Pub Date : 2025-01-23DOI: 10.1016/j.ejphar.2025.177293
Dawei Yu , Hua Rong , Dongjun Xing , Liying Hu , Yinping Wen , Xiangyang Wang , Weiran Zhang , Hao Fan , Yi Zhao , Xue Gong , Lu Chen , Xiaohui Ma , Zhiqing Li
Retinal vein occlusion (RVO) has become the second most common retinal vascular disease after diabetic retinopathy. Existing therapeutic approaches, including intravitreal injection of antivascular endothelial growth factors (anti-VEGFs) and/or glucocorticoids and laser therapy, primarily address secondary macular edema and neovascularisation. However, these strategies do not address the underlying cause of the disease and may have harmful side effects. There is an urgent need for therapies that have a better prognosis and include the administration of thrombolytics at an early stage. Therefore, in the present study, we investigated the thrombolytic effect of treatment with recombinant human Single-chain urokinase-type plasminogen activators (scu-PA)and the differences in its efficacy at different doses in a rabbit RVO model. In addition, through a series of ophthalmological examinations, such as optical coherence tomography (OCT) and electrophysiology, conducted to ascertain the effects of treatment with scu-PA on the ocular fibrinolytic system, we noted a definitive safety window for the vitreous administration of scu-PA. Therefore, this study is the first to confirm that an intravenous or vitreous cavity injection of scu-PA has definitive potential for treating RVO; however, additional clinical studies are needed for further validation.
{"title":"Thrombolytic efficacy and safety of recombinant scu-PA in a rabbit retinal vein occlusion model","authors":"Dawei Yu , Hua Rong , Dongjun Xing , Liying Hu , Yinping Wen , Xiangyang Wang , Weiran Zhang , Hao Fan , Yi Zhao , Xue Gong , Lu Chen , Xiaohui Ma , Zhiqing Li","doi":"10.1016/j.ejphar.2025.177293","DOIUrl":"10.1016/j.ejphar.2025.177293","url":null,"abstract":"<div><div>Retinal vein occlusion (RVO) has become the second most common retinal vascular disease after diabetic retinopathy. Existing therapeutic approaches, including intravitreal injection of antivascular endothelial growth factors (anti-VEGFs) and/or glucocorticoids and laser therapy, primarily address secondary macular edema and neovascularisation. However, these strategies do not address the underlying cause of the disease and may have harmful side effects. There is an urgent need for therapies that have a better prognosis and include the administration of thrombolytics at an early stage. Therefore, in the present study, we investigated the thrombolytic effect of treatment with recombinant human Single-chain urokinase-type plasminogen activators (scu-PA)and the differences in its efficacy at different doses in a rabbit RVO model. In addition, through a series of ophthalmological examinations, such as optical coherence tomography (OCT) and electrophysiology, conducted to ascertain the effects of treatment with scu-PA on the ocular fibrinolytic system, we noted a definitive safety window for the vitreous administration of scu-PA. Therefore, this study is the first to confirm that an intravenous or vitreous cavity injection of scu-PA has definitive potential for treating RVO; however, additional clinical studies are needed for further validation.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"991 ","pages":"Article 177293"},"PeriodicalIF":4.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Buspirone, a commonly prescribed medication for generalized anxiety disorder (GAD), is gaining attention for its narrow window of side effects such as lack of physical dependence, non-sedative properties as compared to other anxiolytic drugs. Its dose-specific therapeutic effects beyond anxiety highlights its clinical significance. Pharmacologically, buspirone activates serotonin-1A pre-synaptic autoreceptors and post-synaptic heteroreceptors which modulate serotonergic neurotransmission induced behavioral changes such as anxiolytic and nootropic effects. This study explored change in neural activity associated serotonin-1A receptors, induced by repeated administration of buspirone at specific doses (0.1 mg/kg and 3 mg/kg). Buspirone induced behavioral changes were assessed by Morris Water Maze (MWM) for cognitive functions, Elevated Plus Maze (EPM) for anxiety, RT-PCR (Reverse transcriptase-polymerase chain reaction) for 5-HT1A receptor expression levels, and EEG (electroencephalography) analysis of neuronal electrical activity in the frontal cortex. Our findings revealed that a low dose of buspirone (0.1 mg/kg) significantly enhanced spatial learning and memory compared to high dose (3 mg/kg). Low-dose treatment elevated mRNA expression levels of serotonin-1A receptors in hippocampus and decreased in midbrain raphe nuclei, with the opposite patterns observed in the high dose. In addition, EEG spectral analysis have revealed dose specific cross coupling frequency of theta-gamma and delta-beta brain waves. At low dose (0.1 mg/kg) positive correlation of theta-gamma coupling effect and negative correlation of delta beta as decoupling effect were observed. Conversely, at high dose (3 mg/kg), results showed opposite pattern with weak correlation of theta gamma coupling effect and positive correlation of delta-beta as coupling effect. These results suggest that buspirone enhances learning and memory with differential activation of pre and postsynaptic serotonin-1A receptors, altering its expression levels which influence neural activity associated with theta-gamma and delta-beta coupling effects. It provides valuable molecular insights on clinical significance of buspirone in mitigating neuropathological disorders such as behavioral disorders and neurocognitive decline associated with disrupted regulation of serotonin-1A neurotransmission at specific doses. Our findings provide molecular insights of dose dependent therapeutic potential of buspirone against neuropathological symptoms of behavioral disorders, neurocognitive decline associated with dysregulated serotonin-1A neurotransmission.
{"title":"Exploring Serotonin-1A receptor function in the effects of buspirone on cognition by molecular receptor expression and EEG analytical studies","authors":"Nazish Mustafa, Rushda Afroz, Zehra Batool, Tabinda Salman, Shazia Nawaz, Darakhshan Jabeen Haleem","doi":"10.1016/j.ejphar.2025.177275","DOIUrl":"10.1016/j.ejphar.2025.177275","url":null,"abstract":"<div><div>Buspirone, a commonly prescribed medication for generalized anxiety disorder (GAD), is gaining attention for its narrow window of side effects such as lack of physical dependence, non-sedative properties as compared to other anxiolytic drugs. Its dose-specific therapeutic effects beyond anxiety highlights its clinical significance. Pharmacologically, buspirone activates serotonin-1A pre-synaptic autoreceptors and post-synaptic heteroreceptors which modulate serotonergic neurotransmission induced behavioral changes such as anxiolytic and nootropic effects. This study explored change in neural activity associated serotonin-1A receptors, induced by repeated administration of buspirone at specific doses (0.1 mg/kg and 3 mg/kg). Buspirone induced behavioral changes were assessed by Morris Water Maze (MWM) for cognitive functions, Elevated Plus Maze (EPM) for anxiety, RT-PCR (Reverse transcriptase-polymerase chain reaction) for 5-HT<sub>1A</sub> receptor expression levels, and EEG (electroencephalography) analysis of neuronal electrical activity in the frontal cortex. Our findings revealed that a low dose of buspirone (0.1 mg/kg) significantly enhanced spatial learning and memory compared to high dose (3 mg/kg). Low-dose treatment elevated mRNA expression levels of serotonin-1A receptors in hippocampus and decreased in midbrain raphe nuclei, with the opposite patterns observed in the high dose. In addition, EEG spectral analysis have revealed dose specific cross coupling frequency of theta-gamma and delta-beta brain waves. At low dose (0.1 mg/kg) positive correlation of theta-gamma coupling effect and negative correlation of delta beta as decoupling effect were observed. Conversely, at high dose (3 mg/kg), results showed opposite pattern with weak correlation of theta gamma coupling effect and positive correlation of delta-beta as coupling effect. These results suggest that buspirone enhances learning and memory with differential activation of pre and postsynaptic serotonin-1A receptors, altering its expression levels which influence neural activity associated with theta-gamma and delta-beta coupling effects. It provides valuable molecular insights on clinical significance of buspirone in mitigating neuropathological disorders such as behavioral disorders and neurocognitive decline associated with disrupted regulation of serotonin-1A neurotransmission at specific doses. Our findings provide molecular insights of dose dependent therapeutic potential of buspirone against neuropathological symptoms of behavioral disorders, neurocognitive decline associated with dysregulated serotonin-1A neurotransmission.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"990 ","pages":"Article 177275"},"PeriodicalIF":4.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1016/j.ejphar.2025.177274
Eleonora Bocchieri , Stefania Zimbone , Maria Laura Giuffrida , Giuseppe Di Natale , Giuseppina Sabatino , Graziella Vecchio , Giuseppe Pappalardo , Santina Chiechio
Background
Adamantane derivatives, such as memantine (Mem) and amantadine (Ada), have distinct mechanisms and therapeutic applications. Ada is primarily utilized as an antiviral and anti-Parkinson drug without significant pro-cognitive effects, Mem is effective in various clinical conditions characterized by cognitive deficits, including Alzheimer's disease. Recent evidence highlights a neuroprotective role for Aβ monomers, suggesting that preventing their aggregation into toxic oligomers could be a promising therapeutic strategy. Based on the observation that the Lys-Leu-Val-Phe-Phe (KLVFF) peptide, can block the transition of randomly coiled Aβ monomers into toxic β-sheet aggregates, two KLVFF conjugates, the Mem-Succ-KLVFF and Ada-Succ-KLVFF were investigated.
Methods
Peptides were synthesized by Microwave-Assisted Solid Phase Peptide Synthesis (MW-SPPS). Circular Dichroism (CD), Th-T fluorescence and Gel-Electrophoresis techniques were used to assess the inhibitory effect on Aβ42 fibrillogenesis. The formation of inclusion complexes with β-Cyclodextrin (β-CyD) was demonstrated by NMR Spectroscopy. The Novel Object Recognition (NOR) test, followed by double-blind analysis, was applied for in vivo response to compounds administration. In vitro effects on neurons were studied by MTT assay and WB analysis, whereas HR ESI-MS allowed the molecular detection on brain homogenates.
Results
These compounds differently affect Aβ42 aggregation. Mem-Succ-KLVFF, and Succ-KLVFF affect pCREB levels in differentiated SH-SY5Y, a signaling pathway involved in memory processes. In the NOR test, both Mem and KLVFF exhibited pro-cognitive effects individually and synergistically when co-administered.
Conclusion
Structure-activity relationships are discussed, integrating in vivo results, memory-related cellular pathways, and HR-ESI-MS analyses. These findings support the therapeutic potential of these compounds in preserving cognitive function.
{"title":"Memantine and amantadine KLVFF peptide conjugates: Synthesis, structure determination, amyloid-β interaction and effects on recognition memory in mice","authors":"Eleonora Bocchieri , Stefania Zimbone , Maria Laura Giuffrida , Giuseppe Di Natale , Giuseppina Sabatino , Graziella Vecchio , Giuseppe Pappalardo , Santina Chiechio","doi":"10.1016/j.ejphar.2025.177274","DOIUrl":"10.1016/j.ejphar.2025.177274","url":null,"abstract":"<div><h3>Background</h3><div>Adamantane derivatives, such as memantine (Mem) and amantadine (Ada), have distinct mechanisms and therapeutic applications. Ada is primarily utilized as an antiviral and anti-Parkinson drug without significant pro-cognitive effects, Mem is effective in various clinical conditions characterized by cognitive deficits, including Alzheimer's disease. Recent evidence highlights a neuroprotective role for Aβ monomers, suggesting that preventing their aggregation into toxic oligomers could be a promising therapeutic strategy. Based on the observation that the Lys-Leu-Val-Phe-Phe (KLVFF) peptide, can block the transition of randomly coiled Aβ monomers into toxic β-sheet aggregates, two KLVFF conjugates, the Mem-Succ-KLVFF and Ada-Succ-KLVFF were investigated.</div></div><div><h3>Methods</h3><div>Peptides were synthesized by Microwave-Assisted Solid Phase Peptide Synthesis (MW-SPPS). Circular Dichroism (CD), Th-T fluorescence and Gel-Electrophoresis techniques were used to assess the inhibitory effect on Aβ<sub>42</sub> fibrillogenesis. The formation of inclusion complexes with β-Cyclodextrin (β-CyD) was demonstrated by NMR Spectroscopy. The Novel Object Recognition (NOR) test, followed by double-blind analysis, was applied for <em>in vivo</em> response to compounds administration. <em>In vitro</em> effects on neurons were studied by MTT assay and WB analysis, whereas HR ESI-MS allowed the molecular detection on brain homogenates.</div></div><div><h3>Results</h3><div>These compounds differently affect Aβ<sub>42</sub> aggregation. Mem-Succ-KLVFF, and Succ-KLVFF affect pCREB levels in differentiated SH-SY5Y, a signaling pathway involved in memory processes. In the NOR test, both Mem and KLVFF exhibited pro-cognitive effects individually and synergistically when co-administered.</div></div><div><h3>Conclusion</h3><div>Structure-activity relationships are discussed, integrating <em>in vivo</em> results, memory-related cellular pathways, and HR-ESI-MS analyses. These findings support the therapeutic potential of these compounds in preserving cognitive function.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"990 ","pages":"Article 177274"},"PeriodicalIF":4.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1016/j.ejphar.2025.177286
Yun Wang , Wei Tian , Rui Li , Dewang Zhou , Kaiqiang Ding , Shuang Feng , Yao Ge , Yan Luo , Zhen Chen , Hui Hou
Fc receptor γ subunit (FcRγ) activation plays a crucial role in cancer carcinogenesis. Here, we aimed to uncover the impact of FcRγ on circulating tumor cells (CTC) colonization and the underlying mechanism. FcRγ deficient (FcRγ−/−) mice were used to investigate the functional effects of FcRγ in cancer metastasis, and the results demonstrated that FcRγ deficiency significantly promotes metastasis. The tumor metastasis effect, antiplatelet, platelet or neutrophil infusion experiments were conducted with FcRγ deficient (FcRγ−/−) mice and wild type mice (WT), bearing B16F10 or LCC tumor cells. Blood routine test, flow cytometry, immunofluorescent staining and in vivo image were applied for analysis. Platelet adhesion and neutrophil chemotaxis were analyzed by flow cytometry and ELISA in vitro. Platelet adoptive model was used for mimicing early colonization stage. Our results indicated FcRγ deficiency significantly promoted tumor metastasis accompanied with increased number of platelet and neutrophil in the lung. Further investigation showed that FcRγ−/− platelet infusion, rather than FcRγ−/− neutrophils, promoted CTC colonization. While platelet inhibitor Aspirin abrogated the platelet-mediated infiltration of neutrophil in the lung. Mechanistically, platelet FcRγ deficiency facilitated the adhesion of platelets and cancer cells and increased secretion of CXCL5 and CXCL7 which triggered the platelet-induced neutrophil recruitment. In sum, our study indicates that FcRγ is a restrainer in controlling cancer metastasis through regulating the adhesion of platelets and cancer cells and recruiting more neutrophils, which provides a potential target for anti-metastatic therapies. The level of FcRγ expression in platelets could act as a novel biomarker for cancer metastasis.
{"title":"Platelet FcRγ inhibits tumor metastasis by preventing the colonization of circulating tumor cells","authors":"Yun Wang , Wei Tian , Rui Li , Dewang Zhou , Kaiqiang Ding , Shuang Feng , Yao Ge , Yan Luo , Zhen Chen , Hui Hou","doi":"10.1016/j.ejphar.2025.177286","DOIUrl":"10.1016/j.ejphar.2025.177286","url":null,"abstract":"<div><div>Fc receptor γ subunit (FcRγ) activation plays a crucial role in cancer carcinogenesis. Here, we aimed to uncover the impact of FcRγ on circulating tumor cells (CTC) colonization and the underlying mechanism. FcRγ deficient (FcRγ<sup>−/−</sup>) mice were used to investigate the functional effects of FcRγ in cancer metastasis, and the results demonstrated that FcRγ deficiency significantly promotes metastasis. The tumor metastasis effect, antiplatelet, platelet or neutrophil infusion experiments were conducted with FcRγ deficient (FcRγ<sup>−/−</sup>) mice and wild type mice (WT), bearing B16F10 or LCC tumor cells. Blood routine test, flow cytometry, immunofluorescent staining and <em>in vivo</em> image were applied for analysis. Platelet adhesion and neutrophil chemotaxis were analyzed by flow cytometry and ELISA <em>in vitro</em>. Platelet adoptive model was used for mimicing early colonization stage. Our results indicated FcRγ deficiency significantly promoted tumor metastasis accompanied with increased number of platelet and neutrophil in the lung. Further investigation showed that FcRγ<sup>−/−</sup> platelet infusion, rather than FcRγ<sup>−/−</sup> neutrophils, promoted CTC colonization. While platelet inhibitor Aspirin abrogated the platelet-mediated infiltration of neutrophil in the lung. Mechanistically, platelet FcRγ deficiency facilitated the adhesion of platelets and cancer cells and increased secretion of CXCL5 and CXCL7 which triggered the platelet-induced neutrophil recruitment. In sum, our study indicates that FcRγ is a restrainer in controlling cancer metastasis through regulating the adhesion of platelets and cancer cells and recruiting more neutrophils, which provides a potential target for anti-metastatic therapies. The level of FcRγ expression in platelets could act as a novel biomarker for cancer metastasis.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"990 ","pages":"Article 177286"},"PeriodicalIF":4.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ageing is a complex process characterized by the gradual deterioration of physiological functions, often leading to a diminished quality of life. Dementia is among the prominent indicators of ageing characterized by cognitive impairment. Animal studies employing D-galactose have provided insights into the mechanisms underlying cognitive decline and neuronal degeneration, resembling features of human brain ageing while Vitamin K2, known for its diverse physiological functions, also have neuroprotective potential. Here we study the effect of Vitamin K2 in D-galactose induced ageing in mice.
Methods
Ageing was induced in adult Swiss albino mice using D-galactose via subcutaneous (SC) route for 45 days while one group of animals received Vitamin K2 (MK-7) via oral gavage during last 21 days. Then different behavioral studies, including the elevated plus maze, Morris water maze, passive avoidance and novel object recognition test were performed to measure cognitive changes, followed by measuring AChE, corticosterone (plasma), oxidative stress parameters (SOD, GSH, MDA) and pro-inflammatory markers (TNFα, IL1β) in hippocampal homogenates. Histopathology of the hippocampal sections were performed to measure neuronal density.
Results
Vitamin K2, treatment reversed D-galactose associated memory changes. In the biochemical studies, plasma corticosterone was reduced while hippocampal AChE, MDA and pro-inflammatory cytokines were reduced after Vitamin K2 treatment. The antioxidants like SOD and GSH were improved in Vitamin K2 treated animal brain. The hippocampal neuronal density increased in treatment group compared to D-galactose induced aged animals.
Conclusion
Treatment with Vitamin K2 (MK-7) partially reversed cognitive decline associated with ageing, highlighting its potential as a therapeutic intervention for age associated cognitive decline.
{"title":"Vitamin K2 protects against D-galactose induced ageing in mice","authors":"Kaberi Chatterjee , Papiya Mitra Mazumder , Sugato Banerjee","doi":"10.1016/j.ejphar.2025.177277","DOIUrl":"10.1016/j.ejphar.2025.177277","url":null,"abstract":"<div><h3>Background</h3><div>Ageing is a complex process characterized by the gradual deterioration of physiological functions, often leading to a diminished quality of life. Dementia is among the prominent indicators of ageing characterized by cognitive impairment. Animal studies employing D-galactose have provided insights into the mechanisms underlying cognitive decline and neuronal degeneration, resembling features of human brain ageing while Vitamin K2, known for its diverse physiological functions, also have neuroprotective potential. Here we study the effect of Vitamin K2 in D-galactose induced ageing in mice.</div></div><div><h3>Methods</h3><div>Ageing was induced in adult Swiss albino mice using D-galactose via subcutaneous (SC) route for 45 days while one group of animals received Vitamin K2 (MK-7) via oral gavage during last 21 days. Then different behavioral studies, including the elevated plus maze, Morris water maze, passive avoidance and novel object recognition test were performed to measure cognitive changes, followed by measuring AChE, corticosterone (plasma), oxidative stress parameters (SOD, GSH, MDA) and pro-inflammatory markers (TNFα, IL1β) in hippocampal homogenates. Histopathology of the hippocampal sections were performed to measure neuronal density.</div></div><div><h3>Results</h3><div>Vitamin K2, treatment reversed D-galactose associated memory changes. In the biochemical studies, plasma corticosterone was reduced while hippocampal AChE, MDA and pro-inflammatory cytokines were reduced after Vitamin K2 treatment. The antioxidants like SOD and GSH were improved in Vitamin K2 treated animal brain. The hippocampal neuronal density increased in treatment group compared to D-galactose induced aged animals.</div></div><div><h3>Conclusion</h3><div>Treatment with Vitamin K2 (MK-7) partially reversed cognitive decline associated with ageing, highlighting its potential as a therapeutic intervention for age associated cognitive decline.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"990 ","pages":"Article 177277"},"PeriodicalIF":4.2,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurodegenerative disorders arise when nerve cells in the brain or peripheral nervous system gradually lose functions and eventually die. Although certain therapies may alleviate some of the physical and mental symptoms associated with neurodegenerative disorders, hence slowing their progression, but no sure-shot treatment is currently available. It was shown that the rise in life expectancy and the number of elderly people in the community led to an increasing trend in the incidence and prevalence of neurodegenerative disease. Phytomolecules are demonstrating their effectiveness in combating, regression, and delaying various diseases. Genistein is one of soy isoflavone with antioxidant, anti-inflammatory, and estrogenic effects. Researchers demonstrated that Genistein treatment significantly reduced hyperglycemia, improved cognitive performance by modulating acetylcholinesterase activity and oxidative stress, and alleviated neuroinflammatory conditions in mice. This paper evaluates (in vivo and in vitro) various molecular targets of isoflavones and their ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disorders.
{"title":"Genistein: A promising ally in combating neurodegenerative disorders","authors":"Diksha Sharma , Varinder Singh , Amit Kumar , Thakur Gurjeet Singh","doi":"10.1016/j.ejphar.2025.177273","DOIUrl":"10.1016/j.ejphar.2025.177273","url":null,"abstract":"<div><div>Neurodegenerative disorders arise when nerve cells in the brain or peripheral nervous system gradually lose functions and eventually die. Although certain therapies may alleviate some of the physical and mental symptoms associated with neurodegenerative disorders, hence slowing their progression, but no sure-shot treatment is currently available. It was shown that the rise in life expectancy and the number of elderly people in the community led to an increasing trend in the incidence and prevalence of neurodegenerative disease. Phytomolecules are demonstrating their effectiveness in combating, regression, and delaying various diseases. Genistein is one of soy isoflavone with antioxidant, anti-inflammatory, and estrogenic effects. Researchers demonstrated that Genistein treatment significantly reduced hyperglycemia, improved cognitive performance by modulating acetylcholinesterase activity and oxidative stress, and alleviated neuroinflammatory conditions in mice. This paper evaluates (in vivo and in vitro) various molecular targets of isoflavones and their ability to effectively counter several neurodegenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases and amyotrophic lateral sclerosis. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disorders.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"991 ","pages":"Article 177273"},"PeriodicalIF":4.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1016/j.ejphar.2025.177276
Xinhua Li , Yuanlong Zhang , Leiqing Chen , Xiao Xu , Xiaohong Ma , Shuying Lou , Ziqiang Zou , Chenjing Wang , Bing Jiang , Yunrui Cai , Yu Qi , Yiyuan Xi , Min Zhao , Pengcheng Yan
A new ursane triterpenoid, actichinone (3-oxo-2α,24-dihydroxyurs-12-en-28-oic acid, 1), was isolated from the roots of a kiwi plant Actinidia chinensis Planch, together with 18 known triterpenoids (2–19). The structure of actichinone (1) was established by extensive spectroscopic analysis. Actichinone (1) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed. Chemical semi-synthesis of actichinone (1) was achieved by selective oxidation of the major compound 2. Actichinone (1) exhibited significant alleviation of non-alcoholic fatty liver disease (NAFLD) in a high-fat with methionine and choline deficiency diet (HFMCD)-fed mice model, by regulating lipid accumulation and inflammatory response probably via the AMPK/SREBP-1c/PPAR-α and IKK/IκB/NF-κB signaling pathways. This study provides a promising lead compound and a new insight into the development of novel anti-NAFLD agents based on the pentacyclic triterpenoid family, and is expected to promote the high value-added comprehensive application of the A. chinensis plants.
{"title":"Actichinone, a new ursane triterpenoid from Actinidia chinensis roots, ameliorates NAFLD via the AMPK and NF-κB pathways","authors":"Xinhua Li , Yuanlong Zhang , Leiqing Chen , Xiao Xu , Xiaohong Ma , Shuying Lou , Ziqiang Zou , Chenjing Wang , Bing Jiang , Yunrui Cai , Yu Qi , Yiyuan Xi , Min Zhao , Pengcheng Yan","doi":"10.1016/j.ejphar.2025.177276","DOIUrl":"10.1016/j.ejphar.2025.177276","url":null,"abstract":"<div><div>A new ursane triterpenoid, actichinone (3-oxo-2<em>α</em>,24-dihydroxyurs-12-en-28-oic acid, <strong>1</strong>), was isolated from the roots of a kiwi plant <em>Actinidia chinensis</em> Planch, together with 18 known triterpenoids (<strong>2</strong>–<strong>19</strong>). The structure of actichinone (<strong>1</strong>) was established by extensive spectroscopic analysis. Actichinone (<strong>1</strong>) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed. Chemical semi-synthesis of actichinone (<strong>1</strong>) was achieved by selective oxidation of the major compound <strong>2</strong>. Actichinone (<strong>1</strong>) exhibited significant alleviation of non-alcoholic fatty liver disease (NAFLD) in a high-fat with methionine and choline deficiency diet (HFMCD)-fed mice model, by regulating lipid accumulation and inflammatory response probably via the AMPK/SREBP-1c/PPAR-<em>α</em> and IKK/I<em>κ</em>B/NF-<em>κ</em>B signaling pathways. This study provides a promising lead compound and a new insight into the development of novel anti-NAFLD agents based on the pentacyclic triterpenoid family, and is expected to promote the high value-added comprehensive application of the <em>A. chinensis</em> plants.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"990 ","pages":"Article 177276"},"PeriodicalIF":4.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1016/j.ejphar.2024.177158
Congna Zi , Xian Ma , Maodong Zheng , Ying Zhu
Myocardial injury triggers intense inflammatory reactions and oxidative stress responses. S100 calcium-binding protein A16 (S100A16), a multi-functional calcium (Ca2+)-binding protein, participates in inflammatory responses and contributes to ischemia/reperfusion (I/R) injury. Nevertheless, the precise mechanism by which S100A16 operates in myocardial I/R injury remains uncertain. Cardiac I/R injury was produced by ligation/release of the left anterior descending artery, and mouse cardiac cells were subjected to hypoxia/reoxygenation (H/R) to determine the biological effects in vitro. We demonstrated that S100A16 was upregulated in the ischemic hearts and cardiac cells after I/R and H/R injury. Adenovirus-mediated S100A16 inhibition led to a considerable improvement in cardiac function with a reduced infarct size, accompanied by a reduction in cardiomyocyte apoptosis. Similar effects of S100A16 inhibition on inflammation and reactive oxygen species (ROS) production were observed in cultured cardiomyocytes. Importantly, we showed that I/R and H/R treatment upregulated the expression of voltage-dependent anion channel 1 (VDAC1), which subsequently activated NF-κB/p65 to facilitate the binding of NF-κB/p65 to the S100A16 promoter, thereby activating the transcription and expression of S100A16. Mechanically, S100A16 responded to increasing Ca2+ and interacted with calmodulin (CaM) to regulate the activation of calcium/calmodulin-dependent protein kinase 2 (CAMKK2)/AMPK pathway. In conclusion, VDAC1 sustained the NF-κB p65 pathway activation to elicit increased S100A16 expression, contributing to myocardial damage and heart failure post-I/R via the CaM/CaMKK2/AMPK pathway. This study revealed a crucial role of the VDAC1-S100A16 axis in the process of myocardial I/R injury, providing novel molecular targets for the treatment of cardiac conditions associated with I/R injury.
{"title":"VDAC1-NF-κB/p65-mediated S100A16 contributes to myocardial ischemia/reperfusion injury by regulating oxidative stress and inflammatory response via calmodulin/CaMKK2/AMPK pathway","authors":"Congna Zi , Xian Ma , Maodong Zheng , Ying Zhu","doi":"10.1016/j.ejphar.2024.177158","DOIUrl":"10.1016/j.ejphar.2024.177158","url":null,"abstract":"<div><div>Myocardial injury triggers intense inflammatory reactions and oxidative stress responses. S100 calcium-binding protein A16 (S100A16), a multi-functional calcium (Ca<sup>2+</sup>)-binding protein, participates in inflammatory responses and contributes to ischemia/reperfusion (I/R) injury. Nevertheless, the precise mechanism by which S100A16 operates in myocardial I/R injury remains uncertain. Cardiac I/R injury was produced by ligation/release of the left anterior descending artery, and mouse cardiac cells were subjected to hypoxia/reoxygenation (H/R) to determine the biological effects <em>in vitro</em>. We demonstrated that S100A16 was upregulated in the ischemic hearts and cardiac cells after I/R and H/R injury. Adenovirus-mediated S100A16 inhibition led to a considerable improvement in cardiac function with a reduced infarct size, accompanied by a reduction in cardiomyocyte apoptosis. Similar effects of S100A16 inhibition on inflammation and reactive oxygen species (ROS) production were observed in cultured cardiomyocytes. Importantly, we showed that I/R and H/R treatment upregulated the expression of voltage-dependent anion channel 1 (VDAC1), which subsequently activated NF-κB/p65 to facilitate the binding of NF-κB/p65 to the S100A16 promoter, thereby activating the transcription and expression of S100A16. Mechanically, S100A16 responded to increasing Ca<sup>2+</sup> and interacted with calmodulin (CaM) to regulate the activation of calcium/calmodulin-dependent protein kinase 2 (CAMKK2)/AMPK pathway. In conclusion, VDAC1 sustained the NF-κB p65 pathway activation to elicit increased S100A16 expression, contributing to myocardial damage and heart failure post-I/R via the CaM/CaMKK2/AMPK pathway. This study revealed a crucial role of the VDAC1-S100A16 axis in the process of myocardial I/R injury, providing novel molecular targets for the treatment of cardiac conditions associated with I/R injury.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"987 ","pages":"Article 177158"},"PeriodicalIF":4.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1016/j.ejphar.2024.177204
Hanchao Li, Bomiao Ju, Jing Luo, Li Zhu, Jing Zhang, Nan Hu, Lingfei Mo, Yanhua Wang, Juan Tian, Qian Li, Xinru Du, Xinyi Liu, Lan He
The type I interferon (IFN-I) response is crucial in systemic lupus erythematosus (SLE). The mRNA level of interferon-stimulated genes (ISGs) is widely used for evaluating the activity of IFN in SLE. However, the character of ISGs in belimumab-treated SLE patients has not be reported. In this study, we enrolled 53 SLE patients undergoing belimumab treatment and assessed their clinical responses at 3, 6, and 12 months. The expression levels of 25 ISGs in Peripheral blood mononuclear cells (PBMCs) were quantified at baseline and at 3 months using quantitative real-time PCR. Using Least absolute shrinkage and selection operator (LASSO)-logistic regression, five genes (CXCL10, EPSTI1, HECR6, IFI27, IFIH1) were identified to predict belimumab efficacy. The IFN signature score, a multivariate logistic regression model based on the change rates of these genes, positively predicted the SLE responder index (SRI) at 12 months, with an area under curve of 0.940 in receiver operating characteristic and favorable outcomes in decision curve analysis. Patients with an IFN signature score ≥0 had higher SRI response rates, better clinical markers (including SLE disease activity index 2000 scores, anti-dsDNA, IgG levels, daily doses of prednisone, and higher complement C3 and C4 levels), and faster B cell decline than those with scores <0. In conclusion, after 3 months of belimumab treatment, the expression levels of IFN-I-inducible genes varied, and the IFN signature score reliably forecasted the SRI response at 6 and 12 months.
{"title":"Type I interferon-stimulated genes predict clinical response to belimumab in systemic lupus erythematosus","authors":"Hanchao Li, Bomiao Ju, Jing Luo, Li Zhu, Jing Zhang, Nan Hu, Lingfei Mo, Yanhua Wang, Juan Tian, Qian Li, Xinru Du, Xinyi Liu, Lan He","doi":"10.1016/j.ejphar.2024.177204","DOIUrl":"10.1016/j.ejphar.2024.177204","url":null,"abstract":"<div><div>The type I interferon (IFN-I) response is crucial in systemic lupus erythematosus (SLE). The mRNA level of interferon-stimulated genes (ISGs) is widely used for evaluating the activity of IFN in SLE. However, the character of ISGs in belimumab-treated SLE patients has not be reported. In this study, we enrolled 53 SLE patients undergoing belimumab treatment and assessed their clinical responses at 3, 6, and 12 months. The expression levels of 25 ISGs in Peripheral blood mononuclear cells (PBMCs) were quantified at baseline and at 3 months using quantitative real-time PCR. Using Least absolute shrinkage and selection operator (LASSO)-logistic regression, five genes (<em>CXCL10, EPSTI1, HECR6, IFI27, IFIH1</em>) were identified to predict belimumab efficacy. The IFN signature score, a multivariate logistic regression model based on the change rates of these genes, positively predicted the SLE responder index (SRI) at 12 months, with an area under curve of 0.940 in receiver operating characteristic and favorable outcomes in decision curve analysis. Patients with an IFN signature score ≥0 had higher SRI response rates, better clinical markers (including SLE disease activity index 2000 scores, anti-dsDNA, IgG levels, daily doses of prednisone, and higher complement C3 and C4 levels), and faster B cell decline than those with scores <0. In conclusion, after 3 months of belimumab treatment, the expression levels of IFN-I-inducible genes varied, and the IFN signature score reliably forecasted the SRI response at 6 and 12 months.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"987 ","pages":"Article 177204"},"PeriodicalIF":4.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}