Pub Date : 2024-08-27DOI: 10.1186/s40164-024-00555-x
Rong Wang, Liang V Tang, Yu Hu
In thrombotic diseases, coagulation, anticoagulation, and fibrinolysis are three key physiological processes that interact to maintain blood in an appropriate state within blood vessels. When these processes become imbalanced, such as excessive coagulation or reduced anticoagulant function, it can lead to the formation of blood clots. Genetic factors play a significant role in the onset of thrombotic diseases and exhibit regional and ethnic variations. The decision of whether to initiate prophylactic anticoagulant therapy is a matter that clinicians must carefully consider, leading to the development of various thrombotic risk assessment scales in clinical practice. Given the considerable heterogeneity in clinical diagnosis and treatment, researchers are exploring the application of artificial intelligence in medicine, including disease prediction, diagnosis, treatment, prevention, and patient management. This paper reviews the research progress on various genetic factors involved in thrombotic diseases, analyzes the advantages and disadvantages of commonly used thrombotic risk assessment scales and the characteristics of ideal scoring scales, and explores the application of artificial intelligence in the medical field, along with its future prospects.
{"title":"Genetic factors, risk prediction and AI application of thrombotic diseases.","authors":"Rong Wang, Liang V Tang, Yu Hu","doi":"10.1186/s40164-024-00555-x","DOIUrl":"10.1186/s40164-024-00555-x","url":null,"abstract":"<p><p>In thrombotic diseases, coagulation, anticoagulation, and fibrinolysis are three key physiological processes that interact to maintain blood in an appropriate state within blood vessels. When these processes become imbalanced, such as excessive coagulation or reduced anticoagulant function, it can lead to the formation of blood clots. Genetic factors play a significant role in the onset of thrombotic diseases and exhibit regional and ethnic variations. The decision of whether to initiate prophylactic anticoagulant therapy is a matter that clinicians must carefully consider, leading to the development of various thrombotic risk assessment scales in clinical practice. Given the considerable heterogeneity in clinical diagnosis and treatment, researchers are exploring the application of artificial intelligence in medicine, including disease prediction, diagnosis, treatment, prevention, and patient management. This paper reviews the research progress on various genetic factors involved in thrombotic diseases, analyzes the advantages and disadvantages of commonly used thrombotic risk assessment scales and the characteristics of ideal scoring scales, and explores the application of artificial intelligence in the medical field, along with its future prospects.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The optimal timing and type of hematopoietic stem cell transplantation (HSCT) for treating peripheral T-cell lymphoma (PTCL) remain controversial. This retrospective real-world study investigated the application pattern and outcomes of HSCT in China. The analysis encompassed 408 PTCL patients with a median age of 45.5 years, all of whom received initial adequate therapy at five hospitals. Among patients with nodal PTCL who responded effectively to first-line therapy (the "responders", n = 127) and subsequently underwent HSCT consolidation (n = 47, 37.0%), 93.6% received auto-HSCT, while 6.4% underwent allo-HSCT. Front-line auto-HSCT showed potential for long-term disease control in nodal PTCL responders. Among non-nodal PTCL responders (n = 80) with HSCT (n = 26, 32.5%), 46.2% underwent allo-HSCT and 53.8% received auto-HSCT. Upfront allo-HSCT provides longer progression-free survival (PFS) for non-nodal PTCL responders, with lower 3-year cumulative incidence of relapse (CIR) (16.7% vs. 56.0%) and comparable non-relapse mortality (NRM) (10.4% vs. 11.0%) compared to auto-HSCT. For patients who achieved remission with second-line salvage regimens, allo-HSCT was the primary choice (82.4%) for non-nodal PTCL, while auto-HSCT was more common (82.4%) in nodal PTCL. Nodal PTCL patients underwent auto-HSCT after ≥ 3 lines of treatment had a higher 3-year CIR (81.0%) compared to those treated in the first (26.0%) or second line (26.0%). Non-nodal PTCL patients underwent allo-HSCT after ≥ 3 lines had a higher 3-year NRM (37.5%) compared to after first (10.4%) or second line treatment (8.5%). These findings highlight distinct HSCT application patterns for PTCL in China, emphasizing the impact of early disease control and upfront consolidative HSCT.
{"title":"Application patterns and outcomes of hematopoietic stem cell transplantation in peripheral T-cell lymphoma patients: a multicenter real-world study in China.","authors":"Hongye Gao, Zhuoxin Zhang, Jiali Wang, Yannan Jia, Yawei Zheng, Xiaolei Pei, Weihua Zhai, Rongli Zhang, Xin Chen, Qiaoling Ma, Jialin Wei, Donglin Yang, Aiming Pang, Yi He, Sizhou Feng, Hao Zhang, Xin Du, Xianmin Song, Yao Liu, Dehui Zou, Erlie Jiang","doi":"10.1186/s40164-024-00557-9","DOIUrl":"10.1186/s40164-024-00557-9","url":null,"abstract":"<p><p>The optimal timing and type of hematopoietic stem cell transplantation (HSCT) for treating peripheral T-cell lymphoma (PTCL) remain controversial. This retrospective real-world study investigated the application pattern and outcomes of HSCT in China. The analysis encompassed 408 PTCL patients with a median age of 45.5 years, all of whom received initial adequate therapy at five hospitals. Among patients with nodal PTCL who responded effectively to first-line therapy (the \"responders\", n = 127) and subsequently underwent HSCT consolidation (n = 47, 37.0%), 93.6% received auto-HSCT, while 6.4% underwent allo-HSCT. Front-line auto-HSCT showed potential for long-term disease control in nodal PTCL responders. Among non-nodal PTCL responders (n = 80) with HSCT (n = 26, 32.5%), 46.2% underwent allo-HSCT and 53.8% received auto-HSCT. Upfront allo-HSCT provides longer progression-free survival (PFS) for non-nodal PTCL responders, with lower 3-year cumulative incidence of relapse (CIR) (16.7% vs. 56.0%) and comparable non-relapse mortality (NRM) (10.4% vs. 11.0%) compared to auto-HSCT. For patients who achieved remission with second-line salvage regimens, allo-HSCT was the primary choice (82.4%) for non-nodal PTCL, while auto-HSCT was more common (82.4%) in nodal PTCL. Nodal PTCL patients underwent auto-HSCT after ≥ 3 lines of treatment had a higher 3-year CIR (81.0%) compared to those treated in the first (26.0%) or second line (26.0%). Non-nodal PTCL patients underwent allo-HSCT after ≥ 3 lines had a higher 3-year NRM (37.5%) compared to after first (10.4%) or second line treatment (8.5%). These findings highlight distinct HSCT application patterns for PTCL in China, emphasizing the impact of early disease control and upfront consolidative HSCT.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344441/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1186/s40164-024-00551-1
Pier Luigi Zinzani, Javier Muñoz, Judith Trotman
Follicular lymphoma (FL) is an indolent, germinal center B cell-derived lymphoid neoplasm, for which recent advances in treatment have substantially improved patient survival. However, FL remains an incurable and heterogeneous disease, with groups of patients experiencing early disease progression, histologic transformation, or a high risk of treatment-related toxicity. Additionally, FL is a continually relapsing disease, and response rates and disease-control intervals decrease with each subsequent line of therapy. In this review, we explore the current treatment landscape for relapsed or refractory FL and promising therapies in development, highlighting the efficacy and potential risks of each treatment. We provide a real-world perspective on the unmet needs of patients with FL. Novel therapeutic approaches in development offer a wide array of options for clinicians when treating relapsed or refractory FL. A nuanced approach is required to address the needs of individual patients, taking into consideration both the risks and benefits of each treatment option, as well as patient preferences.
{"title":"Current and future therapies for follicular lymphoma.","authors":"Pier Luigi Zinzani, Javier Muñoz, Judith Trotman","doi":"10.1186/s40164-024-00551-1","DOIUrl":"10.1186/s40164-024-00551-1","url":null,"abstract":"<p><p>Follicular lymphoma (FL) is an indolent, germinal center B cell-derived lymphoid neoplasm, for which recent advances in treatment have substantially improved patient survival. However, FL remains an incurable and heterogeneous disease, with groups of patients experiencing early disease progression, histologic transformation, or a high risk of treatment-related toxicity. Additionally, FL is a continually relapsing disease, and response rates and disease-control intervals decrease with each subsequent line of therapy. In this review, we explore the current treatment landscape for relapsed or refractory FL and promising therapies in development, highlighting the efficacy and potential risks of each treatment. We provide a real-world perspective on the unmet needs of patients with FL. Novel therapeutic approaches in development offer a wide array of options for clinicians when treating relapsed or refractory FL. A nuanced approach is required to address the needs of individual patients, taking into consideration both the risks and benefits of each treatment option, as well as patient preferences.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340193/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-19DOI: 10.1186/s40164-024-00554-y
Tae Young Ryu, In Hwan Tae, Tae-Su Han, Jinkwon Lee, Kwangho Kim, Yunsang Kang, Solbi Kim, Hyo Jin Lee, Cho-Rok Jung, Jung Hwa Lim, Dae-Soo Kim, Mi-Young Son, Hyun-Soo Cho
Background: Gastric cancer (GC) is a type of cancer with high incidence and mortality rates. Although various chemical interventions are being developed to treat gastric cancer, there is a constant demand for research into new GC treatment targets and modes of action (MOAs) because of the low effectiveness and side effects of current treatments.
Methods: Using the TCGA data portal, we identified EHMT2 overexpression in GC samples. Using RNA-seq and EHMT2-specific siRNA, we investigated the role of EHMT2 in GC cell proliferation and validated its function with two EHMT2-specific inhibitors. Through the application of 3D spheroid culture, patient-derived gastric cancer organoids (PDOs), and an in vivo model, we confirmed the role of EHMT2 in GC cell proliferation.
Results: In this study, we found that EHMT2, a histone 3 lysine 9 (H3K9) methyltransferase, is significantly overexpressed in GC patients compared with healthy individuals. Knockdown of EHMT2 with siRNA induced G1 cell cycle arrest and attenuated GC cell proliferation. Furthermore, we confirmed that TP53INP1 induction by EHMT2 knockdown induced cell cycle arrest and inhibited GC cell proliferation. Moreover, specific EHMT2 inhibitors, BIX01294 and UNC0638, induced cell cycle arrest in GC cell lines through TP53INP1 upregulation. The efficacy of EHMT2 inhibition was further confirmed in a 3D spheroid culture system, PDOs, and a xenograft model.
Conclusions: Our findings suggest that EHMT2 is an attractive therapeutic target for GC treatment.
{"title":"Epigenetic alterations of TP53INP1 by EHMT2 regulate the cell cycle in gastric cancer.","authors":"Tae Young Ryu, In Hwan Tae, Tae-Su Han, Jinkwon Lee, Kwangho Kim, Yunsang Kang, Solbi Kim, Hyo Jin Lee, Cho-Rok Jung, Jung Hwa Lim, Dae-Soo Kim, Mi-Young Son, Hyun-Soo Cho","doi":"10.1186/s40164-024-00554-y","DOIUrl":"10.1186/s40164-024-00554-y","url":null,"abstract":"<p><strong>Background: </strong>Gastric cancer (GC) is a type of cancer with high incidence and mortality rates. Although various chemical interventions are being developed to treat gastric cancer, there is a constant demand for research into new GC treatment targets and modes of action (MOAs) because of the low effectiveness and side effects of current treatments.</p><p><strong>Methods: </strong>Using the TCGA data portal, we identified EHMT2 overexpression in GC samples. Using RNA-seq and EHMT2-specific siRNA, we investigated the role of EHMT2 in GC cell proliferation and validated its function with two EHMT2-specific inhibitors. Through the application of 3D spheroid culture, patient-derived gastric cancer organoids (PDOs), and an in vivo model, we confirmed the role of EHMT2 in GC cell proliferation.</p><p><strong>Results: </strong>In this study, we found that EHMT2, a histone 3 lysine 9 (H3K9) methyltransferase, is significantly overexpressed in GC patients compared with healthy individuals. Knockdown of EHMT2 with siRNA induced G1 cell cycle arrest and attenuated GC cell proliferation. Furthermore, we confirmed that TP53INP1 induction by EHMT2 knockdown induced cell cycle arrest and inhibited GC cell proliferation. Moreover, specific EHMT2 inhibitors, BIX01294 and UNC0638, induced cell cycle arrest in GC cell lines through TP53INP1 upregulation. The efficacy of EHMT2 inhibition was further confirmed in a 3D spheroid culture system, PDOs, and a xenograft model.</p><p><strong>Conclusions: </strong>Our findings suggest that EHMT2 is an attractive therapeutic target for GC treatment.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334499/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Epstein-Barr virus (EBV) related post-transplant lymphoproliferative disorder (EBV-PTLD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) or solid organ transplantation (SOT), for which no standard therapeutic means have been developed. Significant increase expression of natural killer group 2 member D ligands (NKG2DLs) was observed on B-lymphoblastoid cells of EBV-PTLD, indicating NKG2DLs as potential therapeutic targets for treatment of EBV-PTLD. In this study, the recombinant constructs of NKG2D CAR and IL-15/IL-15Rα-NKG2D CAR were generated with a retroviral vector and then transduced to human T cells to produce NKG2D CAR-T and IL-15/IL-15Rα-NKG2D CAR-T cells, respectively. B-lymphoblastoid cell lines (B-LCLs) and the xenografted mouse models were established to evaluate the efficacy of these CAR-T cells. IL-15/IL-15Rα-NKG2D CAR-T cells exhibited superior proliferation and antigen-specific cytotoxic effect compared to NKG2D CAR-T, as IL-15/IL-15Rα signaling promoted the expansion of less differentiated central memory T cells (TCM) and increased expression of CD107a and IFN-γ. Moreover, EBV DNA load was dramatically reduced, and 80% B-LCL cells were eliminated by IL-15/IL-15Rα-NKG2D CAR-T cells after co-culturing. In-vivo study confirmed that IL-15/IL-15Rα-NKG2D CAR-T cell therapy significantly enhanced antiviral efficacy in mice, as the serum load of EBV after IL-15/IL-15Rα-NKG2D CAR-T cell infusion was 1500 times lower than the untreated control (P < 0.001). The enhanced efficacy of IL-15/IL-15Rα-NKG2D CAR T cells was probably due to the IL-15/IL-15Rα signaling improved homing and persistence of NKG2D CAR-T cells in vivo, and increased the production of IFN-γ, Perforin, and Granulysin. In conclusion, NKG2D CAR-T cells co-expressing IL-15/IL-15Rα promoted the central memory CAR T cell proliferation and improved the homing and persistence of CAR T cells in vivo, resulting in enhanced anti-tumor and anti-viral effects in treating EBV-PTLD.
{"title":"Efficacy of NKG2D CAR-T cells with IL-15/IL-15Rα signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder.","authors":"Qiusui Mai, Bailin He, Shikai Deng, Qing Zeng, Yanwen Xu, Cong Wang, Yunyi Pang, Sheng Zhang, Jinfeng Li, Jinfeng Zeng, Liqin Huang, Yongshui Fu, Chengyao Li, Tingting Li, Xiaojun Xu, Ling Zhang","doi":"10.1186/s40164-024-00553-z","DOIUrl":"10.1186/s40164-024-00553-z","url":null,"abstract":"<p><p>Epstein-Barr virus (EBV) related post-transplant lymphoproliferative disorder (EBV-PTLD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) or solid organ transplantation (SOT), for which no standard therapeutic means have been developed. Significant increase expression of natural killer group 2 member D ligands (NKG2DLs) was observed on B-lymphoblastoid cells of EBV-PTLD, indicating NKG2DLs as potential therapeutic targets for treatment of EBV-PTLD. In this study, the recombinant constructs of NKG2D CAR and IL-15/IL-15Rα-NKG2D CAR were generated with a retroviral vector and then transduced to human T cells to produce NKG2D CAR-T and IL-15/IL-15Rα-NKG2D CAR-T cells, respectively. B-lymphoblastoid cell lines (B-LCLs) and the xenografted mouse models were established to evaluate the efficacy of these CAR-T cells. IL-15/IL-15Rα-NKG2D CAR-T cells exhibited superior proliferation and antigen-specific cytotoxic effect compared to NKG2D CAR-T, as IL-15/IL-15Rα signaling promoted the expansion of less differentiated central memory T cells (T<sub>CM</sub>) and increased expression of CD107a and IFN-γ. Moreover, EBV DNA load was dramatically reduced, and 80% B-LCL cells were eliminated by IL-15/IL-15Rα-NKG2D CAR-T cells after co-culturing. In-vivo study confirmed that IL-15/IL-15Rα-NKG2D CAR-T cell therapy significantly enhanced antiviral efficacy in mice, as the serum load of EBV after IL-15/IL-15Rα-NKG2D CAR-T cell infusion was 1500 times lower than the untreated control (P < 0.001). The enhanced efficacy of IL-15/IL-15Rα-NKG2D CAR T cells was probably due to the IL-15/IL-15Rα signaling improved homing and persistence of NKG2D CAR-T cells in vivo, and increased the production of IFN-γ, Perforin, and Granulysin. In conclusion, NKG2D CAR-T cells co-expressing IL-15/IL-15Rα promoted the central memory CAR T cell proliferation and improved the homing and persistence of CAR T cells in vivo, resulting in enhanced anti-tumor and anti-viral effects in treating EBV-PTLD.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1186/s40164-024-00556-w
Noelia Che, Sandra Cantilena, Remi Looi-Somoye, Danesh Sundar, Kent Fung, Jasper de Boer, Owen Williams
Rearrangements of the MLL (KMT2A) locus are associated with aggressive leukaemia of both myeloid and lymphoid lineages, that present profound therapeutic challenges in pediatric and adult patient populations. MLL-fusion genes resulting from these rearrangements function as driving oncogenes and have been the focus of research aimed at understanding mechanisms underlying their leukemogenic activity and revealing novel therapeutic opportunities. Inspired by the paradigm of depleting the PML-RARA fusion protein in acute promyelocytic leukemia using all-trans retinoic acid and arsenic trioxide, we conducted a screen to identify FDA-approved drugs capable of depleting MLL-fusion protein expression in leukemia cells. Previously, we reported potent anti-leukemia effects of disulfiram (DSF), identified through this screen. In the present study, we demonstrate that another hit compound, niclosamide (NSM), is also able to deplete MLL-fusion proteins derived from a range of different MLL-fusion genes in both acute myeloid (AML) and acute lymphoid (ALL) leukemias. Loss of MLL-fusion protein appeared to result from inhibition of global protein translation by NSM. Importantly, combination of DSF with NSM enhanced MLL-fusion protein depletion. This led to more profound inhibition of downstream transcriptional leukemogenic programs regulated by MLL-fusion proteins and more effective killing of both MLL-rearranged AML and ALL cells. In contrast, DSF/NSM drug combination had little impact on normal hematopoietic progenitor cell differentiation. This study demonstrates that two FDA-approved drugs with excellent safety profiles can be combined to increase the efficacy of MLL-fusion protein depletion and elimination of MLL-rearranged leukaemia.
{"title":"Enhanced depletion of MLL-fusion proteins in acute leukemia: potential for improved therapeutic outcomes.","authors":"Noelia Che, Sandra Cantilena, Remi Looi-Somoye, Danesh Sundar, Kent Fung, Jasper de Boer, Owen Williams","doi":"10.1186/s40164-024-00556-w","DOIUrl":"10.1186/s40164-024-00556-w","url":null,"abstract":"<p><p>Rearrangements of the MLL (KMT2A) locus are associated with aggressive leukaemia of both myeloid and lymphoid lineages, that present profound therapeutic challenges in pediatric and adult patient populations. MLL-fusion genes resulting from these rearrangements function as driving oncogenes and have been the focus of research aimed at understanding mechanisms underlying their leukemogenic activity and revealing novel therapeutic opportunities. Inspired by the paradigm of depleting the PML-RARA fusion protein in acute promyelocytic leukemia using all-trans retinoic acid and arsenic trioxide, we conducted a screen to identify FDA-approved drugs capable of depleting MLL-fusion protein expression in leukemia cells. Previously, we reported potent anti-leukemia effects of disulfiram (DSF), identified through this screen. In the present study, we demonstrate that another hit compound, niclosamide (NSM), is also able to deplete MLL-fusion proteins derived from a range of different MLL-fusion genes in both acute myeloid (AML) and acute lymphoid (ALL) leukemias. Loss of MLL-fusion protein appeared to result from inhibition of global protein translation by NSM. Importantly, combination of DSF with NSM enhanced MLL-fusion protein depletion. This led to more profound inhibition of downstream transcriptional leukemogenic programs regulated by MLL-fusion proteins and more effective killing of both MLL-rearranged AML and ALL cells. In contrast, DSF/NSM drug combination had little impact on normal hematopoietic progenitor cell differentiation. This study demonstrates that two FDA-approved drugs with excellent safety profiles can be combined to increase the efficacy of MLL-fusion protein depletion and elimination of MLL-rearranged leukaemia.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141995616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: The predominant immune cells in solid tumors are M2-like tumor-associated macrophages (M2-like TAMs), which significantly impact the promotion of epithelial-mesenchymal transition (EMT) in tumors, enhancing stemness and facilitating tumor invasion and metastasis. However, the contribution of M2-like TAMs to tumor progression in gallbladder cancer (GBC) is partially known.
Methods: Immunohistochemistry was used to evaluate the expression of M2-like TAMs and cancer stem cell (CSC) markers in 24 pairs of GBC and adjacent noncancerous tissues from patients with GBC. Subsequently, GBC cells and M2-like TAMs were co-cultured to examine the expression of CSC markers, EMT markers, and migratory behavior. Proteomics was performed on the culture supernatant of M2-like TAMs. The mechanisms underlying the induction of EMT, stemness, and metastasis in GBC by M2-like TAMs were elucidated using proteomics and transcriptomics. GBC cells were co-cultured with undifferentiated macrophages (M0) and analyzed. The therapeutic effect of gemcitabine combined with a chemokine (C-C motif) receptor 2 (CCR2) antagonist on GBC was observed in vivo.
Results: The expression levels of CD68 and CD163 in M2-like TAMs and CD44 and CD133 in gallbladder cancer stem cells (GBCSCs) were increased and positively correlated in GBC tissues compared with those in neighboring noncancerous tissues. M2-like TAMs secreted a significant amount of chemotactic cytokine ligand 2 (CCL2), which activated the MEK/extracellular regulated protein kinase (ERK) pathway and enhanced SNAIL expression after binding to the receptor CCR2 on GBC cells. Activation of the ERK pathway caused nuclear translocation of ELK1, which subsequently led to increased SNAIL expression. GBCSCs mediated the recruitment and polarization of M0 into M2-like TAMs within the GBC microenvironment via CCL2 secretion. In the murine models, the combination of a CCR2 antagonist and gemcitabine efficiently inhibited the growth of subcutaneous tumors in GBC.
Conclusions: The interaction between M2-like TAMs and GBC cells is mediated by the chemokine CCL2, which activates the MEK/ERK/ELK1/SNAIL pathway in GBC cells, promoting EMT, stemness, and metastasis. A combination of a CCR2 inhibitor and gemcitabine effectively suppressed the growth of subcutaneous tumors. Consequently, our study identified promising therapeutic targets and strategies for treating GBC.
{"title":"M2-like tumor-associated macrophage-secreted CCL2 facilitates gallbladder cancer stemness and metastasis.","authors":"Weihong Chen, Mingyuan Chen, Lingju Hong, Abudukeremu Xiahenazi, Maotuan Huang, Nanhong Tang, Xinyue Yang, Feifei She, Yanling Chen","doi":"10.1186/s40164-024-00550-2","DOIUrl":"10.1186/s40164-024-00550-2","url":null,"abstract":"<p><strong>Background: </strong>The predominant immune cells in solid tumors are M2-like tumor-associated macrophages (M2-like TAMs), which significantly impact the promotion of epithelial-mesenchymal transition (EMT) in tumors, enhancing stemness and facilitating tumor invasion and metastasis. However, the contribution of M2-like TAMs to tumor progression in gallbladder cancer (GBC) is partially known.</p><p><strong>Methods: </strong>Immunohistochemistry was used to evaluate the expression of M2-like TAMs and cancer stem cell (CSC) markers in 24 pairs of GBC and adjacent noncancerous tissues from patients with GBC. Subsequently, GBC cells and M2-like TAMs were co-cultured to examine the expression of CSC markers, EMT markers, and migratory behavior. Proteomics was performed on the culture supernatant of M2-like TAMs. The mechanisms underlying the induction of EMT, stemness, and metastasis in GBC by M2-like TAMs were elucidated using proteomics and transcriptomics. GBC cells were co-cultured with undifferentiated macrophages (M0) and analyzed. The therapeutic effect of gemcitabine combined with a chemokine (C-C motif) receptor 2 (CCR2) antagonist on GBC was observed in vivo.</p><p><strong>Results: </strong>The expression levels of CD68 and CD163 in M2-like TAMs and CD44 and CD133 in gallbladder cancer stem cells (GBCSCs) were increased and positively correlated in GBC tissues compared with those in neighboring noncancerous tissues. M2-like TAMs secreted a significant amount of chemotactic cytokine ligand 2 (CCL2), which activated the MEK/extracellular regulated protein kinase (ERK) pathway and enhanced SNAIL expression after binding to the receptor CCR2 on GBC cells. Activation of the ERK pathway caused nuclear translocation of ELK1, which subsequently led to increased SNAIL expression. GBCSCs mediated the recruitment and polarization of M0 into M2-like TAMs within the GBC microenvironment via CCL2 secretion. In the murine models, the combination of a CCR2 antagonist and gemcitabine efficiently inhibited the growth of subcutaneous tumors in GBC.</p><p><strong>Conclusions: </strong>The interaction between M2-like TAMs and GBC cells is mediated by the chemokine CCL2, which activates the MEK/ERK/ELK1/SNAIL pathway in GBC cells, promoting EMT, stemness, and metastasis. A combination of a CCR2 inhibitor and gemcitabine effectively suppressed the growth of subcutaneous tumors. Consequently, our study identified promising therapeutic targets and strategies for treating GBC.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1186/s40164-024-00544-0
Bruna Sabino Pinho de Oliveira, Alessandro Giovinazzo, Sabrina Putti, Matilde Merolle, Tiziana Orsini, Giuseppe D Tocchini-Valentini, Christophe Lancrin, Fabio Naro, Manuela Pellegrini
Background: Ataxia-telangiectasia (A-T) is a rare autosomal recessive multi-system and life-shortening disease, characterized by progressive cerebellar neurodegeneration, immunodeficiency, radiation sensitivity and cancer predisposition, with high incidence of leukemia and lymphoma. A-T is caused by mutations in the gene encoding for ATM protein that has a major role in maintaining the integrity of the genome. Because there are no cures for A-T, we aimed to tackle immunodeficiency and prevent cancer onset/progression by transplantation therapy.
Methods: Enriched hematopoietic stem/progenitor cells (HSPCs), collected from bone marrow of wild-type mice, were transplanted in the caudal vein of 1 month old conditioned Atm-/- mice.
Results: Genomic analyses showed that transplanted Atm positive cells were found in lymphoid organs. B cells isolated from spleen of transplanted mice were able to undergo class switching recombination. Thymocytes were capable to correctly differentiate and consequently an increase of helper T cells and TCRβhi expressing cells was observed. Protein analysis of isolated T and B cells from transplanted mice, revealed that they expressed Atm and responded to DNA damage by initiating an Atm-dependent phosphorylation cascade. Indeed, aberrant metaphases were reduced in transplanted Atm-deficient mice. Six months after transplantation, Atm-/- mice showed signs of aging, but they maintained the rescue of T cells maturation, showed DNA damage response, and prevented thymoma.
Conclusion: We can conclude that wild-type enriched HSPCs transplantation into young Atm-deficient mice can ameliorate A-T hematopoietic phenotypes and prevent tumor of hematopoietic origin.
背景:共济失调性脊髓侧索硬化症(A-T)是一种罕见的常染色体隐性遗传多系统和缩短寿命的疾病,其特征是进行性小脑神经变性、免疫缺陷、辐射敏感性和癌症易感性,其中白血病和淋巴瘤的发病率很高。A-T是由编码ATM蛋白的基因突变引起的,ATM蛋白在维持基因组完整性方面发挥着重要作用。由于A-T无法治愈,我们的目标是通过移植疗法解决免疫缺陷问题并预防癌症的发生/发展:方法:将从野生型小鼠骨髓中采集的富集造血干细胞/祖细胞(HSPCs)移植到 1 个月大的条件Atm-/-小鼠的尾静脉中:基因组分析表明,移植的Atm阳性细胞存在于淋巴器官中。从移植小鼠脾脏中分离出的 B 细胞能够进行类重组。胸腺细胞能够正确分化,因此观察到辅助性T细胞和TCRβhi表达细胞增加。对移植小鼠分离出的 T 细胞和 B 细胞进行的蛋白质分析表明,它们表达 Atm,并通过启动 Atm 依赖性磷酸化级联对 DNA 损伤做出反应。事实上,Atm缺陷小鼠移植后的异常分裂减少了。移植6个月后,Atm-/-小鼠出现衰老迹象,但它们仍能挽救T细胞的成熟,表现出DNA损伤反应,并能预防胸腺瘤:我们可以得出结论:将野生型富集的 HSPCs 移植到年轻的 Atm 缺乏小鼠体内,可以改善 A-T 造血表型,预防造血源肿瘤。
{"title":"Hematopoietic stem/progenitor cell transplantation recovers immune defects and prevents lymphomas in Atm-deficient mice.","authors":"Bruna Sabino Pinho de Oliveira, Alessandro Giovinazzo, Sabrina Putti, Matilde Merolle, Tiziana Orsini, Giuseppe D Tocchini-Valentini, Christophe Lancrin, Fabio Naro, Manuela Pellegrini","doi":"10.1186/s40164-024-00544-0","DOIUrl":"10.1186/s40164-024-00544-0","url":null,"abstract":"<p><strong>Background: </strong>Ataxia-telangiectasia (A-T) is a rare autosomal recessive multi-system and life-shortening disease, characterized by progressive cerebellar neurodegeneration, immunodeficiency, radiation sensitivity and cancer predisposition, with high incidence of leukemia and lymphoma. A-T is caused by mutations in the gene encoding for ATM protein that has a major role in maintaining the integrity of the genome. Because there are no cures for A-T, we aimed to tackle immunodeficiency and prevent cancer onset/progression by transplantation therapy.</p><p><strong>Methods: </strong>Enriched hematopoietic stem/progenitor cells (HSPCs), collected from bone marrow of wild-type mice, were transplanted in the caudal vein of 1 month old conditioned Atm<sup>-/-</sup> mice.</p><p><strong>Results: </strong>Genomic analyses showed that transplanted Atm positive cells were found in lymphoid organs. B cells isolated from spleen of transplanted mice were able to undergo class switching recombination. Thymocytes were capable to correctly differentiate and consequently an increase of helper T cells and TCRβ<sup>hi</sup> expressing cells was observed. Protein analysis of isolated T and B cells from transplanted mice, revealed that they expressed Atm and responded to DNA damage by initiating an Atm-dependent phosphorylation cascade. Indeed, aberrant metaphases were reduced in transplanted Atm-deficient mice. Six months after transplantation, Atm<sup>-/-</sup> mice showed signs of aging, but they maintained the rescue of T cells maturation, showed DNA damage response, and prevented thymoma.</p><p><strong>Conclusion: </strong>We can conclude that wild-type enriched HSPCs transplantation into young Atm-deficient mice can ameliorate A-T hematopoietic phenotypes and prevent tumor of hematopoietic origin.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1186/s40164-024-00543-1
Siwei Zheng, Wenwen Wang, Lesang Shen, Yao Yao, Wenjie Xia, Chao Ni
The tumor microenvironment demonstrates great immunophenotypic heterogeneity, which has been leveraged in traditional immune-hot/cold tumor categorization based on the abundance of intra-tumoral immune cells. By incorporating the spatial immune contexture, the tumor immunophenotype was further elaborated into immune-inflamed, immune-excluded, and immune-desert. However, the mechanisms underlying these different immune phenotypes are yet to be comprehensively elucidated. In this review, we discuss how tumor cells and the tumor microenvironment interact collectively to shape the immune landscape from the perspectives of tumor cells, immune cells, the extracellular matrix, and cancer metabolism, and we summarize potential therapeutic options according to distinct immunophenotypes for personalized precision medicine.
{"title":"Tumor battlefield within inflamed, excluded or desert immune phenotypes: the mechanisms and strategies.","authors":"Siwei Zheng, Wenwen Wang, Lesang Shen, Yao Yao, Wenjie Xia, Chao Ni","doi":"10.1186/s40164-024-00543-1","DOIUrl":"10.1186/s40164-024-00543-1","url":null,"abstract":"<p><p>The tumor microenvironment demonstrates great immunophenotypic heterogeneity, which has been leveraged in traditional immune-hot/cold tumor categorization based on the abundance of intra-tumoral immune cells. By incorporating the spatial immune contexture, the tumor immunophenotype was further elaborated into immune-inflamed, immune-excluded, and immune-desert. However, the mechanisms underlying these different immune phenotypes are yet to be comprehensively elucidated. In this review, we discuss how tumor cells and the tumor microenvironment interact collectively to shape the immune landscape from the perspectives of tumor cells, immune cells, the extracellular matrix, and cancer metabolism, and we summarize potential therapeutic options according to distinct immunophenotypes for personalized precision medicine.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-06DOI: 10.1186/s40164-024-00547-x
Emilia Gigliotta, Federica Plano, Giusy Corsale, Anna Maria Corsale, Cristina Aquilina, Maria Speciale, Andrea Rizzuto, Enrica Antonia Martino, Dario Leotta, Antonio Giovanni Solimando, Roberto Ria, Massimo Gentile, Sergio Siragusa, Cirino Botta
Multiple myeloma (MM) is a hematologic malignancy characterized by abnormal plasma cell proliferation in the bone marrow. Recent advancements in anti-CD38 monoclonal antibody therapies, such as daratumumab and isatuximab, have significantly improved MM patient survival. However, the lack of predictive factors of response to these therapies remains a challenge. Notably, anti-CD38 antibodies can interfere with laboratory tests, complicating response assessment. We conducted a retrospective study to evaluate the association between the appearance of positive IgGk (therapeutic antibody) on immunofixation/immunosubtraction (IF) and clinical parameters in 87 non-IgGk MM patients treated with anti-CD38 therapy. Positive IgGk IF was observed in 42 patients after a median of three treatment courses. Patients with positive IgGk IF had higher rates of complete/very good partial responses (p = 0.03) and improved progression-free survival (median not reached vs. 21.83 months, p < 0.01). High BMI (p = 0.03), higher hemoglobin (p = 0.02), lower CRP (p = 0.04), and lower monoclonal protein levels (p = 0.03) were associated with positive IgGk IF. Our findings suggest that monitoring therapeutic antibody appearance on IF may predict and optimize anti-CD38 therapy in MM. Potential explanations include the impact of patient factors (e.g. BMI) on drug pharmacokinetics, the relationship between antibody levels and immune response, and the influence of tumor biology. Further research is needed to elucidate the underlying mechanisms and clinical utility of this biomarker. Nonetheless, our results highlight the importance of considering therapeutic antibody detection when interpreting laboratory tests and managing MM patients receiving anti-CD38 therapies.
{"title":"Measurable therapeutic antibody in serum as potential predictive factor of response to anti-CD38 therapy in non-IgG-k myeloma patients.","authors":"Emilia Gigliotta, Federica Plano, Giusy Corsale, Anna Maria Corsale, Cristina Aquilina, Maria Speciale, Andrea Rizzuto, Enrica Antonia Martino, Dario Leotta, Antonio Giovanni Solimando, Roberto Ria, Massimo Gentile, Sergio Siragusa, Cirino Botta","doi":"10.1186/s40164-024-00547-x","DOIUrl":"10.1186/s40164-024-00547-x","url":null,"abstract":"<p><p>Multiple myeloma (MM) is a hematologic malignancy characterized by abnormal plasma cell proliferation in the bone marrow. Recent advancements in anti-CD38 monoclonal antibody therapies, such as daratumumab and isatuximab, have significantly improved MM patient survival. However, the lack of predictive factors of response to these therapies remains a challenge. Notably, anti-CD38 antibodies can interfere with laboratory tests, complicating response assessment. We conducted a retrospective study to evaluate the association between the appearance of positive IgGk (therapeutic antibody) on immunofixation/immunosubtraction (IF) and clinical parameters in 87 non-IgGk MM patients treated with anti-CD38 therapy. Positive IgGk IF was observed in 42 patients after a median of three treatment courses. Patients with positive IgGk IF had higher rates of complete/very good partial responses (p = 0.03) and improved progression-free survival (median not reached vs. 21.83 months, p < 0.01). High BMI (p = 0.03), higher hemoglobin (p = 0.02), lower CRP (p = 0.04), and lower monoclonal protein levels (p = 0.03) were associated with positive IgGk IF. Our findings suggest that monitoring therapeutic antibody appearance on IF may predict and optimize anti-CD38 therapy in MM. Potential explanations include the impact of patient factors (e.g. BMI) on drug pharmacokinetics, the relationship between antibody levels and immune response, and the influence of tumor biology. Further research is needed to elucidate the underlying mechanisms and clinical utility of this biomarker. Nonetheless, our results highlight the importance of considering therapeutic antibody detection when interpreting laboratory tests and managing MM patients receiving anti-CD38 therapies.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302264/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}