首页 > 最新文献

ACS Chemical Biology最新文献

英文 中文
Discovery of a Compound That Inhibits IRE1α S-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress. 发现一种抑制 IRE1α S-亚硝基化并在亚硝基胁迫下保护内质网应激反应的化合物
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1021/acschembio.4c00403
Haruna Kurogi, Nobumasa Takasugi, Sho Kubota, Ashutosh Kumar, Takehiro Suzuki, Naoshi Dohmae, Daisuke Sawada, Kam Y J Zhang, Takashi Uehara

Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes S-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, S-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the S-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the S-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified S-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.

肌醇需要酶 1α(IRE1α)是内质网(ER)应激的传感器,并驱动ER应激反应途径。活化的 IRE1α 具有 RNase 活性,能裂解编码 X-box 结合蛋白 1 的 mRNA,而 X-box 结合蛋白 1 是一种转录因子,能诱导维持 ER 蛋白稳态以促进细胞存活的基因的表达。此前,我们发现 IRE1α 会发生 S-亚硝基化,这是一氧化氮(NO)诱导的一种翻译后修饰,会导致 RNase 活性降低。因此,IRE1α的S-亚硝基化会损害细胞对ER应激的反应,使细胞变得更加脆弱。我们进行了虚拟筛选和基于细胞的验证实验,通过靶向亚硝基化半胱氨酸残基来鉴定抑制 IRE1α S-亚硝基化的化合物。我们最终确定了一种化合物(1ACTA),它能选择性地抑制 IRE1α 的 S-亚硝基化,并防止 NO 诱导的 RNase 活性降低。此外,1ACTA 还能降低 NO 诱导的细胞死亡率。我们的研究发现 S-亚硝基化是 IRE1α 药物开发的新靶点,并提供了一种合适的筛选策略。
{"title":"Discovery of a Compound That Inhibits IRE1α <i>S</i>-Nitrosylation and Preserves the Endoplasmic Reticulum Stress Response under Nitrosative Stress.","authors":"Haruna Kurogi, Nobumasa Takasugi, Sho Kubota, Ashutosh Kumar, Takehiro Suzuki, Naoshi Dohmae, Daisuke Sawada, Kam Y J Zhang, Takashi Uehara","doi":"10.1021/acschembio.4c00403","DOIUrl":"https://doi.org/10.1021/acschembio.4c00403","url":null,"abstract":"<p><p>Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes <i>S</i>-nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity. Therefore, <i>S</i>-nitrosylation of IRE1α compromises the response to ER stress, making cells more vulnerable. We conducted virtual screening and cell-based validation experiments to identify compounds that inhibit the <i>S</i>-nitrosylation of IRE1α by targeting nitrosylated cysteine residues. We ultimately identified a compound (1ACTA) that selectively inhibits the <i>S</i>-nitrosylation of IRE1α and prevents the NO-induced reduction of RNase activity. Furthermore, 1ACTA reduces the rate of NO-induced cell death. Our research identified <i>S</i>-nitrosylation as a novel target for drug development for IRE1α and provides a suitable screening strategy.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small Molecule Modulator of the mTORC2 Pathway Discovered from a DEL Library Designed to Bind to Pleckstrin Homology Domains. 从设计与 Pleckstrin 同源结构域结合的 DEL 文库中发现 mTORC2 通路的小分子调节剂。
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1021/acschembio.4c00597
Arthur Gonse, Jelena Gajić, Jean-Pierre Daguer, Sofia Barluenga, Robbie Loewith, Nicolas Winssinger

Pleckstrin homology (PH) domains are structural motifs critical for cellular processes, such as signal transduction and cytoskeletal organization. Due to their involvement in various diseases, PH domains are promising therapeutic targets, yet their highly charged and hydrophobic binding sites are not ideal for traditional small drugs. In this study, we designed a DNA-encoded library (DEL) mimicking phospholipids to identify novel modulators targeting PH domains with uncharted chemical properties. Screening against several PH domains led to the discovery of 2DII, a small molecule that selectively binds to mSin1PH. This compound can modulate mTORC2 activity by impairing mTORC2's membrane interactions, resulting in reduced AKT1 phosphorylation. A micromapping via Dexter energy transfer based on 2DII bearing an iridium catalyst (2DII-Ir), along with a biotin-diazirine small molecule was used for target identification by proteomics, which confirmed mSin1 as the primary intracellular target of 2DII, demonstrating its potential for selective mTORC2 pathway modulation. These findings introduce a novel strategy for targeting PH domains and provide a foundation for the development of therapeutic interventions that modulate PH-domain-dependent signaling pathways.

Pleckstrin homology(PH)结构域是对信号转导和细胞骨架组织等细胞过程至关重要的结构基团。由于与多种疾病有关,PH 结构域是很有希望的治疗靶点,然而它们的高电荷和疏水结合位点对于传统的小药物来说并不理想。在这项研究中,我们设计了一个模仿磷脂的 DNA 编码文库 (DEL),以鉴定具有未知化学特性的针对 PH 结构域的新型调节剂。通过对几个 PH 结构域的筛选,我们发现了 2DII,这是一种选择性结合 mSin1PH 的小分子。这种化合物可以通过损害 mTORC2 的膜相互作用来调节 mTORC2 的活性,从而降低 AKT1 的磷酸化。通过蛋白质组学鉴定靶标,证实了 mSin1 是 2DII 的主要细胞内靶标,证明了其选择性调节 mTORC2 通路的潜力。这些发现提出了一种靶向 PH 结构域的新策略,为开发调节 PH 结构域依赖性信号通路的治疗干预措施奠定了基础。
{"title":"Small Molecule Modulator of the mTORC2 Pathway Discovered from a DEL Library Designed to Bind to Pleckstrin Homology Domains.","authors":"Arthur Gonse, Jelena Gajić, Jean-Pierre Daguer, Sofia Barluenga, Robbie Loewith, Nicolas Winssinger","doi":"10.1021/acschembio.4c00597","DOIUrl":"https://doi.org/10.1021/acschembio.4c00597","url":null,"abstract":"<p><p>Pleckstrin homology (PH) domains are structural motifs critical for cellular processes, such as signal transduction and cytoskeletal organization. Due to their involvement in various diseases, PH domains are promising therapeutic targets, yet their highly charged and hydrophobic binding sites are not ideal for traditional small drugs. In this study, we designed a DNA-encoded library (DEL) mimicking phospholipids to identify novel modulators targeting PH domains with uncharted chemical properties. Screening against several PH domains led to the discovery of 2DII, a small molecule that selectively binds to mSin1<sup>PH</sup>. This compound can modulate mTORC2 activity by impairing mTORC2's membrane interactions, resulting in reduced AKT1 phosphorylation. A micromapping via Dexter energy transfer based on 2DII bearing an iridium catalyst (2DII-Ir), along with a biotin-diazirine small molecule was used for target identification by proteomics, which confirmed mSin1 as the primary intracellular target of 2DII, demonstrating its potential for selective mTORC2 pathway modulation. These findings introduce a novel strategy for targeting PH domains and provide a foundation for the development of therapeutic interventions that modulate PH-domain-dependent signaling pathways.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoresponsive Adenosine Derivatives for the Optical Control of Adenosine A2A Receptors in Living Cells. 用于活细胞中腺苷 A2A 受体光学控制的光致腺苷衍生物
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-11 DOI: 10.1021/acschembio.4c00583
Harufumi Suzuki, Tomohiro Doura, Yuya Matsuba, Yuma Matsuoka, Tsuyoshi Araya, Hidetsugu Asada, So Iwata, Shigeki Kiyonaka

The use of photoresponsive ligands to optically control proteins of interest, known as photopharmacology, is a powerful technique for elucidating cellular function in living cells and animals with a high spatiotemporal resolution. The adenosine A2A receptor (A2AR) is a G protein-coupled receptor that is expressed in various tissues; its dysregulation is implicated in severe diseases such as insomnia and Parkinson's disease. A detailed elucidation of the physiological function of A2AR is, therefore, highly desirable. In the present study, we developed two photoswitchable ligands, photoAd(blue) and photoAd(vio), that target A2AR. Using photoAd(vio), we successfully demonstrated the selective activation of A2AR in living cells by violet-light irradiation with high spatiotemporal resolution.

光药理学(photopharmacology)是一种强大的技术,可用于以高时空分辨率阐明活细胞和动物的细胞功能。腺苷 A2A 受体(A2AR)是一种 G 蛋白偶联受体,在多种组织中均有表达;其失调与失眠和帕金森病等严重疾病有关。因此,详细阐明 A2AR 的生理功能是非常必要的。在本研究中,我们开发了两种以 A2AR 为靶点的光开关配体:photoAd(blue) 和 photoAd(vio)。通过使用 photoAd(vio),我们成功地展示了紫光照射在活细胞中对 A2AR 的选择性激活,而且具有很高的时空分辨率。
{"title":"Photoresponsive Adenosine Derivatives for the Optical Control of Adenosine A<sub>2A</sub> Receptors in Living Cells.","authors":"Harufumi Suzuki, Tomohiro Doura, Yuya Matsuba, Yuma Matsuoka, Tsuyoshi Araya, Hidetsugu Asada, So Iwata, Shigeki Kiyonaka","doi":"10.1021/acschembio.4c00583","DOIUrl":"https://doi.org/10.1021/acschembio.4c00583","url":null,"abstract":"<p><p>The use of photoresponsive ligands to optically control proteins of interest, known as photopharmacology, is a powerful technique for elucidating cellular function in living cells and animals with a high spatiotemporal resolution. The adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) is a G protein-coupled receptor that is expressed in various tissues; its dysregulation is implicated in severe diseases such as insomnia and Parkinson's disease. A detailed elucidation of the physiological function of A<sub>2A</sub>R is, therefore, highly desirable. In the present study, we developed two photoswitchable ligands, photoAd(blue) and photoAd(vio), that target A<sub>2A</sub>R. Using photoAd(vio), we successfully demonstrated the selective activation of A<sub>2A</sub>R in living cells by violet-light irradiation with high spatiotemporal resolution.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding the Substrate Selectivity of the Fimsbactin Biosynthetic Adenylation Domain, FbsH. 扩展 Fimsbactin 生物合成腺苷酸化域 FbsH 的底物选择性
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-08 DOI: 10.1021/acschembio.4c00512
Syed Fardin Ahmed, Adam Balutowski, Jinping Yang, Timothy A Wencewicz, Andrew M Gulick

Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria Acinetobacter baumannii produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an in vitro reconstitution analysis to assess the production of analogs of the final product as well as several early stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.

非核糖体肽合成酶(NRPSs)能产生多种天然产物,包括嗜苷酸盐,许多致病细菌产生这种螯合剂是为了在低铁条件下生存。对 NRPSs 进行工程改造,使其产生多种嗜苷酸盐类似物,可以利用细菌这种独特的铁吸收系统,生产出新型抗生素和成像剂。高致病性和抗生素耐药细菌鲍曼不动杆菌(Acinetobacter baumannii)会产生一种不同寻常的支链嗜铁素(fimsbactin),这种嗜铁素具有与丝氨酸或苏氨酸侧链结合的铁结合儿茶酚基团。为了探索组装线酶的底物杂合性,我们报告了对独立芳基腺苷化酶 FbsH 的结构指导研究。我们报告了与其原生底物 2,3-二羟基苯甲酸(DHB)以及模拟腺苷酸中间体的抑制剂结合的结构。我们制备了结合口袋扩大的酶变体,它们对含有 DHB C4 修饰的类似物更有耐受性。野生型和突变型酶随后被用于体外重组分析,以评估最终产物的类似物以及几种早期中间产物的生产情况。该分析表明,一些改变的底物沿着菲姆巴坦装配线向下游结构域发展。然而,来自替代构建模块的类似物的生产水平较低,这表明下游催化结构域存在选择性。这些发现扩大了生产丝氨酸和芳基酸缩合产物的底物范围,并确定了化学酶法生产菲姆巴坦类似物的瓶颈。
{"title":"Expanding the Substrate Selectivity of the Fimsbactin Biosynthetic Adenylation Domain, FbsH.","authors":"Syed Fardin Ahmed, Adam Balutowski, Jinping Yang, Timothy A Wencewicz, Andrew M Gulick","doi":"10.1021/acschembio.4c00512","DOIUrl":"10.1021/acschembio.4c00512","url":null,"abstract":"<p><p>Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria <i>Acinetobacter baumannii</i> produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an in vitro reconstitution analysis to assess the production of analogs of the final product as well as several early stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposing Tolfenamic Acid to Anchor the Uncharacterized Pocket of the PUB Domain for Proteolysis of the Atypical E3 Ligase HOIP. 重新利用鹅膏蕈酸锚定非典型 E3 连接酶 HOIP 的 PUB 结构域未表征口袋的蛋白水解作用。
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-08 DOI: 10.1021/acschembio.4c00541
Fumei Zhong, Yu Zhou, Mingqing Liu, Lei Wang, Fudong Li, Jiahai Zhang, Zhiyong Han, Yunyu Shi, Jia Gao, Ke Ruan

The E3 ligase HOIP is vital for the NF-κB pathway and is implicated in cancer and immunity. However, it remains challenging to achieve high selectivity by directly targeting the conserved catalytic RBR domain of HOIP. Herein, we identified four low-molecular-weight compounds that bind to an uncharacterized pocket of the HOIP PUB domain (HOIPPUB). The complex structure facilitated the discovery of the first single-digit micromolar ligand of HOIPPUB, tolfenamic acid, which exhibited over 30-fold selectivity due to the low sequence identity of the uncharacterized pocket of HOIPPUB. Although tolfenamic acid did not block the substrate recognition and linear ubiquitination activity of HOIP, a ligand of the uncharacterized PUB pocket of HOIP (LUPH), by chemical linking pomalidomide with tolfenamic acid, degraded HOIP, reduced NEMO ubiquitination and p65 phosphorylation, and eventually inhibited NF-κB activation and breast cancer cell proliferation. Our work proposes an alternative strategy to target the nonfunctional pocket of the PUB domain with high sequence diversity to promote HOIP degradation, rather than targeting the conserved RBR domain to block the catalytic function of HOIP.

E3连接酶HOIP对NF-κB通路至关重要,并与癌症和免疫有关。然而,通过直接靶向 HOIP 的保守催化 RBR 结构域来实现高选择性仍然具有挑战性。在此,我们发现了四种低分子量化合物,它们能与 HOIP PUB 结构域(HOIPPUB)的一个未表征口袋结合。由于 HOIPPUB 未表征口袋的序列同一性较低,该化合物表现出超过 30 倍的选择性。虽然托非那米酸没有阻断HOIP的底物识别和线性泛素化活性,但通过泊马度胺与托非那米酸的化学连接,HOIP未表征口袋的配体(LUPH)降解了HOIP,减少了NEMO泛素化和p65磷酸化,并最终抑制了NF-κB的激活和乳腺癌细胞的增殖。我们的研究提出了另一种策略,即靶向序列多样性高的 PUB 结构域的非功能口袋促进 HOIP 降解,而不是靶向保守的 RBR 结构域阻断 HOIP 的催化功能。
{"title":"Repurposing Tolfenamic Acid to Anchor the Uncharacterized Pocket of the PUB Domain for Proteolysis of the Atypical E3 Ligase HOIP.","authors":"Fumei Zhong, Yu Zhou, Mingqing Liu, Lei Wang, Fudong Li, Jiahai Zhang, Zhiyong Han, Yunyu Shi, Jia Gao, Ke Ruan","doi":"10.1021/acschembio.4c00541","DOIUrl":"https://doi.org/10.1021/acschembio.4c00541","url":null,"abstract":"<p><p>The E3 ligase HOIP is vital for the NF-κB pathway and is implicated in cancer and immunity. However, it remains challenging to achieve high selectivity by directly targeting the conserved catalytic RBR domain of HOIP. Herein, we identified four low-molecular-weight compounds that bind to an uncharacterized pocket of the HOIP PUB domain (HOIP<sup>PUB</sup>). The complex structure facilitated the discovery of the first single-digit micromolar ligand of HOIP<sup>PUB</sup>, tolfenamic acid, which exhibited over 30-fold selectivity due to the low sequence identity of the uncharacterized pocket of HOIP<sup>PUB</sup>. Although tolfenamic acid did not block the substrate recognition and linear ubiquitination activity of HOIP, a ligand of the uncharacterized PUB pocket of HOIP (LUPH), by chemical linking pomalidomide with tolfenamic acid, degraded HOIP, reduced NEMO ubiquitination and p65 phosphorylation, and eventually inhibited NF-κB activation and breast cancer cell proliferation. Our work proposes an alternative strategy to target the nonfunctional pocket of the PUB domain with high sequence diversity to promote HOIP degradation, rather than targeting the conserved RBR domain to block the catalytic function of HOIP.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailored Bisacylphosphane Oxides for Precise Induction of Oxidative Stress-Mediated Cell Death in Biological Systems. 定制双酰基氧化膦,用于在生物系统中精确诱导氧化应激介导的细胞死亡。
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-05 DOI: 10.1021/acschembio.4c00399
Karim Almahayni, Jana Bachir Salvador, Riccardo Conti, Anna Widera, Malte Spiekermann, Daniel Wehner, Hansjörg Grützmacher, Leonhard Möckl

Precise cell elimination within intricate cellular populations is hampered by issues arising from the multifaceted biological properties of cells and the expansive reactivity of chemical agents. Current chemical platforms are often limited by their complexity, toxicity, and poor physical/chemical properties. Here, we report on the synthesis of a structurally versatile library of chemically tunable bisacylphosphane oxides (BAPOs), which harnesses the spatiotemporal precision of light delivery, thereby establishing a universal strategy for on-demand, precise cellular ablation in vitro and in vivo.

由于细胞具有多方面的生物特性,而化学制剂的反应性又很强,因此在复杂的细胞群中精确地清除细胞受到了阻碍。目前的化学平台往往受限于其复杂性、毒性和较差的物理/化学特性。在这里,我们报告了一个结构多变的化学可调双酰膦氧化物(BAPOs)库的合成过程,它利用了光传递的时空精确性,从而建立了一种在体外和体内按需精确消融细胞的通用策略。
{"title":"Tailored Bisacylphosphane Oxides for Precise Induction of Oxidative Stress-Mediated Cell Death in Biological Systems.","authors":"Karim Almahayni, Jana Bachir Salvador, Riccardo Conti, Anna Widera, Malte Spiekermann, Daniel Wehner, Hansjörg Grützmacher, Leonhard Möckl","doi":"10.1021/acschembio.4c00399","DOIUrl":"https://doi.org/10.1021/acschembio.4c00399","url":null,"abstract":"<p><p>Precise cell elimination within intricate cellular populations is hampered by issues arising from the multifaceted biological properties of cells and the expansive reactivity of chemical agents. Current chemical platforms are often limited by their complexity, toxicity, and poor physical/chemical properties. Here, we report on the synthesis of a structurally versatile library of chemically tunable bisacylphosphane oxides (BAPOs), which harnesses the spatiotemporal precision of light delivery, thereby establishing a universal strategy for on-demand, precise cellular ablation <i>in vitro</i> and <i>in vivo</i>.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Redundancy and Dual Function of a Hypothetical Protein in the Biosynthesis of Eunicellane-Type Diterpenoids 一种假想蛋白在丁香二萜生物合成过程中的功能冗余和双重作用
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1021/acschembio.4c0041310.1021/acschembio.4c00413
Ayesha Ahmed Chaudhri, Yuya Kakumu, Sirinthra Thiengmag, Jack Chun-Ting Liu, Geng-Min Lin, Suhan Durusu, Friederike Biermann, Miriam Boeck, Christopher A. Voigt, Jon Clardy, Reiko Ueoka, Allison S. Walker and Eric J. N. Helfrich*, 

Many complex terpenoids, predominantly isolated from plants and fungi, show drug-like physicochemical properties. Recent advances in genome mining revealed actinobacteria as an almost untouched treasure trove of terpene biosynthetic gene clusters (BGCs). In this study, we characterized a terpene BGC with an unusual architecture. The selected BGC includes, among others, genes encoding a terpene cyclase fused to a truncated reductase domain and a cytochrome P450 monooxygenase (P450) that is split over three gene fragments. Functional characterization of the BGC in a heterologous host led to the identification of several new members of the trans-eunicellane family of diterpenoids, the euthailols, that feature unique oxidation patterns. A combination of bioinformatic analyses, structural modeling studies, and heterologous expression revealed a dual function of the pathway-encoded hypothetical protein that acts as an isomerase and an oxygenase. Moreover, in the absence of other tailoring enzymes, a P450 hydroxylates the eunicellane scaffold at a position that is not modified in other eunicellanes. Surprisingly, both the modifications installed by the hypothetical protein and one of the P450s exhibit partial redundancy. Bioactivity assays revealed that some of the euthailols show growth inhibitory properties against Gram-negative ESKAPE pathogens. The characterization of the euthailol BGC in this study provides unprecedented insights into the partial functional redundancy of tailoring enzymes in complex diterpenoid biosynthesis and highlights hypothetical proteins as an important and largely overlooked family of tailoring enzymes involved in the maturation of complex terpenoids.

许多复杂的萜类化合物主要是从植物和真菌中分离出来的,具有类似药物的理化性质。最近在基因组挖掘方面取得的进展揭示了放线菌是萜烯生物合成基因簇(BGCs)的一个几乎尚未开发的宝库。在本研究中,我们对一个具有不同寻常结构的萜烯生物合成基因组进行了鉴定。被选中的 BGC 包括编码萜环化酶和截短还原酶结构域的基因,以及由三个基因片段组成的细胞色素 P450 单加氧酶(P450)。对异源宿主中的 BGC 进行功能表征后,发现了反式丁环烷二萜家族的几个新成员--桉叶油醇,它们具有独特的氧化模式。生物信息学分析、结构建模研究和异源表达相结合,揭示了该途径编码的假定蛋白具有双重功能,既是异构酶,又是加氧酶。此外,在没有其他修饰酶的情况下,一种 P450 会在一个位置上羟化丁烯烷支架,而其他丁烯烷则不会在这个位置上进行修饰。令人惊讶的是,假定蛋白和一种 P450 所进行的修饰都表现出部分冗余性。生物活性测定显示,一些 euthailols 对革兰氏阴性 ESKAPE 病原体具有生长抑制特性。本研究中对 euthailol BGC 的表征为复杂二萜生物合成过程中剪裁酶的部分功能冗余提供了前所未有的见解,并突出强调了假定蛋白是参与复杂萜类化合物成熟过程的剪裁酶家族中一个重要的、在很大程度上被忽视的家族。
{"title":"Functional Redundancy and Dual Function of a Hypothetical Protein in the Biosynthesis of Eunicellane-Type Diterpenoids","authors":"Ayesha Ahmed Chaudhri,&nbsp;Yuya Kakumu,&nbsp;Sirinthra Thiengmag,&nbsp;Jack Chun-Ting Liu,&nbsp;Geng-Min Lin,&nbsp;Suhan Durusu,&nbsp;Friederike Biermann,&nbsp;Miriam Boeck,&nbsp;Christopher A. Voigt,&nbsp;Jon Clardy,&nbsp;Reiko Ueoka,&nbsp;Allison S. Walker and Eric J. N. Helfrich*,&nbsp;","doi":"10.1021/acschembio.4c0041310.1021/acschembio.4c00413","DOIUrl":"https://doi.org/10.1021/acschembio.4c00413https://doi.org/10.1021/acschembio.4c00413","url":null,"abstract":"<p >Many complex terpenoids, predominantly isolated from plants and fungi, show drug-like physicochemical properties. Recent advances in genome mining revealed actinobacteria as an almost untouched treasure trove of terpene biosynthetic gene clusters (BGCs). In this study, we characterized a terpene BGC with an unusual architecture. The selected BGC includes, among others, genes encoding a terpene cyclase fused to a truncated reductase domain and a cytochrome P450 monooxygenase (P450) that is split over three gene fragments. Functional characterization of the BGC in a heterologous host led to the identification of several new members of the <i>trans</i>-eunicellane family of diterpenoids, the euthailols, that feature unique oxidation patterns. A combination of bioinformatic analyses, structural modeling studies, and heterologous expression revealed a dual function of the pathway-encoded hypothetical protein that acts as an isomerase and an oxygenase. Moreover, in the absence of other tailoring enzymes, a P450 hydroxylates the eunicellane scaffold at a position that is not modified in other eunicellanes. Surprisingly, both the modifications installed by the hypothetical protein and one of the P450s exhibit partial redundancy. Bioactivity assays revealed that some of the euthailols show growth inhibitory properties against Gram-negative ESKAPE pathogens. The characterization of the euthailol BGC in this study provides unprecedented insights into the partial functional redundancy of tailoring enzymes in complex diterpenoid biosynthesis and highlights hypothetical proteins as an important and largely overlooked family of tailoring enzymes involved in the maturation of complex terpenoids.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"19 11","pages":"2314–2322 2314–2322"},"PeriodicalIF":3.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschembio.4c00413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioorthogonal Monomycolate of Trehalose Disclosed the O-Mycoloylation of Mycoloyltransferases and Other Cell Envelope Proteins in C. glutamicum 生物正交单霉素三卤糖揭示了谷氨酸棒状杆菌中霉菌酰转移酶和其他细胞包膜蛋白的 O-霉菌酰化作用
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-31 DOI: 10.1021/acschembio.4c0050210.1021/acschembio.4c00502
Cécile Labarre, Yijie Zhang, Emilie Lesur, Marie Ley, Laila Sago, Christiane Dietrich, Célia de Sousa-d’Auria, Florence Constantinesco-Becker, Aurélie Baron, Gilles Doisneau, Dominique Urban, Guillaume Chevreux, Dominique Guianvarc’h, Yann Bourdreux* and Nicolas Bayan*, 

Protein mycoloylation is a recently identified unusual post-translational modification (PTM) exclusively observed in Mycobacteriales, an order of bacteria that includes several human pathogens. These bacteria possess a distinctive outer membrane, known as the mycomembrane, composed of very long-chain fatty acids called mycolic acids. It has been demonstrated that a few mycomembrane proteins undergo covalent modification with mycolic acids in the model organism Corynebacterium glutamicum through the action of mycoloyltransferase MytC. This PTM represents the first example of protein O-acylation in prokaryotes and also the first example of protein modification by mycolic acid. Many questions about the specificity of protein O-mycoloylation remain crucial for understanding its evolutionary significance in Mycobacteriales and its role in cell physiology. We have developed the first bioorthogonal mycolate donor featuring the natural mycolic acid pattern, enabling direct, unambiguous transfer of the lipid moiety to its acceptors and efficient metabolic labeling and enrichment of MytC protein substrates. Mass spectrometry analysis of the labeled proteins and comparative proteomic analysis of the cell envelope proteome between wild-type and ΔmytC strains identified an unbiased list of 21 proteins likely mycoloylated in the cell. The robustness of our approach is demonstrated by the successful biological validation of mycoloylation in 6 candidate proteins within wild-type cells, revealing the characteristic profile of proteins modified with natural mycolates. These findings provide interesting insights into the significance of this new lipidation pathway and pave the way for understanding their function, especially concerning the mycoloyltransferase family that includes the essential Antigen85 enzymes in Mycobacteria.

蛋白质霉菌酰化是最近发现的一种不寻常的翻译后修饰(PTM),只在分枝杆菌(Mycobacteriales)中观察到。这些细菌有一种独特的外膜,称为霉菌膜,由称为霉酚酸的长链脂肪酸组成。研究表明,在模式生物谷氨酸棒杆菌(Corynebacterium glutamicum)中,一些菌膜蛋白在霉酚酰基转移酶 MytC 的作用下与霉酚酸发生共价修饰。这种 PTM 是原核生物中蛋白质 O-酰化的第一个例子,也是霉菌醇酸修饰蛋白质的第一个例子。关于蛋白质 O-霉菌酰化的特异性的许多问题,对于理解其在分枝杆菌中的进化意义及其在细胞生理中的作用仍然至关重要。我们开发了第一种具有天然霉菌酸模式的生物正交霉菌酸供体,可直接、明确地将脂质分子转移到其受体上,并对 MytC 蛋白底物进行高效的代谢标记和富集。对标记的蛋白质进行质谱分析,并对野生型菌株和ΔmytC 菌株的细胞包膜蛋白质组进行比较蛋白质组分析,确定了一份无偏见的 21 种可能在细胞中被霉菌酰化的蛋白质列表。野生型细胞中 6 个候选蛋白质的霉菌酰化成功地进行了生物学验证,揭示了天然霉菌酸盐修饰蛋白质的特征,从而证明了我们的方法的稳健性。这些发现为了解这一新的脂化途径的意义提供了有趣的见解,并为了解它们的功能铺平了道路,特别是关于霉菌酰基转移酶家族,其中包括分枝杆菌中重要的抗原85酶。
{"title":"Bioorthogonal Monomycolate of Trehalose Disclosed the O-Mycoloylation of Mycoloyltransferases and Other Cell Envelope Proteins in C. glutamicum","authors":"Cécile Labarre,&nbsp;Yijie Zhang,&nbsp;Emilie Lesur,&nbsp;Marie Ley,&nbsp;Laila Sago,&nbsp;Christiane Dietrich,&nbsp;Célia de Sousa-d’Auria,&nbsp;Florence Constantinesco-Becker,&nbsp;Aurélie Baron,&nbsp;Gilles Doisneau,&nbsp;Dominique Urban,&nbsp;Guillaume Chevreux,&nbsp;Dominique Guianvarc’h,&nbsp;Yann Bourdreux* and Nicolas Bayan*,&nbsp;","doi":"10.1021/acschembio.4c0050210.1021/acschembio.4c00502","DOIUrl":"https://doi.org/10.1021/acschembio.4c00502https://doi.org/10.1021/acschembio.4c00502","url":null,"abstract":"<p >Protein mycoloylation is a recently identified unusual post-translational modification (PTM) exclusively observed in Mycobacteriales, an order of bacteria that includes several human pathogens. These bacteria possess a distinctive outer membrane, known as the mycomembrane, composed of very long-chain fatty acids called mycolic acids. It has been demonstrated that a few mycomembrane proteins undergo covalent modification with mycolic acids in the model organism <i>Corynebacterium glutamicum</i> through the action of mycoloyltransferase MytC. This PTM represents the first example of protein <i>O</i>-acylation in prokaryotes and also the first example of protein modification by mycolic acid. Many questions about the specificity of protein <i>O</i>-mycoloylation remain crucial for understanding its evolutionary significance in Mycobacteriales and its role in cell physiology. We have developed the first bioorthogonal mycolate donor featuring the natural mycolic acid pattern, enabling direct, unambiguous transfer of the lipid moiety to its acceptors and efficient metabolic labeling and enrichment of MytC protein substrates. Mass spectrometry analysis of the labeled proteins and comparative proteomic analysis of the cell envelope proteome between wild-type and Δ<i>mytC</i> strains identified an unbiased list of 21 proteins likely mycoloylated in the cell. The robustness of our approach is demonstrated by the successful biological validation of mycoloylation in 6 candidate proteins within wild-type cells, revealing the characteristic profile of proteins modified with natural mycolates. These findings provide interesting insights into the significance of this new lipidation pathway and pave the way for understanding their function, especially concerning the mycoloyltransferase family that includes the essential Antigen85 enzymes in Mycobacteria.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"19 11","pages":"2359–2371 2359–2371"},"PeriodicalIF":3.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Steps of the Biosynthesis of the Anticancer Antibiotic Pleurotin 抗癌抗生素 Pleurotin 的早期生物合成步骤
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1021/acschembio.4c0059910.1021/acschembio.4c00599
Jack A. Weaver, Duha Alkhder, Panward Prasongpholchai, Michaël D. Tadesse, Emmanuel L. de los Santos, Lijiang Song, Christophe Corre and Fabrizio Alberti*, 

Pleurotin is a meroterpenoid specialized metabolite made by the fungus Hohenbuehelia grisea, and it is a lead anticancer molecule due to its irreversible inhibition of the thioredoxin-thioredoxin reductase system. Total synthesis of pleurotin has been achieved, including through a stereoselective route; however, its biosynthesis has not been characterized. In this study, we used isotope-labeled precursor feeding to show that the nonterpenoid quinone ring of pleurotin and its congeners is derived from phenylalanine. We sequenced the genome of H. grisea and used comparative transcriptomics to identify putative genes involved in pleurotin biosynthesis. We heterologously expressed a UbiA-like prenyltransferase from H. grisea that led to the accumulation of the first predicted pleurotin biosynthetic intermediate, 3-farnesyl-4-hydroxybenzoic acid. This work sets the foundation to fully elucidate the biosynthesis of pleurotin and its congeners, with long-term potential to optimize their production for therapeutic use and engineer the pathway toward the biosynthesis of valuable analogues.

Pleurotin 是一种由真菌 Hohenbuehelia grisea 产生的 meroterpenoid 特殊代谢物,由于其对硫代氧化还原酶-硫代氧化还原酶系统具有不可逆的抑制作用,因此是一种主要的抗癌分子。目前已经实现了褶皱素的全合成,包括通过立体选择性路线进行合成;但其生物合成尚未定性。在这项研究中,我们利用同位素标记的前体进料,证明褶皱素及其同源物的非萜类醌环来自苯丙氨酸。我们对 H. grisea 的基因组进行了测序,并利用比较转录组学确定了参与褶菌素生物合成的推定基因。我们异源表达了一种来自 H. grisea 的 UbiA 样前酰基转移酶,它导致了第一个预测的褶皱素生物合成中间体--3-法呢酰-4-羟基苯甲酸的积累。这项工作为全面阐明褶皱素及其同系物的生物合成奠定了基础,并为优化治疗用褶皱素的生产以及设计有价值的类似物的生物合成途径提供了长期潜力。
{"title":"Early Steps of the Biosynthesis of the Anticancer Antibiotic Pleurotin","authors":"Jack A. Weaver,&nbsp;Duha Alkhder,&nbsp;Panward Prasongpholchai,&nbsp;Michaël D. Tadesse,&nbsp;Emmanuel L. de los Santos,&nbsp;Lijiang Song,&nbsp;Christophe Corre and Fabrizio Alberti*,&nbsp;","doi":"10.1021/acschembio.4c0059910.1021/acschembio.4c00599","DOIUrl":"https://doi.org/10.1021/acschembio.4c00599https://doi.org/10.1021/acschembio.4c00599","url":null,"abstract":"<p >Pleurotin is a meroterpenoid specialized metabolite made by the fungus <i>Hohenbuehelia grisea</i>, and it is a lead anticancer molecule due to its irreversible inhibition of the thioredoxin-thioredoxin reductase system. Total synthesis of pleurotin has been achieved, including through a stereoselective route; however, its biosynthesis has not been characterized. In this study, we used isotope-labeled precursor feeding to show that the nonterpenoid quinone ring of pleurotin and its congeners is derived from phenylalanine. We sequenced the genome of <i>H. grisea</i> and used comparative transcriptomics to identify putative genes involved in pleurotin biosynthesis. We heterologously expressed a UbiA-like prenyltransferase from <i>H. grisea</i> that led to the accumulation of the first predicted pleurotin biosynthetic intermediate, 3-farnesyl-4-hydroxybenzoic acid. This work sets the foundation to fully elucidate the biosynthesis of pleurotin and its congeners, with long-term potential to optimize their production for therapeutic use and engineer the pathway toward the biosynthesis of valuable analogues.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"19 11","pages":"2284–2290 2284–2290"},"PeriodicalIF":3.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acschembio.4c00599","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142640928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of Aberrant Expression of Gemcitabine-Targeting Proteins in Drug-Resistant Cells Using an Activity-Based Gemcitabine Probe 使用基于活性的吉西他滨探针鉴定耐药细胞中吉西他滨靶向蛋白的异常表达
IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1021/acschembio.4c0044610.1021/acschembio.4c00446
Xiaomei Zhu, YuQing Yuan, Kai Wang, Wei Shen* and Qing Zhu*, 

Gemcitabine-based monotherapy or combination therapy has become the standard treatment for locally advanced and metastatic pancreatic cancer. However, the emergence of resistance within weeks of treatment severely compromises therapeutic efficacy. The intricate biological process of gemcitabine resistance in pancreatic cancer presents a complex challenge, as the underlying mechanisms remain unclear. Identifying the target protein of gemcitabine is crucial for studying its drug-resistance mechanism. An activity-based probe is a powerful tool for studying drug target proteins, but the current lack of activity-based gemcitabine probes with robust biological activity hinders research on gemcitabine. In this study, we developed three active probes based on gemcitabine, among which Gem-3 demonstrated excellent stability and labeling efficacy. We utilized Gem-3 in conjunction with chemical proteomics to identify intracellular target proteins. We identified 79 proteins that interact with gemcitabine, most of which were previously unknown and represented various functional classes. Additionally, we validated the increased expression of IFIT3 and MARCKS in drug-resistant cells, along with the activation of the NF-κB signaling pathway. These findings substantially contribute to our comprehension of gemcitabine’s target proteins and further our understanding of the mechanisms driving gemcitabine resistance in pancreatic cancer cells.

吉西他滨单药或联合疗法已成为治疗局部晚期和转移性胰腺癌的标准疗法。然而,治疗后数周内出现的耐药性严重影响了疗效。吉西他滨在胰腺癌中产生耐药性的生物过程错综复杂,其潜在机制尚不清楚,因此是一项复杂的挑战。确定吉西他滨的靶蛋白对研究其耐药机制至关重要。基于活性的探针是研究药物靶蛋白的有力工具,但目前缺乏具有强大生物活性的基于活性的吉西他滨探针,这阻碍了对吉西他滨的研究。在这项研究中,我们开发了三种基于吉西他滨的活性探针,其中 Gem-3 具有出色的稳定性和标记效果。我们将 Gem-3 与化学蛋白质组学相结合,鉴定了细胞内的靶蛋白。我们发现了 79 种与吉西他滨相互作用的蛋白质,其中大部分是以前未知的,代表了不同的功能类别。此外,我们还验证了耐药细胞中 IFIT3 和 MARCKS 表达的增加,以及 NF-κB 信号通路的激活。这些发现极大地促进了我们对吉西他滨靶蛋白的理解,并进一步加深了我们对胰腺癌细胞吉西他滨耐药机制的认识。
{"title":"Identification of Aberrant Expression of Gemcitabine-Targeting Proteins in Drug-Resistant Cells Using an Activity-Based Gemcitabine Probe","authors":"Xiaomei Zhu,&nbsp;YuQing Yuan,&nbsp;Kai Wang,&nbsp;Wei Shen* and Qing Zhu*,&nbsp;","doi":"10.1021/acschembio.4c0044610.1021/acschembio.4c00446","DOIUrl":"https://doi.org/10.1021/acschembio.4c00446https://doi.org/10.1021/acschembio.4c00446","url":null,"abstract":"<p >Gemcitabine-based monotherapy or combination therapy has become the standard treatment for locally advanced and metastatic pancreatic cancer. However, the emergence of resistance within weeks of treatment severely compromises therapeutic efficacy. The intricate biological process of gemcitabine resistance in pancreatic cancer presents a complex challenge, as the underlying mechanisms remain unclear. Identifying the target protein of gemcitabine is crucial for studying its drug-resistance mechanism. An activity-based probe is a powerful tool for studying drug target proteins, but the current lack of activity-based gemcitabine probes with robust biological activity hinders research on gemcitabine. In this study, we developed three active probes based on gemcitabine, among which <b>Gem-3</b> demonstrated excellent stability and labeling efficacy. We utilized <b>Gem-3</b> in conjunction with chemical proteomics to identify intracellular target proteins. We identified 79 proteins that interact with gemcitabine, most of which were previously unknown and represented various functional classes. Additionally, we validated the increased expression of IFIT3 and MARCKS in drug-resistant cells, along with the activation of the NF-κB signaling pathway. These findings substantially contribute to our comprehension of gemcitabine’s target proteins and further our understanding of the mechanisms driving gemcitabine resistance in pancreatic cancer cells.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":"19 11","pages":"2336–2344 2336–2344"},"PeriodicalIF":3.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142641011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ACS Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1