Fetal thyroid hormones (THs), essential for brain development, largely depend on maternal supply. Clinical studies have shown that TH alterations in pregnant mothers can lead to permanent neurodevelopmental effects in their children, suggesting that chemicals causing maternal TH disruption may require regulation. However, the quantitative relationship between chemical-induced maternal TH reductions and fetal brain TH disruption, as well as fetal brain developmental abnormalities, is not fully understood. Thus, there is a need for methods that can precisely, rapidly, and quantitatively evaluate TH-disrupting effects of test chemicals that may cause brain abnormalities. Currently, multiple molecular initiating events (MIEs) in the adverse outcome pathways (AOPs) of TH disruption are known, and tests using New Approach Methodologies are being developed to investigate the effects of chemicals on these MIEs. Additionally, the Comparative Thyroid Assay (CTA) is expected to be utilized to comparatively evaluate the decrease in blood TH concentrations, commonly observed as a result of actions on multiple MIEs, in maternal rats along with their offspring. Recently, due to the increasing need for more precise and efficient evaluations and the reduction of animal testing, we have worked on improving the CTA. We proposed a modified CTA that adds new test items: brain TH concentrations and heterotopia (a histological marker of brain TH deficiency), while reducing the number of animals used by 50%. Feasibility studies confirmed that it can detect approximately 20-30% TH disruption in the offspring brain. This review outlines the current efforts to develop new evaluation methods for perinatal TH disruption effects.
{"title":"[Chemical-induced perinatal thyroid hormone disruption and brain developmental adversity: status of efforts aimed at developing new evaluation methods].","authors":"Tomoya Yamada","doi":"10.1254/fpj.24058","DOIUrl":"10.1254/fpj.24058","url":null,"abstract":"<p><p>Fetal thyroid hormones (THs), essential for brain development, largely depend on maternal supply. Clinical studies have shown that TH alterations in pregnant mothers can lead to permanent neurodevelopmental effects in their children, suggesting that chemicals causing maternal TH disruption may require regulation. However, the quantitative relationship between chemical-induced maternal TH reductions and fetal brain TH disruption, as well as fetal brain developmental abnormalities, is not fully understood. Thus, there is a need for methods that can precisely, rapidly, and quantitatively evaluate TH-disrupting effects of test chemicals that may cause brain abnormalities. Currently, multiple molecular initiating events (MIEs) in the adverse outcome pathways (AOPs) of TH disruption are known, and tests using New Approach Methodologies are being developed to investigate the effects of chemicals on these MIEs. Additionally, the Comparative Thyroid Assay (CTA) is expected to be utilized to comparatively evaluate the decrease in blood TH concentrations, commonly observed as a result of actions on multiple MIEs, in maternal rats along with their offspring. Recently, due to the increasing need for more precise and efficient evaluations and the reduction of animal testing, we have worked on improving the CTA. We proposed a modified CTA that adds new test items: brain TH concentrations and heterotopia (a histological marker of brain TH deficiency), while reducing the number of animals used by 50%. Feasibility studies confirmed that it can detect approximately 20-30% TH disruption in the offspring brain. This review outlines the current efforts to develop new evaluation methods for perinatal TH disruption effects.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 2","pages":"108-114"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143536971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aging serves as a risk factor for various age-associated disorders, such as cancer and type 2 diabetes. The study of aging is linked with metabolic research, due to the metabolic changes associated with aging. For example, chronic inflammation and the accumulation of DNA damages associated with aging lead to a decrease in NAD+ levels and mitochondrial dysfunction, resulting in cells becoming irreversibly cell cycle arrested, known as senescent cells. Senescent cells exhibit metabolic changes distinct from normal cells, along with distinct phenotypic characteristics, such as the senescence-associated secretory phenotypes (SASP), characterized by the excessive secretion of bioactive molecules such as inflammatory cytokines and chemokines. The accumulation of senescent cells has been observed in the pathology of age-related diseases, and their characteristics are thought to contribute to disease progression. Recent research has focused on the characteristics of senescent cells, such as their resistance to apoptosis, and aims to eliminate these cells from the body through pharmacological inhibition. Indeed, experimental evidence has demonstrated improvements in age-related phenotypes following the removal of senescent cells. Here, we review how age-related changes in cell metabolism induce cellular senescence, what are the metabolic characteristics of senescent cells, and how they affect the organism. Additionally, we also review our recent findings on the elimination of senescent cells by pharmacological inhibition of glutaminolysis rate-limiting enzyme GLS1, and outline the prospects for drug discovery targeting senescent cells.
{"title":"[Metabolic insights into cellular senescence and in therapeutic approaches].","authors":"Ryota Kobori, Yasuhiro Nakano, Soichiro Kumamoto, Yoshikazu Johmura","doi":"10.1254/fpj.24066","DOIUrl":"10.1254/fpj.24066","url":null,"abstract":"<p><p>Aging serves as a risk factor for various age-associated disorders, such as cancer and type 2 diabetes. The study of aging is linked with metabolic research, due to the metabolic changes associated with aging. For example, chronic inflammation and the accumulation of DNA damages associated with aging lead to a decrease in NAD<sup>+</sup> levels and mitochondrial dysfunction, resulting in cells becoming irreversibly cell cycle arrested, known as senescent cells. Senescent cells exhibit metabolic changes distinct from normal cells, along with distinct phenotypic characteristics, such as the senescence-associated secretory phenotypes (SASP), characterized by the excessive secretion of bioactive molecules such as inflammatory cytokines and chemokines. The accumulation of senescent cells has been observed in the pathology of age-related diseases, and their characteristics are thought to contribute to disease progression. Recent research has focused on the characteristics of senescent cells, such as their resistance to apoptosis, and aims to eliminate these cells from the body through pharmacological inhibition. Indeed, experimental evidence has demonstrated improvements in age-related phenotypes following the removal of senescent cells. Here, we review how age-related changes in cell metabolism induce cellular senescence, what are the metabolic characteristics of senescent cells, and how they affect the organism. Additionally, we also review our recent findings on the elimination of senescent cells by pharmacological inhibition of glutaminolysis rate-limiting enzyme GLS1, and outline the prospects for drug discovery targeting senescent cells.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 4","pages":"256-260"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144552756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inspired by my experiences working in research at an overseas biotech venture, I founded GenAhead Bio Inc. in 2018. GenAhead Bio adopts a unique dual-business structure, providing contract services for generating genetically modified cells using highly efficient CRISPR/Cas9 genome editing technology for researchers, while simultaneously pursuing a nucleic acid drug business aiming to develop nucleic acid drugs such as antisense oligonucleotides and siRNAs. Based on the emerging delivery system called Antibody-Nucleic acid Conjugate, where an antibody is covalently linked to a nucleic acid as a targeting ligand, we are conducting drug developmental research by delivering nucleic acids to the organs where antibodies accumulate. Our ultimate goal is to apply this technology to genome editing for gene modification in specific cell types. In this review, we will introduce some case studies of genome editing, including single nucleotide substitutions, as well as the delivery of siRNA to the skeletal muscle using anti-transferrin receptor (CD71) antibody and its therapeutic effects on muscular diseases.
受在海外生物技术企业从事研究工作的启发,我于2018年创立了GenAhead Bio Inc.。GenAhead Bio采用独特的双业务结构,为科研人员提供利用高效CRISPR/Cas9基因组编辑技术生成基因修饰细胞的合同服务,同时开展以开发反义寡核苷酸、sirna等核酸药物为目标的核酸药物业务。基于被称为抗体-核酸偶联(antibody - nucleic acid Conjugate)的新兴递送系统,我们正在通过将核酸递送到抗体聚集的器官来进行药物开发研究。抗体-核酸偶联是一种抗体作为靶向配体与核酸共价连接。我们的最终目标是将这项技术应用于基因组编辑,对特定细胞类型进行基因修饰。在这篇综述中,我们将介绍一些基因组编辑的案例研究,包括单核苷酸替换,以及使用抗转铁蛋白受体(CD71)抗体将siRNA递送到骨骼肌及其对肌肉疾病的治疗作用。
{"title":"[GenAhead Bio: your partner for extensive support of genome editing and co-development of nucleic acid delivery].","authors":"Tsukasa Sugo, Yoshitaka Shirasago, Shingo Yoshimoto, Miha Kitajima","doi":"10.1254/fpj.25004","DOIUrl":"10.1254/fpj.25004","url":null,"abstract":"<p><p>Inspired by my experiences working in research at an overseas biotech venture, I founded GenAhead Bio Inc. in 2018. GenAhead Bio adopts a unique dual-business structure, providing contract services for generating genetically modified cells using highly efficient CRISPR/Cas9 genome editing technology for researchers, while simultaneously pursuing a nucleic acid drug business aiming to develop nucleic acid drugs such as antisense oligonucleotides and siRNAs. Based on the emerging delivery system called Antibody-Nucleic acid Conjugate, where an antibody is covalently linked to a nucleic acid as a targeting ligand, we are conducting drug developmental research by delivering nucleic acids to the organs where antibodies accumulate. Our ultimate goal is to apply this technology to genome editing for gene modification in specific cell types. In this review, we will introduce some case studies of genome editing, including single nucleotide substitutions, as well as the delivery of siRNA to the skeletal muscle using anti-transferrin receptor (CD71) antibody and its therapeutic effects on muscular diseases.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 4","pages":"274-278"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144552753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study evaluated the utility of an integrated drug discovery strategy that combines three emerging data-driven approaches: real-world data analysis, in silico screening, and network pharmacology. First, transcriptomic data from public gene expression databases and adverse event reports were analyzed to address myocarditis induced by immune checkpoint inhibitors. The findings suggested a preventive effect of non-steroidal anti-inflammatory drugs, particularly those targeting the arachidonic acid metabolism pathway. Second, to identify therapeutic options for trastuzumab-resistant HER2-positive breast cancer, a cheminformatics approach was applied. A machine learning classification model and structure-based docking simulations enabled efficient in silico screening of approved drugs, identifying novel YES1 kinase inhibitors. Third, network-based analysis evaluated the topological distance between disease-associated gene modules and statin-induced gene modules in drug-induced peripheral neuropathy. This analysis indicated that certain statins may protect against drug-induced peripheral neuropathy through modulation of shared targets and neurodegenerative pathways. These findings demonstrate that integrating heterogeneous data modalities-from transcriptomics and chemical structure to protein-protein interaction networks and real-world clinical observations-can enable the discovery of repositioning candidates and risk-mitigating therapies. The study highlights the potential of multi-layered, data-driven strategies in constructing translational drug discovery frameworks aimed at both efficacy and safety.
{"title":"[An integrative drug discovery strategy using real-world data, in silico modeling, and network pharmacology].","authors":"Hirofumi Hamano, Yuta Tanaka, Yoshito Zamami","doi":"10.1254/fpj.25037","DOIUrl":"https://doi.org/10.1254/fpj.25037","url":null,"abstract":"<p><p>This study evaluated the utility of an integrated drug discovery strategy that combines three emerging data-driven approaches: real-world data analysis, in silico screening, and network pharmacology. First, transcriptomic data from public gene expression databases and adverse event reports were analyzed to address myocarditis induced by immune checkpoint inhibitors. The findings suggested a preventive effect of non-steroidal anti-inflammatory drugs, particularly those targeting the arachidonic acid metabolism pathway. Second, to identify therapeutic options for trastuzumab-resistant HER2-positive breast cancer, a cheminformatics approach was applied. A machine learning classification model and structure-based docking simulations enabled efficient in silico screening of approved drugs, identifying novel YES1 kinase inhibitors. Third, network-based analysis evaluated the topological distance between disease-associated gene modules and statin-induced gene modules in drug-induced peripheral neuropathy. This analysis indicated that certain statins may protect against drug-induced peripheral neuropathy through modulation of shared targets and neurodegenerative pathways. These findings demonstrate that integrating heterogeneous data modalities-from transcriptomics and chemical structure to protein-protein interaction networks and real-world clinical observations-can enable the discovery of repositioning candidates and risk-mitigating therapies. The study highlights the potential of multi-layered, data-driven strategies in constructing translational drug discovery frameworks aimed at both efficacy and safety.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 5","pages":"352-359"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144948200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With Japan's aging population, the number of individuals diagnosed with dementia has been steadily rising, creating significant social and economic challenges. Dementia is caused by various underlying conditions that lead to acquired brain injury. It is characterized by a progressive decline in cognitive function, which can impair activities of daily living (ADLs) and social interactions. However, current medical interventions for neurodegenerative dementias remain insufficient to achieve a complete cure.
{"title":"[Advances in dementia research: new insights into blood cells and plasma components].","authors":"Shuntatsu Nakazawa, Rinku Ogawa, Takuya Sasaki, Nariko Arimura","doi":"10.1254/fpj.24115","DOIUrl":"10.1254/fpj.24115","url":null,"abstract":"<p><p>With Japan's aging population, the number of individuals diagnosed with dementia has been steadily rising, creating significant social and economic challenges. Dementia is caused by various underlying conditions that lead to acquired brain injury. It is characterized by a progressive decline in cognitive function, which can impair activities of daily living (ADLs) and social interactions. However, current medical interventions for neurodegenerative dementias remain insufficient to achieve a complete cure.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 5","pages":"314-317"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144948271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[How does the brain mediate placebo analgesia? Evidence for the involvement of the rACC-pontine-cerebellar pathway].","authors":"Yoki Nakamura","doi":"10.1254/fpj.25026","DOIUrl":"https://doi.org/10.1254/fpj.25026","url":null,"abstract":"","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 4","pages":"305"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144552754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Ghrelin and its receptor: a gut-brain hormone system as a therapeutic target for cancer cachexia].","authors":"Yuki Shiimura, Taito Inoue, Takahiro Sato","doi":"10.1254/fpj.25062","DOIUrl":"https://doi.org/10.1254/fpj.25062","url":null,"abstract":"","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 6","pages":"411-413"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145437882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal cell membranes are composed of over a thousand species of phospholipids. The structure and distribution of these molecules influence the physicochemical properties of membranes and the activity of membrane proteins, making the proper regulation of phospholipids essential for maintaining cellular functions. However, due to the structural diversity of phospholipids, many aspects of their individual roles remain unclear. The functions of phospholipids have been investigated using Drosophila cells, which possess relatively simple phospholipid compositions and regulatory mechanisms. This article presents research findings from studies using Drosophila cells, along with insights from mammalian cells, and discusses the potential role of phospholipids as factors that regulate the "resilience" of cellular functions.
{"title":"[The role of phospholipids in regulating the resilience of cellular functions].","authors":"Kohjiro Nagao","doi":"10.1254/fpj.25056","DOIUrl":"https://doi.org/10.1254/fpj.25056","url":null,"abstract":"<p><p>Animal cell membranes are composed of over a thousand species of phospholipids. The structure and distribution of these molecules influence the physicochemical properties of membranes and the activity of membrane proteins, making the proper regulation of phospholipids essential for maintaining cellular functions. However, due to the structural diversity of phospholipids, many aspects of their individual roles remain unclear. The functions of phospholipids have been investigated using Drosophila cells, which possess relatively simple phospholipid compositions and regulatory mechanisms. This article presents research findings from studies using Drosophila cells, along with insights from mammalian cells, and discusses the potential role of phospholipids as factors that regulate the \"resilience\" of cellular functions.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"160 6","pages":"378-382"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145437937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}