Pub Date : 2024-05-06DOI: 10.1016/j.ejcb.2024.151417
Carmelo Ferrai , Carsten Schulte
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
{"title":"Mechanotransduction in stem cells","authors":"Carmelo Ferrai , Carsten Schulte","doi":"10.1016/j.ejcb.2024.151417","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151417","url":null,"abstract":"<div><p>Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000347/pdfft?md5=118e0595f2c13c31e0810c2c1c4f1b74&pid=1-s2.0-S0171933524000347-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140901337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1016/j.ejcb.2024.151415
Katarina Matyasova , Andrea Soltysova , Petr Babula , Olga Krizanova , Veronika Liskova
The 3-mercaptopyruvate sulfurtransferase (MPST) is a protein persulfidase, occurring mainly in mitochondria. Although function of this protein in cancer cells has been already studied, no clear outcome can be postulated up to now. Therefore, we focused on the determination of function of MPST in colon (HCT116 cells)/colorectal (DLD1 cells) cancers. In silico analysis revealed that in gastrointestinal cancers, MPST together with its binding partners can be either of a high risk or might have a protective effect. Silencing of MPST gene resulted in decreased ATP, while acetyl-CoA levels were elevated. Increased apoptosis was detected in cells with silenced MPST gene, which was accompanied by decrease in mitochondrial membrane potential, but no changes in IP3 receptor’s protein. Mitochondria underwent activation of fission and elevated DRP1 expression after MPST silencing. Proliferation and migration of DLD1 and HCT116 cells were markedly affected, showing the importance of MPST protein in colon/colorectal cancer development.
{"title":"Role of the 3-mercaptopyruvate sulfurtransferase in colon/colorectal cancers","authors":"Katarina Matyasova , Andrea Soltysova , Petr Babula , Olga Krizanova , Veronika Liskova","doi":"10.1016/j.ejcb.2024.151415","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151415","url":null,"abstract":"<div><p>The 3-mercaptopyruvate sulfurtransferase (MPST) is a protein persulfidase, occurring mainly in mitochondria. Although function of this protein in cancer cells has been already studied, no clear outcome can be postulated up to now. Therefore, we focused on the determination of function of MPST in colon (HCT116 cells)/colorectal (DLD1 cells) cancers. <em>In silico</em> analysis revealed that in gastrointestinal cancers, MPST together with its binding partners can be either of a high risk or might have a protective effect. Silencing of <em>MPST</em> gene resulted in decreased ATP, while acetyl-CoA levels were elevated. Increased apoptosis was detected in cells with silenced <em>MPST</em> gene, which was accompanied by decrease in mitochondrial membrane potential, but no changes in IP<sub>3</sub> receptor’s protein. Mitochondria underwent activation of fission and elevated DRP1 expression after <em>MPST</em> silencing. Proliferation and migration of DLD1 and HCT116 cells were markedly affected, showing the importance of MPST protein in colon/colorectal cancer development.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000323/pdfft?md5=40bcbadcf22b02eeb742c65d27b13fae&pid=1-s2.0-S0171933524000323-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Airway epithelial cells form a physical barrier against inhaled pathogens and coordinate innate immune responses in the lungs. Bronchial cells in people with cystic fibrosis (pwCF) are colonized by Pseudomonas aeruginosa because of the accumulation of mucus in the lower airways and an altered immune response. This leads to chronic inflammation, lung tissue damage, and accelerated decline in lung function. Thus, identifying the molecular factors involved in the host response in the airways is crucial for developing new therapeutic strategies. The septin (SEPT) cytoskeleton is involved in tissue barrier integrity and anti-infective responses. SEPT7 is critical for maintaining SEPT complexes and for sensing pathogenic microbes. In the lungs, SEPT7 may be involved in the epithelial barrier resistance to infection; however, its role in cystic fibrosis (CF) P. aeruginosa infection is unknown. This study aimed to investigate the role of SEPT7 in controlling P. aeruginosa infection in bronchial epithelial cells, particularly in CF. The study findings showed that SEPT7 encages P. aeruginosa in bronchial epithelial cells and its inhibition downregulates the expression of other SEPTs. In addition, P. aeruginosa does not regulate SEPT7 expression. Finally, we found that inhibiting SEPT7 expression in bronchial epithelial cells (BEAS-2B 16HBE14o- and primary cells) resulted in higher levels of internalized P. aeruginosa and decreased IL-6 production during infection, suggesting a crucial role of SEPT7 in the host response against this bacterium. However, these effects were not observed in the CF cells (16HBE14o-/F508del and primary cells) which may explain the persistence of infection in pwCF. The study findings suggest the modification of SEPT7 expression as a potential approach for the anti-infective control of P. aeruginosa, particularly in CF.
{"title":"Septin-dependent defense mechanisms against Pseudomonas aeruginosa are stalled in cystic fibrosis bronchial epithelial cells","authors":"Sylvain Brax , Clémence Gaudin , Claire Calmel , Pierre-Yves Boëlle , Harriet Corvol , Manon Ruffin , Loïc Guillot","doi":"10.1016/j.ejcb.2024.151416","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151416","url":null,"abstract":"<div><p>Airway epithelial cells form a physical barrier against inhaled pathogens and coordinate innate immune responses in the lungs. Bronchial cells in people with cystic fibrosis (pwCF) are colonized by <em>Pseudomonas aeruginosa</em> because of the accumulation of mucus in the lower airways and an altered immune response. This leads to chronic inflammation, lung tissue damage, and accelerated decline in lung function. Thus, identifying the molecular factors involved in the host response in the airways is crucial for developing new therapeutic strategies. The septin (SEPT) cytoskeleton is involved in tissue barrier integrity and anti-infective responses. SEPT7 is critical for maintaining SEPT complexes and for sensing pathogenic microbes. In the lungs, SEPT7 may be involved in the epithelial barrier resistance to infection; however, its role in cystic fibrosis (CF) <em>P. aeruginosa</em> infection is unknown. This study aimed to investigate the role of SEPT7 in controlling <em>P. aeruginosa</em> infection in bronchial epithelial cells, particularly in CF. The study findings showed that SEPT7 encages <em>P. aeruginosa</em> in bronchial epithelial cells and its inhibition downregulates the expression of other SEPTs. In addition, <em>P. aeruginosa</em> does not regulate SEPT7 expression. Finally, we found that inhibiting SEPT7 expression in bronchial epithelial cells (BEAS-2B 16HBE14o- and primary cells) resulted in higher levels of internalized <em>P. aeruginosa</em> and decreased IL-6 production during infection, suggesting a crucial role of SEPT7 in the host response against this bacterium. However, these effects were not observed in the CF cells (16HBE14o-/F508del and primary cells) which may explain the persistence of infection in pwCF. The study findings suggest the modification of SEPT7 expression as a potential approach for the anti-infective control of <em>P. aeruginosa</em>, particularly in CF.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000335/pdfft?md5=ca8af7ea625def8665005329ab10adb1&pid=1-s2.0-S0171933524000335-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140605208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.1016/j.ejcb.2024.151414
Teklab Gebregiworgis , Jonathan Yui-Lai Chan , Douglas A. Kuntz , Gilbert G. Privé , Christopher B. Marshall , Mitsuhiko Ikura
The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.
{"title":"Crystal structure of NRAS Q61K with a ligand-induced pocket near switch II","authors":"Teklab Gebregiworgis , Jonathan Yui-Lai Chan , Douglas A. Kuntz , Gilbert G. Privé , Christopher B. Marshall , Mitsuhiko Ikura","doi":"10.1016/j.ejcb.2024.151414","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151414","url":null,"abstract":"<div><p>The RAS isoforms (KRAS, HRAS and NRAS) have distinct cancer type-specific profiles. NRAS mutations are the second most prevalent RAS mutations in skin and hematological malignancies. Although RAS proteins were considered undruggable for decades, isoform and mutation-specific investigations have produced successful RAS inhibitors that are either specific to certain mutants, isoforms (pan-KRAS) or target all RAS proteins (pan-RAS). While extensive structural and biochemical investigations have focused mainly on K- and H-RAS mutations, NRAS mutations have received less attention, and the most prevalent NRAS mutations in human cancers, Q61K and Q61R, are rare in K- and H-RAS. This manuscript presents a crystal structure of the NRAS Q61K mutant in the GTP-bound form. Our structure reveals a previously unseen pocket near switch II induced by the binding of a ligand to the active form of the protein. This observation reveals a binding site that can potentially be exploited for development of inhibitors against mutant NRAS. Furthermore, the well-resolved catalytic site of this GTPase bound to native GTP provides insight into the stalled GTP hydrolysis observed for NRAS-Q61K.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000311/pdfft?md5=ff3510fc9ce1ff5ba8e4b90d8544a6d3&pid=1-s2.0-S0171933524000311-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140620025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.1016/j.ejcb.2024.151413
Toshiyuki Murai
A wide variety of transmembrane signals are transduced by cell-surface receptors that activate intracellular signaling molecules. In particular, receptor clustering in the plasma membrane plays a critical role in these processes. Single-spanning or single-pass transmembrane proteins are among the most significant types of membrane receptors, which include adhesion receptors, such as integrins, CD44, cadherins, and receptor tyrosine kinases. Elucidating the molecular mechanisms underlying the regulation of the activity of these receptors is of great significance. Liquid–liquid phase separation (LLPS) is a recently emerging paradigm in cellular physiology for the ubiquitous regulation of the spatiotemporal dynamics of various signaling pathways. This study describes the emerging features of transmembrane signaling through single-spanning receptors from the perspective of phase separation. Possible physicochemical modulations of LLPS-based transmembrane signaling are also discussed.
{"title":"Transmembrane signaling through single-spanning receptors modulated by phase separation at the cell surface","authors":"Toshiyuki Murai","doi":"10.1016/j.ejcb.2024.151413","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151413","url":null,"abstract":"<div><p>A wide variety of transmembrane signals are transduced by cell-surface receptors that activate intracellular signaling molecules. In particular, receptor clustering in the plasma membrane plays a critical role in these processes. Single-spanning or single-pass transmembrane proteins are among the most significant types of membrane receptors, which include adhesion receptors, such as integrins, CD44, cadherins, and receptor tyrosine kinases. Elucidating the molecular mechanisms underlying the regulation of the activity of these receptors is of great significance. Liquid–liquid phase separation (LLPS) is a recently emerging paradigm in cellular physiology for the ubiquitous regulation of the spatiotemporal dynamics of various signaling pathways. This study describes the emerging features of transmembrane signaling through single-spanning receptors from the perspective of phase separation. Possible physicochemical modulations of LLPS-based transmembrane signaling are also discussed.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S017193352400030X/pdfft?md5=f355123dc16d3a979343eb4f372eaca9&pid=1-s2.0-S017193352400030X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mesenchymal stromal cells (MSCs) that are promising for cartilage tissue engineering secrete high amounts of prostaglandin E2 (PGE2), an immunoactive mediator involved in endochondral bone development. This study aimed to identify drivers of PGE2 and its role in the inadvertent MSC misdifferentiation into hypertrophic chondrocytes. PGE2 release, which rose in the first three weeks of MSC chondrogenesis, was jointly stimulated by endogenous BMP, WNT, and hedgehog activity that supported the exogenous stimulation by TGF-β1 and insulin to overcome the PGE2 inhibition by dexamethasone. Experiments with PGE2 treatment or the inhibitor celecoxib or specific receptor antagonists demonstrated that PGE2, although driven by prohypertrophic signals, exerted broad autocrine antihypertrophic effects. This chondroprotective effect makes PGE2 not only a promising option for future combinatorial approaches to direct MSC tissue engineering approaches into chondral instead of endochondral development but could potentially have implications for the use of COX-2-selective inhibitors in osteoarthritis pain management.
{"title":"Cause and chondroprotective effects of prostaglandin E2 secretion during mesenchymal stromal cell chondrogenesis","authors":"Sven Schmidt , Felicia A.M. Klampfleuthner , Tobias Renkawitz , Solvig Diederichs","doi":"10.1016/j.ejcb.2024.151412","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151412","url":null,"abstract":"<div><p>Mesenchymal stromal cells (MSCs) that are promising for cartilage tissue engineering secrete high amounts of prostaglandin E2 (PGE2), an immunoactive mediator involved in endochondral bone development. This study aimed to identify drivers of PGE2 and its role in the inadvertent MSC misdifferentiation into hypertrophic chondrocytes. PGE2 release, which rose in the first three weeks of MSC chondrogenesis, was jointly stimulated by endogenous BMP, WNT, and hedgehog activity that supported the exogenous stimulation by TGF-β1 and insulin to overcome the PGE2 inhibition by dexamethasone. Experiments with PGE2 treatment or the inhibitor celecoxib or specific receptor antagonists demonstrated that PGE2, although driven by prohypertrophic signals, exerted broad autocrine antihypertrophic effects. This chondroprotective effect makes PGE2 not only a promising option for future combinatorial approaches to direct MSC tissue engineering approaches into chondral instead of endochondral development but could potentially have implications for the use of COX-2-selective inhibitors in osteoarthritis pain management.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000293/pdfft?md5=8b143b5af9017e9a4c35bc7b9f4396f2&pid=1-s2.0-S0171933524000293-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140546214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-05DOI: 10.1016/j.ejcb.2024.151411
Rebecca Holzapfel , Agata Prell , Fabian Schumacher , Veronika Perschin , José Pedro Friedmann Angeli , Burkhard Kleuser , Christian Stigloher , Gholamreza Fazeli
Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in C. elegans tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of spp-10-deficient worms, which are likely caused by increased hexosylceramide species. spp-10 deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in spp-10-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.
{"title":"Degradation of hexosylceramides is required for timely corpse clearance via formation of cargo-containing phagolysosomal vesicles","authors":"Rebecca Holzapfel , Agata Prell , Fabian Schumacher , Veronika Perschin , José Pedro Friedmann Angeli , Burkhard Kleuser , Christian Stigloher , Gholamreza Fazeli","doi":"10.1016/j.ejcb.2024.151411","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151411","url":null,"abstract":"<div><p>Efficient degradation of phagocytic cargo in lysosomes is crucial to maintain cellular homeostasis and defending cells against pathogens. However, the mechanisms underlying the degradation and recycling of macromolecular cargo within the phagolysosome remain incompletely understood. We previously reported that the phagolysosome containing the corpse of the polar body in <em>C. elegans</em> tubulates into small vesicles to facilitate corpse clearance, a process that requires cargo protein degradation and amino acid export. Here we show that degradation of hexosylceramides by the prosaposin ortholog SPP-10 and glucosylceramidases is required for timely corpse clearance. We observed accumulation of membranous structures inside endolysosomes of <em>spp-10-</em>deficient worms, which are likely caused by increased hexosylceramide species. <em>spp-10</em> deficiency also caused alteration of additional sphingolipid subclasses, like dihydroceramides, 2-OH-ceramides, and dihydrosphingomyelins. While corpse engulfment, initial breakdown of corpse membrane inside the phagolysosome and lumen acidification proceeded normally in <em>spp-10</em>-deficient worms, formation of the cargo-containing vesicles from the corpse phagolysosome was reduced, resulting in delayed cargo degradation and phagolysosome resolution. Thus, by combining ultrastructural studies and sphingolipidomic analysis with observing single phagolysosomes over time, we identified a role of prosaposin/SPP-10 in maintaining phagolysosomal structure, which promotes efficient resolution of phagocytic cargos.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000281/pdfft?md5=563757f509a0ea66504431e4104977e6&pid=1-s2.0-S0171933524000281-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-03DOI: 10.1016/j.ejcb.2024.151410
Tomohito Higashi, Akira C. Saito, Hideki Chiba
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
{"title":"Damage control of epithelial barrier function in dynamic environments","authors":"Tomohito Higashi, Akira C. Saito, Hideki Chiba","doi":"10.1016/j.ejcb.2024.151410","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151410","url":null,"abstract":"<div><p>Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S017193352400027X/pdfft?md5=6566a5c09602d1fd655944353375b58b&pid=1-s2.0-S017193352400027X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140344911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-31DOI: 10.1016/j.ejcb.2024.151409
Teresa De Cicco , Marcin Pęziński , Olga Wójcicka , Bhola Shankar Pradhan , Margareta Jabłońska , Klemens Rottner , Tomasz J. Prószyński
Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.
{"title":"Cortactin interacts with αDystrobrevin-1 and regulates murine neuromuscular junction morphology","authors":"Teresa De Cicco , Marcin Pęziński , Olga Wójcicka , Bhola Shankar Pradhan , Margareta Jabłońska , Klemens Rottner , Tomasz J. Prószyński","doi":"10.1016/j.ejcb.2024.151409","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151409","url":null,"abstract":"<div><p>Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000268/pdfft?md5=01b1f23eefb553123bf14cd4b170e3a3&pid=1-s2.0-S0171933524000268-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140346965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-30DOI: 10.1016/j.ejcb.2024.151408
Daniel Weidinger , Julian Jacobsen , Desiree Alisch , Hendrik Uebner , Natalie Heinen , Lea Greune , Saskia Westhoven , Kaschin Jamal Jameel , Juliane Kronsbein , Stephanie Pfaender , Christian Taube , Sebastian Reuter , Marcus Peters , Hanns Hatt , Jürgen Knobloch
Background
Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells.
Methods
Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA.
Results
By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality.
Conclusion
ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.
{"title":"Olfactory receptors impact pathophysiological processes of lung diseases in bronchial epithelial cells","authors":"Daniel Weidinger , Julian Jacobsen , Desiree Alisch , Hendrik Uebner , Natalie Heinen , Lea Greune , Saskia Westhoven , Kaschin Jamal Jameel , Juliane Kronsbein , Stephanie Pfaender , Christian Taube , Sebastian Reuter , Marcus Peters , Hanns Hatt , Jürgen Knobloch","doi":"10.1016/j.ejcb.2024.151408","DOIUrl":"https://doi.org/10.1016/j.ejcb.2024.151408","url":null,"abstract":"<div><h3>Background</h3><p>Therapeutic options for steroid-resistant non-type 2 inflammation in obstructive lung diseases are limited. Bronchial epithelial cells are key in the pathogenesis by releasing the central proinflammatory cytokine interleukine-8 (IL-8). Olfactory receptors (ORs) are expressed in various cell types. This study examined the drug target potential of ORs by investigating their impact on associated pathophysiological processes in lung epithelial cells.</p></div><div><h3>Methods</h3><p>Experiments were performed in the A549 cell line and in primary human bronchial epithelial cells. OR expression was investigated using RT-PCR, Western blot, and immunocytochemical staining. OR-mediated effects were analyzed by measuring 1) intracellular calcium concentration via calcium imaging, 2) cAMP concentration by luminescence-based assays, 3) wound healing by scratch assays, 4) proliferation by MTS-based assays, 5) cellular vitality by Annexin V/PI-based FACS staining, and 6) the secretion of IL-8 in culture supernatants by ELISA.</p></div><div><h3>Results</h3><p>By screening 100 potential OR agonists, we identified two, Brahmanol and Cinnamaldehyde, that increased intracellular calcium concentrations. The mRNA and proteins of the corresponding receptors OR2AT4 and OR2J3 were detected. Stimulation of OR2J3 with Cinnamaldehyde reduced 1) IL-8 in the absence and presence of bacterial and viral pathogen-associated molecular patterns (PAMPs), 2) proliferation, and 3) wound healing but increased cAMP. In contrast, stimulation of OR2AT4 by Brahmanol increased wound healing but did not affect cAMP and proliferation. Both ORs did not influence cell vitality.</p></div><div><h3>Conclusion</h3><p>ORs might be promising drug target candidates for lung diseases with non-type 2 inflammation. Their stimulation might reduce inflammation or prevent tissue remodeling by promoting wound healing.</p></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171933524000256/pdfft?md5=e70d3f1f239a419f3746716aef60a9dd&pid=1-s2.0-S0171933524000256-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}