarkable stability of some such prodrugs suggests another mechanism of free drug release is operative. The prototype of such chemically unreactive <i>N</i>-acyl <i>O</i>-aminophenol prodrugs is <b>1</b>, which proved remarkably efficacious <i>in vivo</i> in vertebrate tumor models; was found to lack the toxicity that is characteristic of traditional chemotherapeutic drugs as well as the free drugs in the class (e.g., myelosuppression); and displayed a preferential site (intracellular), a slow and sustained rate, and a potentially unique mechanism of free drug release. Herein, we detail studies that provide insights into this stereoselective mechanism of free drug release. Combined, the results of the studies are consistent with an exclusive protein-mediated (enantio)selective activation and free drug release from prodrug <b>1</b> by N-O bond cleavage preferentially in cancer cell lines versus cultured normal human cell lines effected by a cytosolic cysteine-based enzyme and suggest that the activating protein is one that is selectively expressed, upregulated, or preferentially activated in cancer cell lines, potentially constituting a new oncology targeted precision therapy.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"442-454"},"PeriodicalIF":3.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143381163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}