Ferroptosis is principally initiated by dysregulation of iron metabolism and excessive accumulation of ROS, which exacerbates myocardial injury during acute myocardial infarction (AMI). Previous studies have indeed demonstrated the significant involvement of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) exerts its pleiotropic effects in the pathophysiology of myocardial infarction, heart failure and atherosclerosis by modulating inflammation, apoptosis, and oxidative stress. However, whether and how NEAT1 mediates myocardial ferroptosis remain unknown. In this study, we found that NEAT1 expression was significantly elevated in hypoxic HL-1 cells and AMI mice, while silencing of NEAT1 alleviated lipid peroxidation and myocardial ferroptosis both in vitro and in vivo. Mechanistically, NEAT1 directly sponged miR-450b-5p and negatively regulated its expression. In addition, miR-450b-5p directly targeted Acyl-CoA synthase long-chain family member 4 (ACSL4). Notably, inhibition of miR-450b-5p reversed the role of NEAT1 in AMI mice. Collectively, these findings newly illustrated that NEAT1 acts as a competitive endogenous RNA (ceRNA) of miR-450–5p in AMI. Especially, silencing of NEAT1 effectively ameliorated myocardium ischemia by suppression of ferroptosis via miR-450–5p/ACSL4 pathway, which providing a brand-new therapeutic strategy for myocardial ischemia injury.