Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It accounts for 50 % of cancers diagnosed in infants less than 1 year old, and 10 % of all pediatric cancer deaths in the United States. High-risk patients have a less than 50 % 5-year survival rate with current treatment strategies. The complex tumor microenvironment of NB makes the development of treatment strategies for high-risk patients challenging. There is increasing evidence that intratumoral immune suppression plays an important role in the progression and invasion of NB tumors. Few three-dimensional (3D) cancer models include components of the innate immune system. This work develops a preclinical 3D NB-immune co-culture model using SK-N-AS NB cells, NK-92 natural killer cells, and THP-1 derived macrophages, co-cultured on porous 3D silk scaffolds to provide tumor architecture. Conditioned media and indirect co-culturing showed changes in SK-N-AS gene expression associated with immunoregulatory signaling, and changes in NK-92 gene expression that are associated with reduced cytotoxicity. This motivated the development of a 3D direct co-culture system in which NB cells were seeded prior to immune cells to allow incorporation and deposition of extracellular matrix within the construct. Immune cells were then incorporated into the model to achieve direct co-culture with SK-N-AS cells. Changes in THP-1 macrophage polarization toward a more M2-like phenotype were observed in 3D direct co-culture, as well as altered NK-92 cell protein secretion and cytotoxic activity. Preliminary testing of immunotherapeutics within the model was conducted on both NB-macrophage and NB-NK co-cultures, but the model demonstrated limited response to immunotherapeutics. This work lays the foundation for building high-throughput therapeutic screening models for the improved treatment NB and other solid tumors.