Crohn's disease (CD) is a chronic and relapsing inflammatory bowel disease affecting the entire gastrointestinal tract. The prevalence of CD among Japanese people is increasing. One of the most frequent complications of CD is perianal fistulas. People living with CD may experience complex perianal fistulas, which can cause intense pain, bleeding, swelling, infection, and anal discharge. Despite medical and surgical advancements, complex perianal fistulas in CD remain challenging for clinicians to treat. CD patients living with perianal fistulas reported a negative impact on many aspects of their quality of life. Darvadstrocel is a cell therapy product containing a suspension of allogeneic expanded adipose-derived mesenchymal stem cells. It has been approved in Europe and Japan for the treatment of complex perianal fistulas that have shown an inadequate response to at least one conventional or biologic therapy in adult patients with non-active/mildly active luminal CD. By exhibiting immunomodulatory and local anti-inflammatory effects at the site of inflammation, it offers a new treatment option for complex perianal fistulas in CD patients. In this manuscript, the characteristic of darvadstrocel, the summary of results from the pivotal phase 3 studies in Europe and Japan, and the development strategy in Japan were introduced.
克罗恩病(CD)是一种影响整个胃肠道的慢性复发性炎症性肠病。克罗恩病在日本人中的发病率越来越高。肛周瘘是 CD 最常见的并发症之一。CD 患者可能会出现复杂性肛周瘘,这会导致剧烈疼痛、出血、肿胀、感染和肛门分泌物增多。尽管医疗和手术技术不断进步,但临床医生在治疗 CD 患者的复杂性肛周瘘时仍面临挑战。据报道,患有肛周瘘的 CD 患者在生活质量的许多方面都受到了负面影响。Darvadstrocel 是一种细胞治疗产品,含有异体扩增脂肪间充质干细胞悬液。它已获欧洲和日本批准,用于治疗对至少一种常规或生物疗法反应不佳的非活动性/轻度活动性管腔型CD成人患者的复杂肛周瘘。通过在炎症部位发挥免疫调节和局部抗炎作用,它为 CD 患者的复杂性肛周瘘提供了一种新的治疗选择。本手稿介绍了 darvadstrocel 的特点、在欧洲和日本进行的关键性 3 期研究的结果摘要以及在日本的发展战略。
{"title":"[A new treatment option for complex perianal fistulas in Crohn's disease patients; development of darvadstrocel (allogeneic expanded adipose-derived mesenchymal stem cells) in Japan].","authors":"Takayoshi Yamaguchi","doi":"10.1254/fpj.23046","DOIUrl":"https://doi.org/10.1254/fpj.23046","url":null,"abstract":"<p><p>Crohn's disease (CD) is a chronic and relapsing inflammatory bowel disease affecting the entire gastrointestinal tract. The prevalence of CD among Japanese people is increasing. One of the most frequent complications of CD is perianal fistulas. People living with CD may experience complex perianal fistulas, which can cause intense pain, bleeding, swelling, infection, and anal discharge. Despite medical and surgical advancements, complex perianal fistulas in CD remain challenging for clinicians to treat. CD patients living with perianal fistulas reported a negative impact on many aspects of their quality of life. Darvadstrocel is a cell therapy product containing a suspension of allogeneic expanded adipose-derived mesenchymal stem cells. It has been approved in Europe and Japan for the treatment of complex perianal fistulas that have shown an inadequate response to at least one conventional or biologic therapy in adult patients with non-active/mildly active luminal CD. By exhibiting immunomodulatory and local anti-inflammatory effects at the site of inflammation, it offers a new treatment option for complex perianal fistulas in CD patients. In this manuscript, the characteristic of darvadstrocel, the summary of results from the pivotal phase 3 studies in Europe and Japan, and the development strategy in Japan were introduced.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 3","pages":"150-155"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adenosine-5'-triphosphate (ATP) is an important intracellular energy currency, but it is released extracellularly in response to various stimuli and acts as an intercellular signaling molecule by stimulating various P2 receptors. ATP and ADP are stored in synaptic vesicles and secretory granules, and are released extracellularly upon stimulation, playing important roles in neurotransmission and platelet aggregation. Furthermore, considerable amount of ATP is released by mechanical stimuli such as skin scraping or by cell damage, which in turn activates immune cells to promote inflammatory responses. Mast cells (MCs) are derived from hematopoietic stem cells and play a central role in type I allergic reactions. MCs are activated by IgE-mediated antigen recognition, leading to type I allergic reactions. MCs express P2X7 receptors that are activated by high concentrations of ATP (>0.5 mM), and reported to aggravate inflammatory bowel disease and dermatitis. In contrast, role of MC P2 receptors that respond to lower concentrations of ATP remains to be investigated. We investigated in detail the effects of ATP in mouse bone marrow-derived MCs, and found that lower concentrations of ATP (<100 μM) promotes IgE-dependent and GPCR-mediated degranulation via the ionotropic P2X4 receptor. In mouse allergic models, P2X4 receptor signal promote MC-mediated allergic responses through comprehensively increasing the sensitivity of MCs to different stimuli. Since ATP is known to be released from various cells upon mechanical stimuli such as cell damage or scratching, inhibition of P2X4 receptor signaling may represent a novel strategy to abrogate allergic reaction.
腺苷-5'-三磷酸(ATP)是一种重要的细胞内能量货币,但它在受到各种刺激时会释放到细胞外,并通过刺激各种 P2 受体充当细胞间信号分子。ATP 和 ADP 储存在突触小泡和分泌颗粒中,受到刺激时会释放到细胞外,在神经传递和血小板聚集中发挥重要作用。此外,皮肤刮伤或细胞损伤等机械刺激也会释放大量的 ATP,进而激活免疫细胞,促进炎症反应。肥大细胞(MC)来源于造血干细胞,在 I 型过敏反应中起着核心作用。IgE 介导的抗原识别会激活 MC,从而导致 I 型过敏反应。MCs 表达的 P2X7 受体被高浓度 ATP(>0.5 mM)激活,据报道会加重炎症性肠病和皮炎。相比之下,对低浓度 ATP 有反应的 MC P2 受体的作用仍有待研究。我们详细研究了 ATP 对小鼠骨髓来源 MC 的影响,发现较低浓度的 ATP (
{"title":"[Enhancement of mast cells activation by ATP via P2X4 receptor].","authors":"Kazuki Yoshida, Masa-Aki Ito, Isao Matsuoka","doi":"10.1254/fpj.23083","DOIUrl":"10.1254/fpj.23083","url":null,"abstract":"<p><p>Adenosine-5'-triphosphate (ATP) is an important intracellular energy currency, but it is released extracellularly in response to various stimuli and acts as an intercellular signaling molecule by stimulating various P2 receptors. ATP and ADP are stored in synaptic vesicles and secretory granules, and are released extracellularly upon stimulation, playing important roles in neurotransmission and platelet aggregation. Furthermore, considerable amount of ATP is released by mechanical stimuli such as skin scraping or by cell damage, which in turn activates immune cells to promote inflammatory responses. Mast cells (MCs) are derived from hematopoietic stem cells and play a central role in type I allergic reactions. MCs are activated by IgE-mediated antigen recognition, leading to type I allergic reactions. MCs express P2X7 receptors that are activated by high concentrations of ATP (>0.5 mM), and reported to aggravate inflammatory bowel disease and dermatitis. In contrast, role of MC P2 receptors that respond to lower concentrations of ATP remains to be investigated. We investigated in detail the effects of ATP in mouse bone marrow-derived MCs, and found that lower concentrations of ATP (<100 μM) promotes IgE-dependent and GPCR-mediated degranulation via the ionotropic P2X4 receptor. In mouse allergic models, P2X4 receptor signal promote MC-mediated allergic responses through comprehensively increasing the sensitivity of MCs to different stimuli. Since ATP is known to be released from various cells upon mechanical stimuli such as cell damage or scratching, inhibition of P2X4 receptor signaling may represent a novel strategy to abrogate allergic reaction.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 1","pages":"39-43"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin Jr, Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for their elucidation of new physiological mechanisms "How cells sense and adapt to oxygen availability". Moreover, two different drugs, HIF-PH inhibitors and HIF-2 inhibitors were also developed based on the discovery. Interestingly, those three doctors have different backgrounds as a medical oncologist, a nephrologist, and a pediatrician, respectively. They have started the research based on their own unique perspectives and eventually merged as "the elucidation of the response mechanism of living organisms to hypoxic environments". In this review, we will explain how the translational research that has begun to solve unmet clinical needs successfully contributed to the development of innovative therapeutic drugs.
2019 年诺贝尔生理学或医学奖授予了 William G. Kaelin Jr 博士、Peter J. Ratcliffe 博士和 Gregg L. Semenza 博士,以表彰他们阐明了 "细胞如何感知和适应氧气供应 "的新生理机制。此外,基于这一发现还开发出了两种不同的药物,即 HIF-PH 抑制剂和 HIF-2 抑制剂。有趣的是,这三位医生的背景各不相同,他们分别是肿瘤内科医生、肾脏内科医生和儿科医生。他们基于各自独特的视角开始研究,最终合并为 "阐明生物体对缺氧环境的反应机制"。在这篇综述中,我们将阐述为解决未满足的临床需求而开始的转化研究如何成功地促进了创新治疗药物的开发。
{"title":"[The development of innovative therapeutic drugs targeting hypoxia responses].","authors":"Kiyotsugu Yoshikawa, Hiroki Hagimoto, Eijiro Nakamura","doi":"10.1254/fpj.23090","DOIUrl":"10.1254/fpj.23090","url":null,"abstract":"<p><p>The 2019 Nobel Prize in Physiology or Medicine was awarded to Dr. William G. Kaelin Jr, Dr. Peter J. Ratcliffe, and Dr. Gregg L. Semenza for their elucidation of new physiological mechanisms \"How cells sense and adapt to oxygen availability\". Moreover, two different drugs, HIF-PH inhibitors and HIF-2 inhibitors were also developed based on the discovery. Interestingly, those three doctors have different backgrounds as a medical oncologist, a nephrologist, and a pediatrician, respectively. They have started the research based on their own unique perspectives and eventually merged as \"the elucidation of the response mechanism of living organisms to hypoxic environments\". In this review, we will explain how the translational research that has begun to solve unmet clinical needs successfully contributed to the development of innovative therapeutic drugs.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 3","pages":"160-164"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Nav1.7 as a target for the first disease-modifying drugs for osteoarthritis].","authors":"Yoshiaki Suzuki","doi":"10.1254/fpj.24010","DOIUrl":"https://doi.org/10.1254/fpj.24010","url":null,"abstract":"","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 4","pages":"283"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, various trace bioanalysis methods have been developed, including single-cell transcriptome analysis methods. As the sample volume and amount of biomolecules contained therein are extremely limited, development of new single-cell analysis methods require extremely high-level techniques. It is necessary to design an appropriate analysis system that integrates a highly sensitive detection system and a pretreatment protocol for minimizing sample loss, where separation method is especially important for analyzing diverse mixtures of biomolecules. Among them, capillary electrophoresis (CE) can separate biomolecules in nanoliter-scale solutions with high resolution, making it highly compatible with trace samples such as single cells. By combining with highly sensitive nano-electrospray ionization-mass spectrometry (MS), it is possible to detect nanomolar to sub-nanomolar biomolecules, which can be further improved by using online sample preconcentration methods. These highly sensitive analytical techniques have made it possible to analyze trace amounts of metabolites, proteins, lipids, etc. This review paper summarizes the research on CE-MS trace bioanalysis that has been reported to date, with a focus on single-cell analysis.
{"title":"[Recent advances in capillary electrophoresis-mass spectrometry analysis of trace biomolecules].","authors":"Takayuki Kawai","doi":"10.1254/fpj.24036","DOIUrl":"https://doi.org/10.1254/fpj.24036","url":null,"abstract":"<p><p>In recent years, various trace bioanalysis methods have been developed, including single-cell transcriptome analysis methods. As the sample volume and amount of biomolecules contained therein are extremely limited, development of new single-cell analysis methods require extremely high-level techniques. It is necessary to design an appropriate analysis system that integrates a highly sensitive detection system and a pretreatment protocol for minimizing sample loss, where separation method is especially important for analyzing diverse mixtures of biomolecules. Among them, capillary electrophoresis (CE) can separate biomolecules in nanoliter-scale solutions with high resolution, making it highly compatible with trace samples such as single cells. By combining with highly sensitive nano-electrospray ionization-mass spectrometry (MS), it is possible to detect nanomolar to sub-nanomolar biomolecules, which can be further improved by using online sample preconcentration methods. These highly sensitive analytical techniques have made it possible to analyze trace amounts of metabolites, proteins, lipids, etc. This review paper summarizes the research on CE-MS trace bioanalysis that has been reported to date, with a focus on single-cell analysis.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 5","pages":"321-326"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shihori Tanabe, Tae-Young Kim, Rosalía Rodríguez-Rodríguez, Chang-Beom Park
New approaches for elucidating mechanisms of diseases including environmental diseases, cancer, metabolic diseases, infectious diseases are challenging. After the presentation on elucidating the mechanism of cancer and infectious diseases, lectures by Dr. Tae-Young Kim (Korea) on metabolic deuterium oxide labeling in environmental diseases, Dr. Rosalia Rodriguez-Rodriguez (Spain) on targeting the hypothalamus with nanomedicines to treat metabolic diseases, Dr. Chang-Beom Park (Korea) on methodological approach for evaluation of the environmental diseases were presented. The deeper understanding of the global research approaches on diseases will be expected based on the fruitful discussion at the international symposium.
阐明包括环境疾病、癌症、代谢疾病和传染病在内的疾病机理的新方法具有挑战性。在关于阐明癌症和传染性疾病机制的演讲之后,Tae-Young Kim 博士(韩国)、Rosalia Rodriguez-Rodriguez 博士(西班牙)、Chang-Beom Park 博士(韩国)和 Rosalia Rodriguez-Rodriguez 博士分别发表了关于环境疾病中的代谢氧化氘标记、纳米药物靶向下丘脑治疗代谢疾病和环境疾病评估方法的演讲。在国际研讨会富有成果的讨论基础上,我们期待对全球疾病研究方法有更深入的了解。
{"title":"[The mechanisms of diseases and global approaches].","authors":"Shihori Tanabe, Tae-Young Kim, Rosalía Rodríguez-Rodríguez, Chang-Beom Park","doi":"10.1254/fpj.24033","DOIUrl":"https://doi.org/10.1254/fpj.24033","url":null,"abstract":"<p><p>New approaches for elucidating mechanisms of diseases including environmental diseases, cancer, metabolic diseases, infectious diseases are challenging. After the presentation on elucidating the mechanism of cancer and infectious diseases, lectures by Dr. Tae-Young Kim (Korea) on metabolic deuterium oxide labeling in environmental diseases, Dr. Rosalia Rodriguez-Rodriguez (Spain) on targeting the hypothalamus with nanomedicines to treat metabolic diseases, Dr. Chang-Beom Park (Korea) on methodological approach for evaluation of the environmental diseases were presented. The deeper understanding of the global research approaches on diseases will be expected based on the fruitful discussion at the international symposium.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 5","pages":"327-330"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amyloid-β (Aβ) 42, one of the causes of Alzheimer's disease (AD), is produced by the cleavage of amyloid precursor protein (APP) by β- or γ-secretases. Since Aβ42 oligomers exhibit strong neurotoxicity, Aβ42 is predicted to be a potentially efficient target for drug therapies. Recently, we screened peptides that activate MMP7 using our peptide library and found that the synthetic peptide JAL-TA9 (YKGSGFRMI), which is derived from the BoxA region of Tob1 protein, showed proteolytic activity. It is generally accepted that an enzyme should be a large molecular protein consisting of more than thousands of amino acids. Thus, this is the first finding that a small synthetic peptide has protease activity, and we termed Catalytide as the general name of peptides with protease activity. In this study, we demonstrate the cleavage activity of JAL-TA9 not only against the authentic soluble form of Aβ42 but also against the solid type of Aβ42 in the central region. In addition, we demonstrated the cleavage activity using brain slices of AD patients. JAL-TA9 decreased the amount of accumulated Aβ42 in the brain of Alzheimer's patients. Taken together, JAL-TA9 is an attractive seed for the development of peptide drugs with a new strategy for Alzheimer's disease.
{"title":"[The discovery of JAL-TA9 which cleaves amyloid-β with proteolytic activity].","authors":"Rina Nakamura","doi":"10.1254/fpj.24074","DOIUrl":"https://doi.org/10.1254/fpj.24074","url":null,"abstract":"<p><p>Amyloid-β (Aβ) 42, one of the causes of Alzheimer's disease (AD), is produced by the cleavage of amyloid precursor protein (APP) by β- or γ-secretases. Since Aβ42 oligomers exhibit strong neurotoxicity, Aβ42 is predicted to be a potentially efficient target for drug therapies. Recently, we screened peptides that activate MMP7 using our peptide library and found that the synthetic peptide JAL-TA9 (YKGSGFRMI), which is derived from the BoxA region of Tob1 protein, showed proteolytic activity. It is generally accepted that an enzyme should be a large molecular protein consisting of more than thousands of amino acids. Thus, this is the first finding that a small synthetic peptide has protease activity, and we termed Catalytide as the general name of peptides with protease activity. In this study, we demonstrate the cleavage activity of JAL-TA9 not only against the authentic soluble form of Aβ42 but also against the solid type of Aβ42 in the central region. In addition, we demonstrated the cleavage activity using brain slices of AD patients. JAL-TA9 decreased the amount of accumulated Aβ42 in the brain of Alzheimer's patients. Taken together, JAL-TA9 is an attractive seed for the development of peptide drugs with a new strategy for Alzheimer's disease.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 6","pages":"386-390"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ensitrelvir fumaric acid (Xocova® hereafter ensitrelvir) is a novel anti-SARS-CoV-2 drug for COVID-19. Hokkaido University and Shionogi & Co., Ltd. engaged in joint research targeting SARS-CoV-2 3C-like (3CL) protease at an early stage and started clinical trials in July 2021. In February 2022, an application was filed for manufacture and sales approval for the indication of "SARS-CoV-2 infection,". Ensitrelvir recieved the first emergency regulatory approval from the Ministry of Health, Labour and Welfare (MHLW) in Japan in November 2022, and has obtained standard approval in March 2024. This emergency approval was based on the confirmed safety in a Phase 2/3 study (T1221) conducted in Japan and other Asian countries (Korea and Vietnam) in patients with mild/moderate COVID-19 and the presumed efficacy in Phase 3 Part (SCORPIO-SR), and the standard approval is based on efficacy from the Phase 3 part. In the Phase 3 part, ensitrelvir administered orally 375/125 mg once daily for five days, in patients with irrespective of risk factors for severe complications and vaccination status, demonstrating a significant reduction vs placebo in the time to resolution of five typical Omicron-related symptoms (stuffy or runny nose, sore throat, cough, feeling hot or feverish, and low energy or tiredness), and also showed a significant reduction in viral RNA on day 4 relative to placebo (P < 0.001). In the Phase 2/3 study, there were no serious adverse events or deaths, indicating good tolerability and safety. We hope that ensitrelvir will contribute as a new treatment option for patients suffering from COVID-19 symptoms.
{"title":"[Pharmacological characteristics and clinical study results of ensitrelvir fumaric acid (XOCOVA<sup>®</sup> Tablets 125 mg)].","authors":"Yuko Tsuge, Yasuko Ariwa, Kentarou Shibata","doi":"10.1254/fpj.24017","DOIUrl":"10.1254/fpj.24017","url":null,"abstract":"<p><p>Ensitrelvir fumaric acid (Xocova<sup>®</sup> hereafter ensitrelvir) is a novel anti-SARS-CoV-2 drug for COVID-19. Hokkaido University and Shionogi & Co., Ltd. engaged in joint research targeting SARS-CoV-2 3C-like (3CL) protease at an early stage and started clinical trials in July 2021. In February 2022, an application was filed for manufacture and sales approval for the indication of \"SARS-CoV-2 infection,\". Ensitrelvir recieved the first emergency regulatory approval from the Ministry of Health, Labour and Welfare (MHLW) in Japan in November 2022, and has obtained standard approval in March 2024. This emergency approval was based on the confirmed safety in a Phase 2/3 study (T1221) conducted in Japan and other Asian countries (Korea and Vietnam) in patients with mild/moderate COVID-19 and the presumed efficacy in Phase 3 Part (SCORPIO-SR), and the standard approval is based on efficacy from the Phase 3 part. In the Phase 3 part, ensitrelvir administered orally 375/125 mg once daily for five days, in patients with irrespective of risk factors for severe complications and vaccination status, demonstrating a significant reduction vs placebo in the time to resolution of five typical Omicron-related symptoms (stuffy or runny nose, sore throat, cough, feeling hot or feverish, and low energy or tiredness), and also showed a significant reduction in viral RNA on day 4 relative to placebo (P < 0.001). In the Phase 2/3 study, there were no serious adverse events or deaths, indicating good tolerability and safety. We hope that ensitrelvir will contribute as a new treatment option for patients suffering from COVID-19 symptoms.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 4","pages":"264-281"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Growing evidence has indicated that delta opioid receptor (DOP) agonists are potential psychotropic drugs such as for depression, anxiety, and PTSD. In rodent studies, we have also demonstrated that DOP agonists exhibit potent anxiolytic-like effects via the inhibition of the excitatory neuronal activity which projects to the amygdala from the prelimbic prefrontal cortex and facilitate extinction learning of contextual fear memory through PI3K-Akt signaling pathway in the infralimbic prefrontal cortex and MEK-ERK signaling pathway in the amygdala. In this article, we introduce the functional mechanisms underlying antidepressant-like effects and anti-stress effects of DOP agonists. Then, we employed a valid animal model of depression, chronic vicarious social defeat stress (cVSDS) mice, and investigated that the influence of DOP activation on pathopsychological factors in depression such as the adult hippocampal neurogenesis, hypothalamic-pituitary-adrenal (HPA) axis, and neuroinflammation. First, repeated administrations after the stress period to cVSDS mice with a selective DOP agonist, KNT-127, improved social interaction behaviors and reduced hyperactivation of the HPA axis without affecting hippocampal neurogenesis. Meanwhile, repeated KNT-127 administrations during the cVSDS period prevented the exacerbation of social interaction behaviors, dysregulation of the HPA axis, and excessive new-born neuronal cell death in the hippocampal dentate gyrus. Moreover, in both administration paradigms, KNT-127 suppressed microglial overactivation in the dentate gyrus of cVSDS mice. These results indicate that the underlying mechanism of DOP-induced antidepressant-like effects differ from those of conventional monoaminergic antidepressants. Furthermore, we propose that DOP agonists might have prophylactic effects as well as therapeutic effects on pathophysiological changes in depression.
{"title":"[Underlying mechanisms for psychotropic effects of delta opioid receptor agonists].","authors":"Toshinori Yoshioka, Akiyoshi Saitoh","doi":"10.1254/fpj.24011","DOIUrl":"https://doi.org/10.1254/fpj.24011","url":null,"abstract":"<p><p>Growing evidence has indicated that delta opioid receptor (DOP) agonists are potential psychotropic drugs such as for depression, anxiety, and PTSD. In rodent studies, we have also demonstrated that DOP agonists exhibit potent anxiolytic-like effects via the inhibition of the excitatory neuronal activity which projects to the amygdala from the prelimbic prefrontal cortex and facilitate extinction learning of contextual fear memory through PI3K-Akt signaling pathway in the infralimbic prefrontal cortex and MEK-ERK signaling pathway in the amygdala. In this article, we introduce the functional mechanisms underlying antidepressant-like effects and anti-stress effects of DOP agonists. Then, we employed a valid animal model of depression, chronic vicarious social defeat stress (cVSDS) mice, and investigated that the influence of DOP activation on pathopsychological factors in depression such as the adult hippocampal neurogenesis, hypothalamic-pituitary-adrenal (HPA) axis, and neuroinflammation. First, repeated administrations after the stress period to cVSDS mice with a selective DOP agonist, KNT-127, improved social interaction behaviors and reduced hyperactivation of the HPA axis without affecting hippocampal neurogenesis. Meanwhile, repeated KNT-127 administrations during the cVSDS period prevented the exacerbation of social interaction behaviors, dysregulation of the HPA axis, and excessive new-born neuronal cell death in the hippocampal dentate gyrus. Moreover, in both administration paradigms, KNT-127 suppressed microglial overactivation in the dentate gyrus of cVSDS mice. These results indicate that the underlying mechanism of DOP-induced antidepressant-like effects differ from those of conventional monoaminergic antidepressants. Furthermore, we propose that DOP agonists might have prophylactic effects as well as therapeutic effects on pathophysiological changes in depression.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 4","pages":"225-228"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}