Pub Date : 2024-01-01Epub Date: 2024-01-26DOI: 10.1080/14728222.2024.2306344
Alessandra Merlini, Martina Rabino, Silvia Brusco, Valeria Pavese, Debora Masci, Dario Sangiolo, Paolo Bironzo, Giorgio Vittorio Scagliotti, Silvia Novello, Lorenzo D'Ambrosio
Introduction: Soft tissue sarcomas are a group of rare, mesenchymal tumors characterized by dismal prognosis in advanced/metastatic stages. Knowledge of their molecular determinants is still rather limited. However, in recent years, epigenetic regulation - the modification of gene expression/function without DNA sequence variation - has emerged as a key player both in sarcomagenesis and sarcoma progression.
Areas covered: Herein, we describe and review the main epigenetic mechanisms involved in chromatin remodeling and their role as disease drivers in different soft tissue sarcoma histotypes, focusing on epithelioid sarcoma, synovial sarcoma, and malignant peripheral nerve sheath tumors. Focusing on chromatin-remodeling complexes, we provide an in-depth on the role of BAF complex alterations in these soft tissue sarcoma histotypes. In parallel, we highlight current state-of-the-art and future perspectives in the development of rational, innovative treatments leveraging on epigenetic dysregulation in soft tissue sarcomas.
Expert opinion: Therapeutic options for metastatic/advanced sarcomas are to date very limited and largely represented by cytotoxic agents, with only modest results. In the continuous attempt to find novel targets and innovative, effective drugs, epigenetic mechanisms represent an emerging and promising field of research, especially for malignant peripheral nerve sheath tumors, epithelioid and synovial sarcoma.
导言:软组织肉瘤是一组罕见的间质肿瘤,其特点是晚期/转移期预后不良。人们对其分子决定因素的了解仍然相当有限。然而,近年来,表观遗传调控--在没有 DNA 序列变异的情况下改变基因表达/功能--已成为肉瘤成因和肉瘤进展的关键因素:在本文中,我们描述并回顾了参与染色质重塑的主要表观遗传学机制及其在不同软组织肉瘤组织类型中作为疾病驱动因素的作用,重点关注上皮样肉瘤、滑膜肉瘤和恶性周围神经鞘瘤。我们以染色质重塑复合物为重点,深入探讨了 BAF 复合物改变在这些软组织肉瘤组织类型中的作用。同时,我们还强调了利用软组织肉瘤表观遗传失调开发合理、创新治疗方法的当前先进水平和未来前景:迄今为止,转移性/晚期肉瘤的治疗方案非常有限,主要以细胞毒药物为主,而且效果一般。在不断尝试寻找新靶点和创新有效药物的过程中,表观遗传学机制是一个新兴且前景广阔的研究领域,尤其是针对恶性周围神经鞘瘤、上皮样肉瘤和滑膜肉瘤。
{"title":"Epigenetic determinants in soft tissue sarcomas: molecular mechanisms and therapeutic targets.","authors":"Alessandra Merlini, Martina Rabino, Silvia Brusco, Valeria Pavese, Debora Masci, Dario Sangiolo, Paolo Bironzo, Giorgio Vittorio Scagliotti, Silvia Novello, Lorenzo D'Ambrosio","doi":"10.1080/14728222.2024.2306344","DOIUrl":"10.1080/14728222.2024.2306344","url":null,"abstract":"<p><strong>Introduction: </strong>Soft tissue sarcomas are a group of rare, mesenchymal tumors characterized by dismal prognosis in advanced/metastatic stages. Knowledge of their molecular determinants is still rather limited. However, in recent years, epigenetic regulation - the modification of gene expression/function without DNA sequence variation - has emerged as a key player both in sarcomagenesis and sarcoma progression.</p><p><strong>Areas covered: </strong>Herein, we describe and review the main epigenetic mechanisms involved in chromatin remodeling and their role as disease drivers in different soft tissue sarcoma histotypes, focusing on epithelioid sarcoma, synovial sarcoma, and malignant peripheral nerve sheath tumors. Focusing on chromatin-remodeling complexes, we provide an in-depth on the role of BAF complex alterations in these soft tissue sarcoma histotypes. In parallel, we highlight current state-of-the-art and future perspectives in the development of rational, innovative treatments leveraging on epigenetic dysregulation in soft tissue sarcomas.</p><p><strong>Expert opinion: </strong>Therapeutic options for metastatic/advanced sarcomas are to date very limited and largely represented by cytotoxic agents, with only modest results. In the continuous attempt to find novel targets and innovative, effective drugs, epigenetic mechanisms represent an emerging and promising field of research, especially for malignant peripheral nerve sheath tumors, epithelioid and synovial sarcoma.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-07DOI: 10.1080/14728222.2024.2315021
María Navarro-Pérez, Jesusa Capera, Anna Benavente-Garcia, Silvia Cassinelli, Magalí Colomer-Molera, Antonio Felipe
Introduction: Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca2+ signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies.
Areas covered: This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research.
Expert opinion: Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.
{"title":"Kv1.3 in the spotlight for treating immune diseases.","authors":"María Navarro-Pérez, Jesusa Capera, Anna Benavente-Garcia, Silvia Cassinelli, Magalí Colomer-Molera, Antonio Felipe","doi":"10.1080/14728222.2024.2315021","DOIUrl":"10.1080/14728222.2024.2315021","url":null,"abstract":"<p><strong>Introduction: </strong>Kv1.3 is the main voltage-gated potassium channel of leukocytes from both the innate and adaptive immune systems. Channel function is required for common processes such as Ca<sup>2+</sup> signaling but also for cell-specific events. In this context, alterations in Kv1.3 are associated with multiple immune disorders. Excessive channel activity correlates with numerous autoimmune diseases, while reduced currents result in increased cancer prevalence and immunodeficiencies.</p><p><strong>Areas covered: </strong>This review offers a general view of the role of Kv1.3 in every type of leukocyte. Moreover, diseases stemming from dysregulations of the channel are detailed, as well as current advances in their therapeutic research.</p><p><strong>Expert opinion: </strong>Kv1.3 arises as a potential immune target in a variety of diseases. Several lines of research focused on channel modulation have yielded positive results. However, among the great variety of specific channel blockers, only one has reached clinical trials. Future investigations should focus on developing simpler administration routes for channel inhibitors to facilitate their entrance into clinical trials. Prospective Kv1.3-based treatments will ensure powerful therapies while minimizing undesired side effects.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2023-12-29DOI: 10.1080/14728222.2023.2298358
Rahul Shetty, Roberto Noland, Ghata Nandi, Carolyn K Suzuki
Introduction: Mitochondrial LonP1 is an ATP-powered protease that also functions as an ATP-dependent chaperone. LonP1 plays a pivotal role in regulating mitochondrial proteostasis, metabolism and cell stress responses. Cancer cells exploit the functions of LonP1 to combat oncogenic stressors such as hypoxia, proteotoxicity, and oxidative stress, and to reprogram energy metabolism enabling cancer cell proliferation, chemoresistance, and metastasis.
Areas covered: LonP1 has emerged as a potential target for anti-cancer therapeutics. We review how cytoprotective functions of LonP1 can be leveraged by cancer cells to support oncogenic growth, proliferation, and survival. We also offer insights into small molecule inhibitors that target LonP1 by two distinct mechanisms: competitive inhibition of its protease activity and allosteric inhibition of its ATPase activity, both of which are crucial for its protease and chaperone functions.
Expert opinion: We highlight advantages of identifying specific, high-affinity allosteric inhibitors blocking the ATPase activity of LonP1. The future discovery of such inhibitors has potential application either alone or in conjunction with other anticancer agents, presenting an innovative approach and target for cancer therapeutics.
{"title":"Powering down the mitochondrial LonP1 protease: a novel strategy for anticancer therapeutics.","authors":"Rahul Shetty, Roberto Noland, Ghata Nandi, Carolyn K Suzuki","doi":"10.1080/14728222.2023.2298358","DOIUrl":"10.1080/14728222.2023.2298358","url":null,"abstract":"<p><strong>Introduction: </strong>Mitochondrial LonP1 is an ATP-powered protease that also functions as an ATP-dependent chaperone. LonP1 plays a pivotal role in regulating mitochondrial proteostasis, metabolism and cell stress responses. Cancer cells exploit the functions of LonP1 to combat oncogenic stressors such as hypoxia, proteotoxicity, and oxidative stress, and to reprogram energy metabolism enabling cancer cell proliferation, chemoresistance, and metastasis.</p><p><strong>Areas covered: </strong>LonP1 has emerged as a potential target for anti-cancer therapeutics. We review how cytoprotective functions of LonP1 can be leveraged by cancer cells to support oncogenic growth, proliferation, and survival. We also offer insights into small molecule inhibitors that target LonP1 by two distinct mechanisms: competitive inhibition of its protease activity and allosteric inhibition of its ATPase activity, both of which are crucial for its protease and chaperone functions.</p><p><strong>Expert opinion: </strong>We highlight advantages of identifying specific, high-affinity allosteric inhibitors blocking the ATPase activity of LonP1. The future discovery of such inhibitors has potential application either alone or in conjunction with other anticancer agents, presenting an innovative approach and target for cancer therapeutics.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10939840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139058266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-01-19DOI: 10.1080/14728222.2024.2306337
Mario Zoratti, Lucia Biasutto, Sofia Parrasia, Ildikó Szabo
{"title":"Mitochondrial permeability transition pore: a snapshot of a therapeutic target.","authors":"Mario Zoratti, Lucia Biasutto, Sofia Parrasia, Ildikó Szabo","doi":"10.1080/14728222.2024.2306337","DOIUrl":"10.1080/14728222.2024.2306337","url":null,"abstract":"","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-19DOI: 10.1080/14728222.2024.2316735
Nikolaos G Frangogiannis
Introduction: Myocardial fibrosis accompanies most cardiac conditions and can be reparative or maladaptive. Transforming Growth Factor (TGF)-β is a potent fibrogenic mediator, involved in repair, remodeling, and fibrosis of the injured heart.
Areas covered: This review manuscript discusses the role of TGF-β in heart failure focusing on cellular mechanisms and therapeutic implications. TGF-β is activated in infarcted, remodeling and failing hearts. In addition to its fibrogenic actions, TGF-β has a broad range of effects on cardiomyocytes, immune, and vascular cells that may have both protective and detrimental consequences. TGF-β-mediated effects on macrophages promote anti-inflammatory transition, whereas actions on fibroblasts mediate reparative scar formation and effects on pericytes are involved in maturation of infarct neovessels. On the other hand, TGF-β actions on cardiomyocytes promote adverse remodeling, and prolonged activation of TGF-β signaling in fibroblasts stimulates progression of fibrosis and heart failure.
Expert opinion: Understanding of the cell-specific actions of TGF-β is necessary to design therapeutic strategies in patients with myocardial disease. Moreover, to implement therapeutic interventions in the heterogeneous population of heart failure patients, mechanism-driven classification of both HFrEF and HFpEF patients is needed. Heart failure patients with prolonged or overactive fibrogenic TGF-β responses may benefit from cautious TGF-β inhibition.
{"title":"TGF-β as a therapeutic target in the infarcted and failing heart: cellular mechanisms, challenges, and opportunities.","authors":"Nikolaos G Frangogiannis","doi":"10.1080/14728222.2024.2316735","DOIUrl":"10.1080/14728222.2024.2316735","url":null,"abstract":"<p><strong>Introduction: </strong>Myocardial fibrosis accompanies most cardiac conditions and can be reparative or maladaptive. Transforming Growth Factor (TGF)-β is a potent fibrogenic mediator, involved in repair, remodeling, and fibrosis of the injured heart.</p><p><strong>Areas covered: </strong>This review manuscript discusses the role of TGF-β in heart failure focusing on cellular mechanisms and therapeutic implications. TGF-β is activated in infarcted, remodeling and failing hearts. In addition to its fibrogenic actions, TGF-β has a broad range of effects on cardiomyocytes, immune, and vascular cells that may have both protective and detrimental consequences. TGF-β-mediated effects on macrophages promote anti-inflammatory transition, whereas actions on fibroblasts mediate reparative scar formation and effects on pericytes are involved in maturation of infarct neovessels. On the other hand, TGF-β actions on cardiomyocytes promote adverse remodeling, and prolonged activation of TGF-β signaling in fibroblasts stimulates progression of fibrosis and heart failure.</p><p><strong>Expert opinion: </strong>Understanding of the cell-specific actions of TGF-β is necessary to design therapeutic strategies in patients with myocardial disease. Moreover, to implement therapeutic interventions in the heterogeneous population of heart failure patients, mechanism-driven classification of both HFrEF and HFpEF patients is needed. Heart failure patients with prolonged or overactive fibrogenic TGF-β responses may benefit from cautious TGF-β inhibition.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139706440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.1080/14728222.2023.2293752
Feba Benny, Sunil Kumar, Aiswarya Binu, Della Grace Thomas Parambi, Tariq G. Alsahli, Abdullah G. Al-Sehemi, Namitha Chandran, Deepthi S. Manisha, Sarath Sreekumar, Akanksha Bhatt, Krishnadas Madhu, Bijo Mathew
In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of natura...
{"title":"Targeting GABA receptors with chalcone derivative compounds, what is the evidence?","authors":"Feba Benny, Sunil Kumar, Aiswarya Binu, Della Grace Thomas Parambi, Tariq G. Alsahli, Abdullah G. Al-Sehemi, Namitha Chandran, Deepthi S. Manisha, Sarath Sreekumar, Akanksha Bhatt, Krishnadas Madhu, Bijo Mathew","doi":"10.1080/14728222.2023.2293752","DOIUrl":"https://doi.org/10.1080/14728222.2023.2293752","url":null,"abstract":"In medicinal chemistry, privileged structures have been frequently exploited as a successful template for drug discovery. Common simple scaffolds like chalcone are present in a wide range of natura...","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138744395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1080/14728222.2023.2293757
Jason Wang, Reuben Ben-David, Reza Mehrazin, Wei Yang, Ashutosh K. Tewari, Natasha Kyprianou
The extensive heterogeneity of prostate cancer (PCa) and multilayered complexity of progression to castration-resistant prostate cancer (CRPC) has contributed to the challenges of accurately monito...
{"title":"Novel signatures of prostate cancer progression and therapeutic resistance","authors":"Jason Wang, Reuben Ben-David, Reza Mehrazin, Wei Yang, Ashutosh K. Tewari, Natasha Kyprianou","doi":"10.1080/14728222.2023.2293757","DOIUrl":"https://doi.org/10.1080/14728222.2023.2293757","url":null,"abstract":"The extensive heterogeneity of prostate cancer (PCa) and multilayered complexity of progression to castration-resistant prostate cancer (CRPC) has contributed to the challenges of accurately monito...","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-14DOI: 10.1080/14728222.2023.2295493
Paolo Baldo, Valli De Re, Mattia Garutti
Mapping of the human genome, together with the broad understanding of new biomolecular pathways involved in cancer development, represents a huge dividing line for advances in cancer treatment. Thi...
{"title":"How will the identification and therapeutic intervention of genetic targets in oncology evolve for future therapy?","authors":"Paolo Baldo, Valli De Re, Mattia Garutti","doi":"10.1080/14728222.2023.2295493","DOIUrl":"https://doi.org/10.1080/14728222.2023.2295493","url":null,"abstract":"Mapping of the human genome, together with the broad understanding of new biomolecular pathways involved in cancer development, represents a huge dividing line for advances in cancer treatment. Thi...","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138691716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.1080/14728222.2023.2293746
Zahra Hendi, Pedram Asadi Sarabi, David Hay, Massoud Vosough
Despite improvements in clinical management of hepatocellular carcinoma (HCC), prognosis remains poor with a 5-year survival rate less than 40%. Drug resistance in HCC makes it challenging to treat...
{"title":"XBP1 as a novel molecular target to attenuate drug resistance in hepatocellular carcinoma","authors":"Zahra Hendi, Pedram Asadi Sarabi, David Hay, Massoud Vosough","doi":"10.1080/14728222.2023.2293746","DOIUrl":"https://doi.org/10.1080/14728222.2023.2293746","url":null,"abstract":"Despite improvements in clinical management of hepatocellular carcinoma (HCC), prognosis remains poor with a 5-year survival rate less than 40%. Drug resistance in HCC makes it challenging to treat...","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138716661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-09DOI: 10.1080/14728222.2023.2293748
R. Agarwal, I. Iezhitsa
{"title":"Advances in targeting the extracellular matrix for glaucoma therapy: current updates","authors":"R. Agarwal, I. Iezhitsa","doi":"10.1080/14728222.2023.2293748","DOIUrl":"https://doi.org/10.1080/14728222.2023.2293748","url":null,"abstract":"","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138585145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}