Pub Date : 2024-07-18DOI: 10.1186/s40164-024-00536-0
Delian Zhou, Xiaojian Zhu, Yi Xiao
Chimeric antigen receptor-T cell therapy, a groundbreaking cancer treatment, has achieved remarkable success against hematologic malignancies. However, CAR-T monotherapy faces challenges in certain cases, including treatment tolerance and relapse rates. To overcome these challenges, researchers are investigating combining CAR-T cells with other treatments to enhance therapeutic efficacy. Therefore, this review aims to investigate the progress of research in combining CAR-T cells for hematologic malignancies. It covers the basic principles and clinical applications of CAR-T cell therapy, detailing combinations with chemotherapy, immune checkpoint inhibitors, targeted drugs, radiotherapy, hematopoietic stem cell transplantation, and other treatments. These combinations synergistically enhance the antitumor effects of CAR-T cells and comprehensively target tumors through different mechanisms, improving patient response and survival rates.
{"title":"CAR-T cell combination therapies in hematologic malignancies.","authors":"Delian Zhou, Xiaojian Zhu, Yi Xiao","doi":"10.1186/s40164-024-00536-0","DOIUrl":"10.1186/s40164-024-00536-0","url":null,"abstract":"<p><p>Chimeric antigen receptor-T cell therapy, a groundbreaking cancer treatment, has achieved remarkable success against hematologic malignancies. However, CAR-T monotherapy faces challenges in certain cases, including treatment tolerance and relapse rates. To overcome these challenges, researchers are investigating combining CAR-T cells with other treatments to enhance therapeutic efficacy. Therefore, this review aims to investigate the progress of research in combining CAR-T cells for hematologic malignancies. It covers the basic principles and clinical applications of CAR-T cell therapy, detailing combinations with chemotherapy, immune checkpoint inhibitors, targeted drugs, radiotherapy, hematopoietic stem cell transplantation, and other treatments. These combinations synergistically enhance the antitumor effects of CAR-T cells and comprehensively target tumors through different mechanisms, improving patient response and survival rates.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264744/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.
{"title":"Versatile function of NF-ĸB in inflammation and cancer.","authors":"Qiang Ma, Shuai Hao, Weilong Hong, Vinay Tergaonkar, Gautam Sethi, Yu Tian, Chenyang Duan","doi":"10.1186/s40164-024-00529-z","DOIUrl":"10.1186/s40164-024-00529-z","url":null,"abstract":"<p><p>Nuclear factor-kappaB (NF-ĸB) plays a crucial role in both innate and adaptive immune systems, significantly influencing various physiological processes such as cell proliferation, migration, differentiation, survival, and stemness. The function of NF-ĸB in cancer progression and response to chemotherapy has gained increasing attention. This review highlights the role of NF-ĸB in inflammation control, biological mechanisms, and therapeutic implications in cancer treatment. NF-ĸB is instrumental in altering the release of inflammatory factors such as TNF-α, IL-6, and IL-1β, which are key in the regulation of carcinogenesis. Specifically, in conditions including colitis, NF-ĸB upregulation can intensify inflammation, potentially leading to the development of colorectal cancer. Its pivotal role extends to regulating the tumor microenvironment, impacting components such as macrophages, fibroblasts, T cells, and natural killer cells. This regulation influences tumorigenesis and can dampen anti-tumor immune responses. Additionally, NF-ĸB modulates cell death mechanisms, notably by inhibiting apoptosis and ferroptosis. It also has a dual role in stimulating or suppressing autophagy in various cancers. Beyond these functions, NF-ĸB plays a role in controlling cancer stem cells, fostering angiogenesis, increasing metastatic potential through EMT induction, and reducing tumor cell sensitivity to chemotherapy and radiotherapy. Given its oncogenic capabilities, research has focused on natural products and small molecule compounds that can suppress NF-ĸB, offering promising avenues for cancer therapy.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-11DOI: 10.1186/s40164-024-00534-2
Phatchanat Klaihmon, Parinya Samart, Yon Rojanasakul, Surapol Issaragrisil, Sudjit Luanpitpong
Acute myeloid leukemia (AML) is an aggressive and genetically heterogeneous disease with poor clinical outcomes. Refractory AML is common, and relapse remains a major challenge, attributable to the presence of therapy-resistant leukemic stem cells (LSCs), which possess self-renewal and repopulating capability. Targeting LSCs is currently the most promising avenue for long-term management of AML. Likewise, chimeric antigen receptor (CAR)-natural killer (NK) cells have emerged as a promising alternative to CAR-T cells due to their intrinsic potential as off-the-shelf products and safer clinical profiles. Here, we introduced a third-generation CAR harboring TIM3 scFv, CD28, 4-1BB, and CD3ζ (CAR-TIM3) into human NK-92 cells, the only FDA-approved NK cell line for clinical trials. TIM3 was chosen as a target antigen owing to its differential expression in LSCs and normal hematopoietic stem/progenitor cells (HSPCs). The established CAR-TIM3 NK-92 cells effectively targeted TIM3 and displayed potent anti-tumor activity against various primitive AML cells, subsequently causing a reduction in leukemic clonogenic growth in vitro, while having minimal effects on HSPCs. CAR-TIM3 NK-92 cells significantly reduced leukemic burden in vivo and interestingly suppressed the engraftment of AML cells into the mouse liver and bone marrow. Surprisingly, we found that CAR-TIM3 NK-92 cells expressed relatively low surface TIM3, leading to a low fratricidal effect. As TIM3 and PD-1 are immune checkpoints involved in NK cell dysfunction, we further tested and found that CAR-TIM3 NK-92 cells are beneficial for alleviating NK cell exhaustion. Our findings highlight the potential application of CAR-TIM3 NK cells for cellular immunotherapy for TIM3+ AML.
急性髓性白血病(AML)是一种侵袭性和遗传异质性疾病,临床疗效不佳。难治性急性髓细胞白血病很常见,复发仍是一大挑战,这是因为存在耐药的白血病干细胞(LSCs),它们具有自我更新和重新增殖的能力。目前,以白血病干细胞为靶点是长期治疗急性髓细胞性白血病最有希望的途径。同样,嵌合抗原受体(CAR)-自然杀伤(NK)细胞因其作为现成产品的内在潜力和更安全的临床特征,已成为CAR-T细胞的一种有前途的替代品。在这里,我们将一种携带 TIM3 scFv、CD28、4-1BB 和 CD3ζ (CAR-TIM3)的第三代 CAR 引入了人类 NK-92 细胞,这是唯一一种经 FDA 批准用于临床试验的 NK 细胞系。之所以选择TIM3作为靶抗原,是因为它在LSCs和正常造血干细胞/祖细胞(HSPCs)中的表达不同。已建立的 CAR-TIM3 NK-92 细胞能有效靶向 TIM3,并对各种原始 AML 细胞显示出强大的抗肿瘤活性,随后在体外减少了白血病克隆性生长,同时对 HSPC 的影响极小。CAR-TIM3 NK-92 细胞大大减少了体内白血病的负担,并有趣地抑制了急性髓性白血病细胞向小鼠肝脏和骨髓的移植。令人惊讶的是,我们发现 CAR-TIM3 NK-92 细胞的表面 TIM3 表达量相对较低,导致了较低的自相残杀效应。由于 TIM3 和 PD-1 是参与 NK 细胞功能障碍的免疫检查点,我们进一步测试发现 CAR-TIM3 NK-92 细胞有利于缓解 NK 细胞衰竭。我们的研究结果凸显了CAR-TIM3 NK细胞在TIM3+ AML细胞免疫疗法中的潜在应用。
{"title":"Anti-TIM3 chimeric antigen receptor-natural killer cells preferentially target primitive acute myeloid leukemia cells with minimal fratricide and exhaustion","authors":"Phatchanat Klaihmon, Parinya Samart, Yon Rojanasakul, Surapol Issaragrisil, Sudjit Luanpitpong","doi":"10.1186/s40164-024-00534-2","DOIUrl":"https://doi.org/10.1186/s40164-024-00534-2","url":null,"abstract":"Acute myeloid leukemia (AML) is an aggressive and genetically heterogeneous disease with poor clinical outcomes. Refractory AML is common, and relapse remains a major challenge, attributable to the presence of therapy-resistant leukemic stem cells (LSCs), which possess self-renewal and repopulating capability. Targeting LSCs is currently the most promising avenue for long-term management of AML. Likewise, chimeric antigen receptor (CAR)-natural killer (NK) cells have emerged as a promising alternative to CAR-T cells due to their intrinsic potential as off-the-shelf products and safer clinical profiles. Here, we introduced a third-generation CAR harboring TIM3 scFv, CD28, 4-1BB, and CD3ζ (CAR-TIM3) into human NK-92 cells, the only FDA-approved NK cell line for clinical trials. TIM3 was chosen as a target antigen owing to its differential expression in LSCs and normal hematopoietic stem/progenitor cells (HSPCs). The established CAR-TIM3 NK-92 cells effectively targeted TIM3 and displayed potent anti-tumor activity against various primitive AML cells, subsequently causing a reduction in leukemic clonogenic growth in vitro, while having minimal effects on HSPCs. CAR-TIM3 NK-92 cells significantly reduced leukemic burden in vivo and interestingly suppressed the engraftment of AML cells into the mouse liver and bone marrow. Surprisingly, we found that CAR-TIM3 NK-92 cells expressed relatively low surface TIM3, leading to a low fratricidal effect. As TIM3 and PD-1 are immune checkpoints involved in NK cell dysfunction, we further tested and found that CAR-TIM3 NK-92 cells are beneficial for alleviating NK cell exhaustion. Our findings highlight the potential application of CAR-TIM3 NK cells for cellular immunotherapy for TIM3+ AML.","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":10.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-10DOI: 10.1186/s40164-024-00535-1
Arne Van der Vreken, Karin Vanderkerken, Elke De Bruyne, Kim De Veirman, Karine Breckpot, Eline Menu
CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological malignancies to ultimately suggest novel combination strategies.
CAR T 细胞被广泛应用于治疗复发的血液肿瘤患者。目前已批准了六种细胞疗法,用于治疗多发性骨髓瘤和其他 B 细胞恶性肿瘤。大量证据表明,CAR T 细胞疗法失败的患者,除了抗原逃逸外,其 CAR T 细胞的糖酵解和新陈代谢也会减弱,同时寿命也会缩短。最近的研究进展表明,CAR T 细胞的代谢可被设计为氧化磷酸化,从而通过表观遗传和表型变化延长其寿命。在这篇综述中,我们阐明了重新连接其代谢的各种策略,包括 CAR 构建的设计、协同刺激的选择、代谢基因的遗传修饰以及药物干预。我们讨论了这些策略通过记忆印记增强 CAR T 细胞功能和持久性从而改善疗效的潜力。此外,我们还将药理治疗与它们在血液恶性肿瘤中的抗癌特性联系起来,最终提出新的组合策略。
{"title":"Fueling CARs: metabolic strategies to enhance CAR T-cell therapy","authors":"Arne Van der Vreken, Karin Vanderkerken, Elke De Bruyne, Kim De Veirman, Karine Breckpot, Eline Menu","doi":"10.1186/s40164-024-00535-1","DOIUrl":"https://doi.org/10.1186/s40164-024-00535-1","url":null,"abstract":"CAR T cells are widely applied for relapsed hematological cancer patients. With six approved cell therapies, for Multiple Myeloma and other B-cell malignancies, new insights emerge. Profound evidence shows that patients who fail CAR T-cell therapy have, aside from antigen escape, a more glycolytic and weakened metabolism in their CAR T cells, accompanied by a short lifespan. Recent advances show that CAR T cells can be metabolically engineered towards oxidative phosphorylation, which increases their longevity via epigenetic and phenotypical changes. In this review we elucidate various strategies to rewire their metabolism, including the design of the CAR construct, co-stimulus choice, genetic modifications of metabolic genes, and pharmacological interventions. We discuss their potential to enhance CAR T-cell functioning and persistence through memory imprinting, thereby improving outcomes. Furthermore, we link the pharmacological treatments with their anti-cancer properties in hematological malignancies to ultimately suggest novel combination strategies.","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":10.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141571160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.1186/s40164-024-00530-6
Chaoyu Wang, Qing Xiao, Xiaomei Zhang, Yao Liu
The incidence, clinical characteristics, and prognostic factors of HIV-associated lymphoma remain poorly defined compared to HIV-negative lymphoma. Currently, there are no standard guidelines for treatment of these patients. We summarized several latest reports of HIV associated lymphoma from the 2023 ASH Annual Meeting (ASH2023).
与 HIV 阴性淋巴瘤相比,HIV 相关淋巴瘤的发病率、临床特征和预后因素仍不十分明确。目前,还没有治疗这些患者的标准指南。我们总结了2023年ASH年会(ASH2023)上关于HIV相关淋巴瘤的几篇最新报道。
{"title":"HIV associated lymphoma: latest updates from 2023 ASH annual meeting.","authors":"Chaoyu Wang, Qing Xiao, Xiaomei Zhang, Yao Liu","doi":"10.1186/s40164-024-00530-6","DOIUrl":"10.1186/s40164-024-00530-6","url":null,"abstract":"<p><p>The incidence, clinical characteristics, and prognostic factors of HIV-associated lymphoma remain poorly defined compared to HIV-negative lymphoma. Currently, there are no standard guidelines for treatment of these patients. We summarized several latest reports of HIV associated lymphoma from the 2023 ASH Annual Meeting (ASH2023).</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225138/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01DOI: 10.1186/s40164-024-00532-4
Yanyan Zhang, Charles Wang, Jian Jian Li
Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.
{"title":"Revisiting the role of mesenchymal stromal cells in cancer initiation, metastasis and immunosuppression.","authors":"Yanyan Zhang, Charles Wang, Jian Jian Li","doi":"10.1186/s40164-024-00532-4","DOIUrl":"10.1186/s40164-024-00532-4","url":null,"abstract":"<p><p>Immune checkpoint blockade (ICB) necessitates a thorough understanding of intricate cellular interactions within the tumor microenvironment (TME). Mesenchymal stromal cells (MSCs) play a pivotal role in cancer generation, progression, and immunosuppressive tumor microenvironment. Within the TME, MSCs encompass both resident and circulating counterparts that dynamically communicate and actively participate in TME immunosurveillance and response to ICB. This review aims to reevaluate various facets of MSCs, including their potential self-transformation to function as cancer-initiating cells and contributions to the creation of a conducive environment for tumor proliferation and metastasis. Additionally, we explore the immune regulatory functions of tumor-associated MSCs (TA-MSCs) and MSC-derived extracellular vesicles (MSC-EVs) with analysis of potential connections between circulating and tissue-resident MSCs. A comprehensive understanding of the dynamics of MSC-immune cell communication and the heterogeneous cargo of tumor-educated versus naïve MSCs may unveil a new MSC-mediated immunosuppressive pathway that can be targeted to enhance cancer control by ICB.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1186/s40164-024-00531-5
Jingyuan Li, Jun Tan, Tao Wang, Shan Yu, Guangliang Guo, Kan Li, Le Yang, Bin Zeng, Xueying Mei, Siyong Gao, Xiaomei Lao, Sien Zhang, Guiqing Liao, Yujie Liang
Background: Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression.
Methods: Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort.
Results: Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients.
Conclusions: Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress
{"title":"cGAS-ISG15-RAGE axis reprogram necroptotic microenvironment and promote lymphatic metastasis in head and neck cancer.","authors":"Jingyuan Li, Jun Tan, Tao Wang, Shan Yu, Guangliang Guo, Kan Li, Le Yang, Bin Zeng, Xueying Mei, Siyong Gao, Xiaomei Lao, Sien Zhang, Guiqing Liao, Yujie Liang","doi":"10.1186/s40164-024-00531-5","DOIUrl":"10.1186/s40164-024-00531-5","url":null,"abstract":"<p><strong>Background: </strong>Cancer cells frequently evolve necroptotic resistance to overcome various survival stress during tumorigenesis. However, we have previously showed that necroptosis is widespread in head and neck squamous cell carcinoma (HNSCC) and contributes to tumor progression and poor survival via DAMPs-induced migration and invasiveness in peri-necroptotic tumor cells. This implicated an alternative strategy that cancers cope with necroptotic stress by reprogramming a pro-invasive necroptotic microenvironment (NME). Here, we aim to decipher how necroptotic cells shape the NME and affect HNSCC progression.</p><p><strong>Methods: </strong>Both our pre-established cellular necroptotic model and newly established Dox-induce intratumoral necroptosis model were used to investigate how necroptosis affect HNSCC progression. Transcriptomic alterations in peri-necroptotic tumor cells were analyzed by RNA-seq and validated in the NME in mice and patients' samples. The differential DAMPs compositon among apopotosis. Necrosis, and necroptosis were analyzed by label-free proteomic technique, and the necroptosis-specific DAMPs were then identified and validated. The potential receptor for ISG15 were simulated using molecular docking and further validated by in vitro assays. Then the ISG15-RAGE axis was blocked by either knockdown of necroptotic-ISG15 release and RAGE inhibitor FPS-ZM1, and the impact on tumor progression were tested. Last, we further tested our findings in a HNSCC-patients cohort.</p><p><strong>Results: </strong>Necroptosis played a crucial role in driving tumor-cell invasiveness and lymphatic metastasis via tumor-type dependent DAMPs-releasing. Mechanistically, necroptotic DAMPs induced peri-necroptotic EMT via NF-κB and STAT3 signaling. Furthermore, intrinsic orchestration between necroptotic and cGAS-STING signaling resulted in producing a group of interferon stimulated genes (ISGs) as HNSCC-dependent necroptotic DAMPs. Among them, ISG15 played an essential role in reprogramming the NME. We then identified RAGE as a novel receptor for extracellular ISG15. Either blockage of ISG15 release or ISG15-RAGE interaction dramatically impeded necroptosis-driven EMT and lymphatic metastasis in HNSCC. Lastly, clinicopathological analysis showed high ISG15 expression in NME. Extensive necroptosis and high tumor-cell RAGE expression correlated with tumor progression and poor survival of HNSCC patients.</p><p><strong>Conclusions: </strong>Our data revealed a previously unknown cGAS-ISG15-RAGE dependent reprogramming of the necroptotic microenvironment which converts the necroptotic stress into invasive force to foster HNSCC-cell dissemination. By demonstrating the programmatic production of ISG15 via necroptosis-cGAS orchestration and its downstream signaling through RAGE, we shed light on the unique role of ISG15 in HNSCC progression. Targeting such machineries may hold therapeutic potential for restoring intratumoral survival stress ","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":9.4,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1186/s40164-024-00526-2
E. D’Angelo, Sarah Tassinari, Andrea Biccari, S. Crotti, Francesca Sensi, Asia Marangio, Ombretta Repetto, Giuseppe Corona, Linda Bellucci, Federica Antico, Federico Caicci, G. Spolverato, Giovanni Montini, Benedetta Bussolati, Marco Agostini, Federica Collino
{"title":"Reconstructed colorectal cancer model to dissect the anti-tumor effect of mesenchymal stromal cells derived extracellular vesicles","authors":"E. D’Angelo, Sarah Tassinari, Andrea Biccari, S. Crotti, Francesca Sensi, Asia Marangio, Ombretta Repetto, Giuseppe Corona, Linda Bellucci, Federica Antico, Federico Caicci, G. Spolverato, Giovanni Montini, Benedetta Bussolati, Marco Agostini, Federica Collino","doi":"10.1186/s40164-024-00526-2","DOIUrl":"https://doi.org/10.1186/s40164-024-00526-2","url":null,"abstract":"","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":10.9,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141334974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Tunlametinib (HL-085) is a novel, highly selective MEK inhibitor with substantial clinical activities in patients with NRAS-mutant melanoma. This phase I study evaluated the safety and preliminary efficacy of tunlametinib plus vemurafenib in patients with advanced BRAF V600-mutant solid tumors.
Methods: Patients with confirmed advanced BRAF V600-mutant solid tumors who had progressed on or shown intolerance or no available standard therapies were enrolled and received tunlametinib plus vemurafenib. This study consisted of a dose-escalation phase and a dose-expansion phase. Primary end points of this study were safety, the recommended phase II dose (RP2D), and preliminary efficacy.
Results: From August 17, 2018 to April 19, 2022, 72 patients were enrolled. No dose-limiting toxicities occurred, and the maximum tolerated dose was not reached. The RP2D for BRAF V600-mutant non-small cell lung cancer (NSCLC) patients was tunlametinib 9 mg plus vemurafenib 720 mg, twice daily (BID, bis in die). Until the data cut-off date of December 15, 2023, of 33 NSCLC patients with evaluable disease, the objective response rate (ORR) was 60.6% (20/33; 95% confidence interval [CI], 42.1-77.1), the median progression free survival (PFS) was 10.5 months (95%CI, 5.6-14.5) and median duration of response (DoR) was 11.3 months (95%CI, 6.8-NE). At the RP2D, ORR was 60.0% (9/15; 95% CI, 32.3-83.7), the median PFS was 10.5 months (95%CI, 5.6 -NE) and median DoR was 11.3 months (95%CI, 3.9-NE). Of 24 colorectal cancer patients with evaluable disease, the ORR was 25.0% (6/24; 95% CI, 5.6-NE). All 72 patients had treatment-related adverse events (TRAEs), and the most common grade 3-4 TRAEs were anemia (n = 13, 18.1%) and blood creatine phosphokinase increased (n = 10, 13.9%). Tunlametinib was absorbed rapidly with Tmax of 0.5-1 h. Vemurafeinib did not influence the system exposure of tunlametinib and vice versa, indicating no drug-drug interaction for this combination.
Conclusions: Tunlametinib (HL-085) plus vemurafenib had a favorable safety profile and showed promising antitumor activity in patients with BRAF V600-mutant solid tumors. The RP2D for NSCLC was tunlametinib 9 mg BID plus vemurafeinib 720 mg BID.
{"title":"Tunlametinib (HL-085) plus vemurafenib in patients with advanced BRAF V600-mutant solid tumors: an open-label, single-arm, multicenter, phase I study.","authors":"Yuankai Shi, Xiaohong Han, Qian Zhao, YuLong Zheng, Jianhua Chen, Xinmin Yu, Jian Fang, Yutao Liu, Dingzhi Huang, Tianshu Liu, Hong Shen, Suxia Luo, Hongsheng Yu, Yu Cao, Xi Zhang, Pei Hu","doi":"10.1186/s40164-024-00528-0","DOIUrl":"10.1186/s40164-024-00528-0","url":null,"abstract":"<p><strong>Background: </strong>Tunlametinib (HL-085) is a novel, highly selective MEK inhibitor with substantial clinical activities in patients with NRAS-mutant melanoma. This phase I study evaluated the safety and preliminary efficacy of tunlametinib plus vemurafenib in patients with advanced BRAF V600-mutant solid tumors.</p><p><strong>Methods: </strong>Patients with confirmed advanced BRAF V600-mutant solid tumors who had progressed on or shown intolerance or no available standard therapies were enrolled and received tunlametinib plus vemurafenib. This study consisted of a dose-escalation phase and a dose-expansion phase. Primary end points of this study were safety, the recommended phase II dose (RP2D), and preliminary efficacy.</p><p><strong>Results: </strong>From August 17, 2018 to April 19, 2022, 72 patients were enrolled. No dose-limiting toxicities occurred, and the maximum tolerated dose was not reached. The RP2D for BRAF V600-mutant non-small cell lung cancer (NSCLC) patients was tunlametinib 9 mg plus vemurafenib 720 mg, twice daily (BID, bis in die). Until the data cut-off date of December 15, 2023, of 33 NSCLC patients with evaluable disease, the objective response rate (ORR) was 60.6% (20/33; 95% confidence interval [CI], 42.1-77.1), the median progression free survival (PFS) was 10.5 months (95%CI, 5.6-14.5) and median duration of response (DoR) was 11.3 months (95%CI, 6.8-NE). At the RP2D, ORR was 60.0% (9/15; 95% CI, 32.3-83.7), the median PFS was 10.5 months (95%CI, 5.6 -NE) and median DoR was 11.3 months (95%CI, 3.9-NE). Of 24 colorectal cancer patients with evaluable disease, the ORR was 25.0% (6/24; 95% CI, 5.6-NE). All 72 patients had treatment-related adverse events (TRAEs), and the most common grade 3-4 TRAEs were anemia (n = 13, 18.1%) and blood creatine phosphokinase increased (n = 10, 13.9%). Tunlametinib was absorbed rapidly with T<sub>max</sub> of 0.5-1 h. Vemurafeinib did not influence the system exposure of tunlametinib and vice versa, indicating no drug-drug interaction for this combination.</p><p><strong>Conclusions: </strong>Tunlametinib (HL-085) plus vemurafenib had a favorable safety profile and showed promising antitumor activity in patients with BRAF V600-mutant solid tumors. The RP2D for NSCLC was tunlametinib 9 mg BID plus vemurafeinib 720 mg BID.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov, NCT03781219.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":null,"pages":null},"PeriodicalIF":10.9,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11167782/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}