首页 > 最新文献

Evolving Systems最新文献

英文 中文
Attention-based hand semantic segmentation and gesture recognition using deep networks 基于注意力的手部语义分割与深度网络手势识别
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-03 DOI: 10.1007/s12530-023-09512-1
Debajit Sarma, H. Dutta, K. Yadav, M. Bhuyan, R. Laskar
{"title":"Attention-based hand semantic segmentation and gesture recognition using deep networks","authors":"Debajit Sarma, H. Dutta, K. Yadav, M. Bhuyan, R. Laskar","doi":"10.1007/s12530-023-09512-1","DOIUrl":"https://doi.org/10.1007/s12530-023-09512-1","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"35 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90956566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data mining approach for energy efficiency improvements in a utilities supply on a petrochemical plant 基于数据挖掘的石化厂公用设施能源效率改进方法
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-01 DOI: 10.1007/s12530-023-09515-y
Delano Mendes de Santana, Sérgio Ricardo Lourenço, D. A. Cassiano
{"title":"Data mining approach for energy efficiency improvements in a utilities supply on a petrochemical plant","authors":"Delano Mendes de Santana, Sérgio Ricardo Lourenço, D. A. Cassiano","doi":"10.1007/s12530-023-09515-y","DOIUrl":"https://doi.org/10.1007/s12530-023-09515-y","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"42 1","pages":"1071 - 1081"},"PeriodicalIF":3.2,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85026127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A large multiclass dataset of CT scans for COVID-19 identification 用于COVID-19识别的大型多类CT扫描数据集
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-27 DOI: 10.1007/s12530-023-09511-2
E. Soares, P. Angelov, Sarah Biaso, M. Cury, D. Abe
{"title":"A large multiclass dataset of CT scans for COVID-19 identification","authors":"E. Soares, P. Angelov, Sarah Biaso, M. Cury, D. Abe","doi":"10.1007/s12530-023-09511-2","DOIUrl":"https://doi.org/10.1007/s12530-023-09511-2","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"60 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91166953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
AO-SAKEL: arithmetic optimization-based self-adaptive kernel extreme learning for international trade prediction 基于算法优化的自适应核极值学习的国际贸易预测
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-18 DOI: 10.1007/s12530-023-09500-5
V. Gupta, Ela Kumar
{"title":"AO-SAKEL: arithmetic optimization-based self-adaptive kernel extreme learning for international trade prediction","authors":"V. Gupta, Ela Kumar","doi":"10.1007/s12530-023-09500-5","DOIUrl":"https://doi.org/10.1007/s12530-023-09500-5","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"27 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83336211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hybrid self-attention NEAT: a novel evolutionary self-attention approach to improve the NEAT algorithm in high dimensional inputs 混合自关注整洁:一种改进高维输入整洁算法的新型进化自关注方法
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-12 DOI: 10.1007/s12530-023-09510-3
Saman Khamesian, Hamed Malek
{"title":"Hybrid self-attention NEAT: a novel evolutionary self-attention approach to improve the NEAT algorithm in high dimensional inputs","authors":"Saman Khamesian, Hamed Malek","doi":"10.1007/s12530-023-09510-3","DOIUrl":"https://doi.org/10.1007/s12530-023-09510-3","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"9 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78756920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swarm based automatic clustering using nature inspired Emperor Penguins Colony algorithm 基于自然启发的帝企鹅群体算法的蜂群自动聚类
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-11 DOI: 10.1007/s12530-023-09507-y
Sasan Harifi, Madjid Khalilian, J. Mohammadzadeh
{"title":"Swarm based automatic clustering using nature inspired Emperor Penguins Colony algorithm","authors":"Sasan Harifi, Madjid Khalilian, J. Mohammadzadeh","doi":"10.1007/s12530-023-09507-y","DOIUrl":"https://doi.org/10.1007/s12530-023-09507-y","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"3 1","pages":"1083 - 1099"},"PeriodicalIF":3.2,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76060309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multivariate time series short term forecasting using cumulative data of coronavirus. 利用冠状病毒的累积数据进行多变量时间序列短期预测。
IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-06-04 DOI: 10.1007/s12530-023-09509-w
Suryanshi Mishra, Tinku Singh, Manish Kumar, Satakshi

Coronavirus emerged as a highly contagious, pathogenic virus that severely affects the respiratory system of humans. The epidemic-related data is collected regularly, which machine learning algorithms can employ to comprehend and estimate valuable information. The analysis of the gathered data through time series approaches may assist in developing more accurate forecasting models and strategies to combat the disease. This paper focuses on short-term forecasting of cumulative reported incidences and mortality. Forecasting is conducted utilizing state-of-the-art mathematical and deep learning models for multivariate time series forecasting, including extended susceptible-exposed-infected-recovered (SEIR), long-short-term memory (LSTM), and vector autoregression (VAR). The SEIR model has been extended by integrating additional information such as hospitalization, mortality, vaccination, and quarantine incidences. Extensive experiments have been conducted to compare deep learning and mathematical models that enable us to estimate fatalities and incidences more precisely based on mortality in the eight most affected nations during the time of this research. The metrics like mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed to gauge the model's effectiveness. The deep learning model LSTM outperformed all others in terms of forecasting accuracy. Additionally, the study explores the impact of vaccination on reported epidemics and deaths worldwide. Furthermore, the detrimental effects of ambient temperature and relative humidity on pathogenic virus dissemination have been analyzed.

冠状病毒是一种高度传染性的致病性病毒,严重影响人类的呼吸系统。定期收集疫情相关数据,机器学习算法可以用来理解和估计有价值的信息。通过时间序列方法对收集的数据进行分析可能有助于开发更准确的预测模型和策略来对抗这种疾病。本文着重于累计报告发病率和死亡率的短期预测。预测是利用最先进的数学和深度学习模型进行的,用于多变量时间序列预测,包括扩展易感暴露感染者康复(SEIR)、长短期记忆(LSTM)和向量自回归(VAR)。SEIR模型通过整合住院、死亡率、疫苗接种和隔离发生率等额外信息进行了扩展。已经进行了广泛的实验来比较深度学习和数学模型,使我们能够根据本研究期间受影响最严重的八个国家的死亡率更准确地估计死亡人数和发病率。采用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)等指标来衡量模型的有效性。深度学习模型LSTM在预测准确性方面优于所有其他模型。此外,该研究还探讨了疫苗接种对全球报告的流行病和死亡的影响。此外,还分析了环境温度和相对湿度对病原病毒传播的不利影响。
{"title":"Multivariate time series short term forecasting using cumulative data of coronavirus.","authors":"Suryanshi Mishra, Tinku Singh, Manish Kumar, Satakshi","doi":"10.1007/s12530-023-09509-w","DOIUrl":"10.1007/s12530-023-09509-w","url":null,"abstract":"<p><p>Coronavirus emerged as a highly contagious, pathogenic virus that severely affects the respiratory system of humans. The epidemic-related data is collected regularly, which machine learning algorithms can employ to comprehend and estimate valuable information. The analysis of the gathered data through time series approaches may assist in developing more accurate forecasting models and strategies to combat the disease. This paper focuses on short-term forecasting of cumulative reported incidences and mortality. Forecasting is conducted utilizing state-of-the-art mathematical and deep learning models for multivariate time series forecasting, including extended susceptible-exposed-infected-recovered (SEIR), long-short-term memory (LSTM), and vector autoregression (VAR). The SEIR model has been extended by integrating additional information such as hospitalization, mortality, vaccination, and quarantine incidences. Extensive experiments have been conducted to compare deep learning and mathematical models that enable us to estimate fatalities and incidences more precisely based on mortality in the eight most affected nations during the time of this research. The metrics like mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE) are employed to gauge the model's effectiveness. The deep learning model LSTM outperformed all others in terms of forecasting accuracy. Additionally, the study explores the impact of vaccination on reported epidemics and deaths worldwide. Furthermore, the detrimental effects of ambient temperature and relative humidity on pathogenic virus dissemination have been analyzed.</p>","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":" ","pages":"1-18"},"PeriodicalIF":2.7,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9705198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards improvement of baseline performance for regression based human pose estimation 改进基于回归的人体姿态估计的基线性能
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-05-26 DOI: 10.1007/s12530-023-09508-x
Pranjal Kumar, S. Chauhan
{"title":"Towards improvement of baseline performance for regression based human pose estimation","authors":"Pranjal Kumar, S. Chauhan","doi":"10.1007/s12530-023-09508-x","DOIUrl":"https://doi.org/10.1007/s12530-023-09508-x","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"46 1","pages":""},"PeriodicalIF":3.2,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73819976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facial emotion recognition and music recommendation system using CNN-based deep learning techniques 人脸情感识别和音乐推荐系统采用基于cnn的深度学习技术
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-05-16 DOI: 10.1007/s12530-023-09506-z
Brijesh Bakariya, Arshdeep Singh, Harmanpreet Singh, P. Raju, Rohit Rajpoot, K. Mohbey
{"title":"Facial emotion recognition and music recommendation system using CNN-based deep learning techniques","authors":"Brijesh Bakariya, Arshdeep Singh, Harmanpreet Singh, P. Raju, Rohit Rajpoot, K. Mohbey","doi":"10.1007/s12530-023-09506-z","DOIUrl":"https://doi.org/10.1007/s12530-023-09506-z","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"16 1","pages":"1-18"},"PeriodicalIF":3.2,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83512825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Concept drift from 1980 to 2020: a comprehensive bibliometric analysis with future research insight 从1980年到2020年的概念漂移:具有未来研究洞察力的综合文献计量学分析
IF 3.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-05-05 DOI: 10.1007/s12530-023-09503-2
Elif Selen Babüroğlu, A. Durmuşoğlu, Türkay Dereli
{"title":"Concept drift from 1980 to 2020: a comprehensive bibliometric analysis with future research insight","authors":"Elif Selen Babüroğlu, A. Durmuşoğlu, Türkay Dereli","doi":"10.1007/s12530-023-09503-2","DOIUrl":"https://doi.org/10.1007/s12530-023-09503-2","url":null,"abstract":"","PeriodicalId":12174,"journal":{"name":"Evolving Systems","volume":"1 1","pages":"1-21"},"PeriodicalIF":3.2,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75959547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Evolving Systems
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1