Pub Date : 2024-09-24DOI: 10.1016/j.expneurol.2024.114973
Peyton Grace Howard , Peibin Zou , Yulan Zhang , Fang Huang , Vesna Tesic , Celeste Yin-Chieh Wu , Reggie Hui-Chao Lee
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
{"title":"Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain","authors":"Peyton Grace Howard , Peibin Zou , Yulan Zhang , Fang Huang , Vesna Tesic , Celeste Yin-Chieh Wu , Reggie Hui-Chao Lee","doi":"10.1016/j.expneurol.2024.114973","DOIUrl":"10.1016/j.expneurol.2024.114973","url":null,"abstract":"<div><div>Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114973"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.expneurol.2024.114966
Yehua Lv , Lingyun Ji , Hui Dai, Shanru Qiu, Yu Wang, Cheng Teng, Bin Yu, Daguo Mi, Chun Yao
Multilayer dense myelin tissue provides insulating space and nutritional support for axons in healthy spinal cord tissue. Oligodendrocyte precursor cells (OPCs) are the main glial cells that complement myelin loss in the central nervous system and play an important role in the repair of spinal cord injury (SCI). However, the regulation of axonal remyelination after SCI is still insufficient. In this study, we focused on the changes in genes related to myelin repair after rat hemisection SCI by gene set enrichment analysis (GSEA). Key genes proteolipid protein 1 (Plp1), hexosaminidase subunit alpha (Hexa), and hexosaminidase subunit beta (Hexb) during remyelination after SCI were found. Through quantitative real-time polymerase chain reaction (qPCR) experiments, we confirmed that within 28 days after rat hemisection SCI, the mRNA expression of gene Plp1 gradually decreased, while the expressions of gene Hexa and Hexb gradually increased, which was consistent with RNA sequencing results. In vitro, we performed EdU proliferation assays on OPC cell line OLN-93 and primary rat OPCs. We found that interference of Plp1 promoted OPC proliferation, while interference of Hexa and Hexb inhibited OPC proliferation. In addition, we performed in vitro differentiation experiments on primary rat OPCs. By measuring myelin sheath branch outgrowth and the fluorescence intensity of the mature myelin sheath marker myelin basic protein (MBP), we found that interference of Hexa or Hexb promoted OPC differentiation and maturation, but interference of Plp1 inhibited this process. Finally, we injected Hexb siRNA in vivo and found that interfering Hexb could improve motor movements and myelin regeneration after SCI in rats. Our results provide new target genes that can selectively regulate the proliferation and differentiation of endogenous OPCs, providing new ideas for promoting remyelination and functional recovery after SCI.
{"title":"Identification of key regulatory genes involved in myelination after spinal cord injury by GSEA analysis","authors":"Yehua Lv , Lingyun Ji , Hui Dai, Shanru Qiu, Yu Wang, Cheng Teng, Bin Yu, Daguo Mi, Chun Yao","doi":"10.1016/j.expneurol.2024.114966","DOIUrl":"10.1016/j.expneurol.2024.114966","url":null,"abstract":"<div><div>Multilayer dense myelin tissue provides insulating space and nutritional support for axons in healthy spinal cord tissue. Oligodendrocyte precursor cells (OPCs) are the main glial cells that complement myelin loss in the central nervous system and play an important role in the repair of spinal cord injury (SCI). However, the regulation of axonal remyelination after SCI is still insufficient. In this study, we focused on the changes in genes related to myelin repair after rat hemisection SCI by gene set enrichment analysis (GSEA). Key genes proteolipid protein 1 (Plp1), hexosaminidase subunit alpha (Hexa), and hexosaminidase subunit beta (Hexb) during remyelination after SCI were found. Through quantitative real-time polymerase chain reaction (qPCR) experiments, we confirmed that within 28 days after rat hemisection SCI, the mRNA expression of gene Plp1 gradually decreased, while the expressions of gene Hexa and Hexb gradually increased, which was consistent with RNA sequencing results. In vitro, we performed EdU proliferation assays on OPC cell line OLN-93 and primary rat OPCs. We found that interference of Plp1 promoted OPC proliferation, while interference of Hexa and Hexb inhibited OPC proliferation. In addition, we performed in vitro differentiation experiments on primary rat OPCs. By measuring myelin sheath branch outgrowth and the fluorescence intensity of the mature myelin sheath marker myelin basic protein (MBP), we found that interference of Hexa or Hexb promoted OPC differentiation and maturation, but interference of Plp1 inhibited this process. Finally, we injected Hexb siRNA in vivo and found that interfering Hexb could improve motor movements and myelin regeneration after SCI in rats. Our results provide new target genes that can selectively regulate the proliferation and differentiation of endogenous OPCs, providing new ideas for promoting remyelination and functional recovery after SCI.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114966"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.expneurol.2024.114975
Jundong Kong , Qiangqiang Zhang , Haohong Zheng , Diandong Tang , Li Fang , Shuaihao An , Jian Li , Zhongkai Fan
Spinal Cord Injury (SCI) is a severe condition that often leads to substantial neurological impairments. This study aimed to explore the role of Aquaporin-4 (AQP4) in regulating astrocyte autophagy and neuroinflammation post-SCI, as well as to evaluate the therapeutic potential of AQP4 inhibition using the specific inhibitor TGN-020. Using Western blot, CCK8 assays, immunofluorescence staining, histopathological assessments, and behavioral analyses, we investigated the effects of TGN-020 on SCI-induced alterations in autophagy, neuroinflammation, astrocyte proliferation, neuronal damage, and motor function recovery in both rat and astrocyte models. Our findings indicate that TGN-020 significantly enhances astrocyte autophagy, reduces neuroinflammation, thereby leading to mitigated astrocyte activation by suppressing AQP4 expression. These beneficial effects are associated with the activation of the peroxisome proliferator-activated receptor-γ/mammalian target of rapamycin (PPAR-γ/mTOR) signaling pathway. Notably, the introduction of the PPAR-γ specific inhibitor GW9662 abrogated the positive regulatory effects of TGN-020 on SCI-induced autophagy and neuroinflammation. Collectively, our in vivo and in vitro experiments demonstrate that TGN-020, by down-regulating AQP4, activates the PPAR-γ/mTOR pathway, ameliorates astrocyte autophagy, diminishes neuroinflammation, and ultimately enhances motor function recovery.
{"title":"TGN-020 ameliorates motor dysfunction post-spinal cord injury via enhancing astrocyte autophagy and mitigating inflammation by activating AQP4/PPAR-γ/mTOR pathway","authors":"Jundong Kong , Qiangqiang Zhang , Haohong Zheng , Diandong Tang , Li Fang , Shuaihao An , Jian Li , Zhongkai Fan","doi":"10.1016/j.expneurol.2024.114975","DOIUrl":"10.1016/j.expneurol.2024.114975","url":null,"abstract":"<div><div>Spinal Cord Injury (SCI) is a severe condition that often leads to substantial neurological impairments. This study aimed to explore the role of Aquaporin-4 (AQP4) in regulating astrocyte autophagy and neuroinflammation post-SCI, as well as to evaluate the therapeutic potential of AQP4 inhibition using the specific inhibitor TGN-020. Using Western blot, CCK8 assays, immunofluorescence staining, histopathological assessments, and behavioral analyses, we investigated the effects of TGN-020 on SCI-induced alterations in autophagy, neuroinflammation, astrocyte proliferation, neuronal damage, and motor function recovery in both rat and astrocyte models. Our findings indicate that TGN-020 significantly enhances astrocyte autophagy, reduces neuroinflammation, thereby leading to mitigated astrocyte activation by suppressing AQP4 expression. These beneficial effects are associated with the activation of the peroxisome proliferator-activated receptor-γ/mammalian target of rapamycin (PPAR-γ/mTOR) signaling pathway. Notably, the introduction of the PPAR-γ specific inhibitor GW9662 abrogated the positive regulatory effects of TGN-020 on SCI-induced autophagy and neuroinflammation. Collectively, our in vivo and in vitro experiments demonstrate that TGN-020, by down-regulating AQP4, activates the PPAR-γ/mTOR pathway, ameliorates astrocyte autophagy, diminishes neuroinflammation, and ultimately enhances motor function recovery.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114975"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.expneurol.2024.114967
Anjalika Chongtham , Abhijeet Sharma , Banshi Nath , Kaitlin Murtha , Kirill Gorbachev , Aarthi Ramakrishnan , Eric F. Schmidt , Li Shen , Ana C. Pereira
It has been shown that excitotoxicity and tau-mediated toxicities are major contributing factors to neuronal death in Alzheimer's disease (AD). The excitatory amino acid transporter 2 (EAAT2 or GLT-1), the major glutamate transporter in the brain that regulates glutamate levels synaptically and extrasynaptically, has been shown to be deficient in AD brains, leading to excitotoxicity and subsequent cell death. Similarly, buildup of neurofibrillary tangles, which consist of hyperphosphorylated tau protein, correlates with cognitive decline and neuronal atrophy in AD. However, common genes and pathways that are critical in the aforementioned toxicities have not been well elucidated. To investigate the impact of glutamate dyshomeostasis and tau accumulation on translational profiles of affected hippocampal neurons, we used mouse models of excitotoxicity and tau–mediated toxicities (GLT-1−/− and P301S, respectively) in conjunction with BAC-TRAP technology. Our data show that GLT-1 deficiency in CA3 pyramidal neurons leads to translational signatures characterized by dysregulation of pathways associated with synaptic plasticity and neuronal survival, while the P301S mutation induces changes in endocytic pathways and mitochondrial dysfunction. Finally, the commonly dysregulated pathways include impaired ion homeostasis and metabolic pathways. These common pathways may shed light on potential therapeutic targets for ameliorating glutamate and tau-mediated toxicities in AD.
研究表明,兴奋性毒性和 tau 介导的毒性是导致阿尔茨海默病(AD)神经元死亡的主要因素。兴奋性氨基酸转运体 2(EAAT2 或 GLT-1)是大脑中调节突触内和突触外谷氨酸水平的主要谷氨酸转运体。同样,神经纤维缠结(由过度磷酸化的 tau 蛋白组成)的形成也与认知能力下降和神经元萎缩有关。然而,对上述毒性起关键作用的共同基因和途径尚未得到很好的阐明。为了研究谷氨酸失衡和 tau 积累对受影响的海马神经元翻译谱的影响,我们使用小鼠兴奋毒性模型和 tau 介导的毒性模型(分别为 GLT-1-/ 和 P301S),并结合 BAC-TRAP 技术。我们的数据显示,CA3 锥体神经元中 GLT-1 的缺乏会导致与突触可塑性和神经元存活相关的通路失调的翻译特征,而 P301S 突变会诱导内细胞通路的变化和线粒体功能障碍。最后,常见的失调途径包括离子平衡受损和代谢途径。这些常见途径可能为改善谷氨酸和tau介导的AD毒性提供了潜在的治疗靶点。
{"title":"Common and divergent pathways in early stages of glutamate and tau-mediated toxicities in neurodegeneration","authors":"Anjalika Chongtham , Abhijeet Sharma , Banshi Nath , Kaitlin Murtha , Kirill Gorbachev , Aarthi Ramakrishnan , Eric F. Schmidt , Li Shen , Ana C. Pereira","doi":"10.1016/j.expneurol.2024.114967","DOIUrl":"10.1016/j.expneurol.2024.114967","url":null,"abstract":"<div><div>It has been shown that excitotoxicity and tau-mediated toxicities are major contributing factors to neuronal death in Alzheimer's disease (AD). The excitatory amino acid transporter 2 (EAAT2 or <em>GLT-1</em>), the major glutamate transporter in the brain that regulates glutamate levels synaptically and extrasynaptically, has been shown to be deficient in AD brains, leading to excitotoxicity and subsequent cell death. Similarly, buildup of neurofibrillary tangles, which consist of hyperphosphorylated tau protein, correlates with cognitive decline and neuronal atrophy in AD. However, common genes and pathways that are critical in the aforementioned toxicities have not been well elucidated. To investigate the impact of glutamate dyshomeostasis and tau accumulation on translational profiles of affected hippocampal neurons, we used mouse models of excitotoxicity and tau–mediated toxicities (<em>GLT-1</em><sup>−/−</sup> and P301S, respectively) in conjunction with BAC-TRAP technology. Our data show that GLT-1 deficiency in CA3 pyramidal neurons leads to translational signatures characterized by dysregulation of pathways associated with synaptic plasticity and neuronal survival, while the P301S mutation induces changes in endocytic pathways and mitochondrial dysfunction. Finally, the commonly dysregulated pathways include impaired ion homeostasis and metabolic pathways. These common pathways may shed light on potential therapeutic targets for ameliorating glutamate and tau-mediated toxicities in AD.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114967"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.expneurol.2024.114968
Chien-Hui Chang , Lee-Chin Wong , Chia-Wei Huang , Yue-Ru Li , Chainne-Wen Yang , Jin-Wu Tsai , Wang-Tso Lee
Background
Compound heterozygous variants of SHQ1, an assembly factor of H/ACA ribonucleoproteins (RNPs) involved in critical biological pathways, have been identified in patients with developmental delay, dystonia, epilepsy, and microcephaly. We investigated the role of SHQ1 in brain development and movement disorders.
Methods
SHQ1 expression was knocked down using short-hairpin RNA (shRNA) to investigate its effects on neurons. Shq1 shRNA and cDNA of WT and mutant SHQ1 were also introduced into neural progenitors in the embryonic mouse cortex through in utero electroporation. Co-immunoprecipitation was performed to investigate the interaction between SHQ1 and DKC1, a core protein of H/ACA RNPs.
Results
We found that SHQ1 was highly expressed in the developing mouse cortex. SHQ1 knockdown impaired the migration and neurite morphology of cortical neurons during brain development. Additionally, SHQ1 knockdown impaired neurite growth and sensitivity to glutamate toxicity in vitro. There was also increased dopaminergic function upon SHQ1 knockdown, which may underlie the increased glutamate toxicity of the cells. Most SHQ1 variants attenuated their binding ability toward DKC1, implying SHQ1 variants may influence brain development by disrupting the assembly and biogenesis of H/ACA RNPs.
Conclusions
SHQ1 plays an essential role in brain development and dopaminergic function by upregulating dopaminergic pathways and regulating the behaviors of neural progenitors and their neuronal progeny, potentially leading to dystonia and developmental delay in patients. Our study provides insights into the functions of SHQ1 in neuronal development and dopaminergic function, providing a possible pathogenic mechanism for H/ACA RNPs-related disorders.
{"title":"Pathogenic SHQ1 variants result in disruptions to neuronal development and the dopaminergic pathway","authors":"Chien-Hui Chang , Lee-Chin Wong , Chia-Wei Huang , Yue-Ru Li , Chainne-Wen Yang , Jin-Wu Tsai , Wang-Tso Lee","doi":"10.1016/j.expneurol.2024.114968","DOIUrl":"10.1016/j.expneurol.2024.114968","url":null,"abstract":"<div><h3>Background</h3><div>Compound heterozygous variants of <em>SHQ1</em>, an assembly factor of H/ACA ribonucleoproteins (RNPs) involved in critical biological pathways, have been identified in patients with developmental delay, dystonia, epilepsy, and microcephaly. We investigated the role of SHQ1 in brain development and movement disorders.</div></div><div><h3>Methods</h3><div><em>SHQ1</em> expression was knocked down using short-hairpin RNA (shRNA) to investigate its effects on neurons. <em>Shq1</em> shRNA and cDNA of WT and mutant <em>SHQ1</em> were also introduced into neural progenitors in the embryonic mouse cortex through <em>in utero</em> electroporation. Co-immunoprecipitation was performed to investigate the interaction between SHQ1 and DKC1, a core protein of H/ACA RNPs.</div></div><div><h3>Results</h3><div>We found that SHQ1 was highly expressed in the developing mouse cortex. <em>SHQ1</em> knockdown impaired the migration and neurite morphology of cortical neurons during brain development. Additionally, <em>SHQ1</em> knockdown impaired neurite growth and sensitivity to glutamate toxicity <em>in vitro</em>. There was also increased dopaminergic function upon <em>SHQ1</em> knockdown, which may underlie the increased glutamate toxicity of the cells. Most SHQ1 variants attenuated their binding ability toward DKC1, implying <em>SHQ1</em> variants may influence brain development by disrupting the assembly and biogenesis of H/ACA RNPs.</div></div><div><h3>Conclusions</h3><div>SHQ1 plays an essential role in brain development and dopaminergic function by upregulating dopaminergic pathways and regulating the behaviors of neural progenitors and their neuronal progeny, potentially leading to dystonia and developmental delay in patients. Our study provides insights into the functions of SHQ1 in neuronal development and dopaminergic function, providing a possible pathogenic mechanism for H/ACA RNPs-related disorders.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114968"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.expneurol.2024.114971
Jiajie Yuan , Zibin Song , Jun Liu , Khalil Ur Rahman , Qixiong Zhou , Guangjie Liu , Yifeng Deng , Haotian Wen , Xiaonan Fan , Nanqi Fang , Zhaojun Zhou , Qiancheng Song , Guozhong Zhang , Peng Li , Ye Song
This article explores the important functions of transfer RNA and - transfer RNA derived small RNAs (tsRNAs) in cellular processes and disease pathogenesis, with a particular emphasis on their involvement in cerebrovascular disorders. It discusses the biogenesis and structure of tsRNAs, including types such as tRNA halves and tRNA-derived fragments, and their functional significance in gene regulation, stress response, and cell signaling pathways. The importance of tsRNAs in neurodegenerative diseases, cancer, and cardiovascular diseases has already been highlighted, while their role in cerebrovascular diseases is in early phase of exploration. This paper presents the latest advancements in the field of tsRNAs in cerebrovascular conditions, such as ischemic stroke, intracerebral hemorrhage, and moyamoya disease. Furthermore, revealing the aptitude of tsRNAs as biomarkers for the prediction of cerebrovascular diseases and as targets for therapeutic intervention. It provides insights into the role of tsRNAs in these conditions and proposes directions for future research.
{"title":"Transfer RNAs and transfer RNA-derived small RNAs in cerebrovascular diseases","authors":"Jiajie Yuan , Zibin Song , Jun Liu , Khalil Ur Rahman , Qixiong Zhou , Guangjie Liu , Yifeng Deng , Haotian Wen , Xiaonan Fan , Nanqi Fang , Zhaojun Zhou , Qiancheng Song , Guozhong Zhang , Peng Li , Ye Song","doi":"10.1016/j.expneurol.2024.114971","DOIUrl":"10.1016/j.expneurol.2024.114971","url":null,"abstract":"<div><div>This article explores the important functions of transfer RNA and - transfer RNA derived small RNAs (tsRNAs) in cellular processes and disease pathogenesis, with a particular emphasis on their involvement in cerebrovascular disorders. It discusses the biogenesis and structure of tsRNAs, including types such as tRNA halves and tRNA-derived fragments, and their functional significance in gene regulation, stress response, and cell signaling pathways. The importance of tsRNAs in neurodegenerative diseases, cancer, and cardiovascular diseases has already been highlighted, while their role in cerebrovascular diseases is in early phase of exploration. This paper presents the latest advancements in the field of tsRNAs in cerebrovascular conditions, such as ischemic stroke, intracerebral hemorrhage, and moyamoya disease. Furthermore, revealing the aptitude of tsRNAs as biomarkers for the prediction of cerebrovascular diseases and as targets for therapeutic intervention. It provides insights into the role of tsRNAs in these conditions and proposes directions for future research.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114971"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-24DOI: 10.1016/j.expneurol.2024.114974
Haojie Ding , Xuan Shi , Junwei Ma , Chang Cao , Yangyang Liu , Jinxin Lu , Lei Bai , Xiang Li Jr , Haiying Li
Ischemic stroke remains a leading cause of global mortality and disability, with neuroinflammation playing a critical role in determining patient outcomes. Microglia, the brain's resident immune cells, can both exacerbate neuroinflammation and neuronal damage by releasing neurotoxic mediators and engaging in excessive phagocytosis, while also aiding recovery through the production of anti-inflammatory cytokines and debris clearance. However, the molecular mechanisms governing microglial activation and polarization after ischemic stroke are not well elucidated. In this study, we combined integrative transcriptomic analyses with experimental validation in a murine model of middle cerebral artery occlusion/reperfusion (MCAO/R) to explore microglial heterogeneity and identify key regulatory factors in ischemic stroke. Bioinformatics analysis identified Cd72 as a novel pro-inflammatory modulator within ischemia-associated microglial phenotypes. We observed significant upregulation of Cd72 in microglia following MCAO/R, and selective knockdown of Cd72 using CX3CR1Cre/ERT2 mice and Cre recombinase-dependent adeno-associated virus reduced MCAO/R-induced infarct volume, neuronal apoptosis, and neurological deficits. Furthermore, Cd72 expression in microglia was positively correlated with pro-inflammatory pathways and cytokines, including TNF-α, IL-1β, and IL-6. Knockdown of Cd72 significantly reduced these pro-inflammatory factors, highlighting its potential as a therapeutic target for mitigating inflammation in ischemic stroke. In conclusion, this study identifies Cd72 as a critical pro-inflammatory regulator in microglia following ischemic stroke, with its knockdown effectively reducing neuroinflammation and associated brain injury, highlighting Cd72 as a promising therapeutic target.
{"title":"Integrative transcriptomic analysis reveals Cd72 as a novel pro-inflammatory factor in microglia following experimental ischemic stroke","authors":"Haojie Ding , Xuan Shi , Junwei Ma , Chang Cao , Yangyang Liu , Jinxin Lu , Lei Bai , Xiang Li Jr , Haiying Li","doi":"10.1016/j.expneurol.2024.114974","DOIUrl":"10.1016/j.expneurol.2024.114974","url":null,"abstract":"<div><div>Ischemic stroke remains a leading cause of global mortality and disability, with neuroinflammation playing a critical role in determining patient outcomes. Microglia, the brain's resident immune cells, can both exacerbate neuroinflammation and neuronal damage by releasing neurotoxic mediators and engaging in excessive phagocytosis, while also aiding recovery through the production of anti-inflammatory cytokines and debris clearance. However, the molecular mechanisms governing microglial activation and polarization after ischemic stroke are not well elucidated. In this study, we combined integrative transcriptomic analyses with experimental validation in a murine model of middle cerebral artery occlusion/reperfusion (MCAO/R) to explore microglial heterogeneity and identify key regulatory factors in ischemic stroke. Bioinformatics analysis identified Cd72 as a novel pro-inflammatory modulator within ischemia-associated microglial phenotypes. We observed significant upregulation of Cd72 in microglia following MCAO/R, and selective knockdown of Cd72 using CX3CR1<sup>Cre/ERT2</sup> mice and Cre recombinase-dependent adeno-associated virus reduced MCAO/R-induced infarct volume, neuronal apoptosis, and neurological deficits. Furthermore, Cd72 expression in microglia was positively correlated with pro-inflammatory pathways and cytokines, including TNF-α, IL-1β, and IL-6. Knockdown of Cd72 significantly reduced these pro-inflammatory factors, highlighting its potential as a therapeutic target for mitigating inflammation in ischemic stroke. In conclusion, this study identifies Cd72 as a critical pro-inflammatory regulator in microglia following ischemic stroke, with its knockdown effectively reducing neuroinflammation and associated brain injury, highlighting Cd72 as a promising therapeutic target.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114974"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to explore the characteristics of post-stroke sleep dysfunction and verify their association with gut dysbiosis and the related amino acid metabolism disorders. This was achieved by using fecal microbiota transplantation (FMT) in a non-human primate stroke model.
Methods
Twenty adult male cynomolgus monkeys were divided into the sham (n = 4), middle cerebral artery occlusion (MCAO, n = 5), MCAO + FMT (n = 3), and donor (n = 8) groups. The MCAO+FMT group received FMT at post-MCAO week 4. Sleep parameters, gut microbiota, gamma-aminobutyric acid (GABA), and glutamine (Gln) in the cerebrospinal fluid (CSF) were measured at baseline and postoperative weeks 4, 8, and 12.
Results
At postoperative weeks 4, 8, and 12, the MCAO group showed decreased sleep efficiency, measured as the percentage of sleep during the whole night (82.3 ± 3.2 % vs 91.3 ± 2.5 %, 79.0 ± 3.75 % vs 90.8 ± 3.2 %, and 69.5 ± 4.8 % vs 90.5 ± 2.7 %; all P < 0.05), lower relative abundance of Lactobacillus (all P < 0.05), and reduced GABA concentrations in the CSF (317.3 ± 30.6 nmol/L vs 437.7 ± 25.6 nmol/L, 303.1 ± 48.9 nmol/L vs 4 40.9 ± 37.8 nmol/L, and 337.9 ± 49.4 nmol/L vs 457.4 ± 39.2 nmol/L; all P < 0.05) compared with the sham group. Sleep efficiency at post-FMT weeks 4 and 8 (84.7 ± 1.1 % vs 79.0 ± 3.75 %, and 84.1 ± 2.0 % vs 69.5 ± 4.8 %; both P < 0.05) and GABA concentration in the CSF at post-FMT week 4 (403.1 ± 25.4 nmol/L vs 303.1 ± 48.9 nmol/L, P < 0.05) was higher in the MCAO+FMT group than in the MCAO group.
Conclusions
Post-stroke sleep dysfunction in monkeys is characterized by impaired sleep coherence, associated with decreased levels of probiotics such as Lactobacillus, GABA, and Gln in the CSF and can be ameliorated using FMT.
{"title":"Sleep dysfunction and gut dysbiosis related amino acids metabolism disorders in cynomolgus monkeys after middle cerebral artery occlusion","authors":"Jiahui Liang , Zhiyi Xiong , Qingfeng Lei , Zimu Jiang , Jiating Wei , Fubing Ouyang , Yicong Chen , Jinsheng Zeng","doi":"10.1016/j.expneurol.2024.114970","DOIUrl":"10.1016/j.expneurol.2024.114970","url":null,"abstract":"<div><h3>Introduction</h3><div>This study aimed to explore the characteristics of post-stroke sleep dysfunction and verify their association with gut dysbiosis and the related amino acid metabolism disorders. This was achieved by using fecal microbiota transplantation (FMT) in a non-human primate stroke model.</div></div><div><h3>Methods</h3><div>Twenty adult male cynomolgus monkeys were divided into the sham (<em>n</em> = 4), middle cerebral artery occlusion (MCAO, <em>n</em> = 5), MCAO + FMT (<em>n</em> = 3), and donor (<em>n</em> = 8) groups. The MCAO+FMT group received FMT at post-MCAO week 4. Sleep parameters, gut microbiota, gamma-aminobutyric acid (GABA), and glutamine (Gln) in the cerebrospinal fluid (CSF) were measured at baseline and postoperative weeks 4, 8, and 12.</div></div><div><h3>Results</h3><div>At postoperative weeks 4, 8, and 12, the MCAO group showed decreased sleep efficiency, measured as the percentage of sleep during the whole night (82.3 ± 3.2 % vs 91.3 ± 2.5 %, 79.0 ± 3.75 % vs 90.8 ± 3.2 %, and 69.5 ± 4.8 % vs 90.5 ± 2.7 %; all <em>P</em> < 0.05), lower relative abundance of <em>Lactobacillus</em> (all <em>P</em> < 0.05), and reduced GABA concentrations in the CSF (317.3 ± 30.6 nmol/L vs 437.7 ± 25.6 nmol/L, 303.1 ± 48.9 nmol/L vs 4 40.9 ± 37.8 nmol/L, and 337.9 ± 49.4 nmol/L vs 457.4 ± 39.2 nmol/L; all <em>P</em> < 0.05) compared with the sham group. Sleep efficiency at post-FMT weeks 4 and 8 (84.7 ± 1.1 % vs 79.0 ± 3.75 %, and 84.1 ± 2.0 % vs 69.5 ± 4.8 %; both <em>P</em> < 0.05) and GABA concentration in the CSF at post-FMT week 4 (403.1 ± 25.4 nmol/L vs 303.1 ± 48.9 nmol/L, <em>P</em> < 0.05) was higher in the MCAO+FMT group than in the MCAO group.</div></div><div><h3>Conclusions</h3><div>Post-stroke sleep dysfunction in monkeys is characterized by impaired sleep coherence, associated with decreased levels of probiotics such as <em>Lactobacillus,</em> GABA, and Gln in the CSF and can be ameliorated using FMT.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114970"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Non-invasive neuromodulation by transcranial direct current stimulation (tDCS), owing to its reported beneficial effects on neuronal plasticity, has been proposed as a treatment to promote functional recovery in several neurological conditions, including demyelinating diseases like multiple sclerosis. Less information is available on the effects of tDCS in major pathological mechanisms of multiple sclerosis, such as demyelination and inflammation. To learn more about the latter effects, we applied multi-session anodal tDCS in mice exposed to long-term cuprizone (CPZ) diet, known to induce chronic demyelination.
Methods
Visual evoked potentials (VEP) and motor performance (beam test) were employed for longitudinal monitoring of visual and motor pathways in 28 mice undergoing CPZ diet, compared with 12 control (H) mice. After randomization, anodal tDCS was applied for 5 days in awake, freely-moving surviving animals: 12 CPZ-anodal, 10 CPZ-sham, 5H-anodal, 5 h-sham. At the end of the experiment, histological analysis was performed on the optic nerves and corpus callosum for myelin, axons and microglia/macrophages.
Key findings
CPZ diet was associated with significantly delayed VEPs starting at 4 weeks compared with their baseline, significant compared with controls at 8 weeks. After 5-day tDCS, VEPs latency significantly recovered in the active group compared with the sham group. Similar findings were observed in the time to cross on the beam test Optic nerve histology revealed higher myelin content and lower microglia/macrophage counts in the CPZ-Anodal group compared with CPZ-Sham.
Significance
Multiple sessions of anodal transcranial direct current stimulation (tDCS) in freely moving mice induced recovery of visual nervous conduction and significant beneficial effects in myelin content and inflammatory cells in the cuprizone model of demyelination. Altogether, these promising findings prompt further exploration of tDCS as a potential therapeutic approach for remyelination.
{"title":"Transcranial direct current stimulation as a potential remyelinating therapy: Visual evoked potentials recovery in cuprizone demyelination","authors":"Elena Rossi , Silvia Marenna , Valerio Castoldi , Giancarlo Comi , Letizia Leocani","doi":"10.1016/j.expneurol.2024.114972","DOIUrl":"10.1016/j.expneurol.2024.114972","url":null,"abstract":"<div><h3>Aims</h3><div>Non-invasive neuromodulation by transcranial direct current stimulation (tDCS), owing to its reported beneficial effects on neuronal plasticity, has been proposed as a treatment to promote functional recovery in several neurological conditions, including demyelinating diseases like multiple sclerosis. Less information is available on the effects of tDCS in major pathological mechanisms of multiple sclerosis, such as demyelination and inflammation. To learn more about the latter effects, we applied multi-session anodal tDCS in mice exposed to long-term cuprizone (CPZ) diet, known to induce chronic demyelination.</div></div><div><h3>Methods</h3><div>Visual evoked potentials (VEP) and motor performance (beam test) were employed for longitudinal monitoring of visual and motor pathways in 28 mice undergoing CPZ diet, compared with 12 control (H) mice. After randomization, anodal tDCS was applied for 5 days in awake, freely-moving surviving animals: 12 CPZ-anodal, 10 CPZ-sham, 5H-anodal, 5 h-sham. At the end of the experiment, histological analysis was performed on the optic nerves and corpus callosum for myelin, axons and microglia/macrophages.</div></div><div><h3>Key findings</h3><div>CPZ diet was associated with significantly delayed VEPs starting at 4 weeks compared with their baseline, significant compared with controls at 8 weeks. After 5-day tDCS, VEPs latency significantly recovered in the active group compared with the sham group. Similar findings were observed in the time to cross on the beam test Optic nerve histology revealed higher myelin content and lower microglia/macrophage counts in the CPZ-Anodal group compared with CPZ-Sham.</div></div><div><h3>Significance</h3><div>Multiple sessions of anodal transcranial direct current stimulation (tDCS) in freely moving mice induced recovery of visual nervous conduction and significant beneficial effects in myelin content and inflammatory cells in the cuprizone model of demyelination. Altogether, these promising findings prompt further exploration of tDCS as a potential therapeutic approach for remyelination.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114972"},"PeriodicalIF":4.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.1016/j.expneurol.2024.114958
Pathik Parekh , Marcello Serra , Mohamad Allaw , Matteo Perra , Annalisa Pinna , Maria Manconi , Micaela Morelli
Neuroinflammation has recently emerged as a key event in Parkinson's disease (PD) pathophysiology and as a potential target for disease-modifying therapies. Plant-derived extracts, rich in bioactive phytochemicals with antioxidant properties, have shown potential in this regard. Yet their clinical utility is hampered by poor systemic availability and rapid metabolism. Recently, our group demonstrated that intragastric delivery of Nasco pomace extract via nutriosomes (NN), a novel nanoliposome formulation, contrasts the degeneration of nigrostriatal dopaminergic neurons in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In the present study, we investigated the impact of intragastric NN treatment on the reactivity of glial cells in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu) of MPTP-treated mice. To this scope, in mice exposed to MPTP (20 mg/kg/day, × 4 days), we conducted immunohistochemistry analyses of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1) to assess the responsiveness of astrocytes and microglial cells, respectively. Additionally, we studied the co-localization of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF)-α with IBA1 to obtain insights into microglial phenotype. Immunohistochemical results showed that NN administration significantly mitigated astrogliosis and microgliosis in the CPu and SNc of mice receiving subacute MPTP treatment, with region-specific variations in anti-inflammatory efficacy. Remarkably, the CPu showed a heightened response to NN treatment, including a pronounced decrease in microglial IL-1β and TNF-α production. Altogether, these findings underscore the anti-inflammatory effects of NN treatment and provide a potential mechanism underlying the neuroprotective effects previously observed in a subacute MPTP mouse model of PD.
最近,神经炎症已成为帕金森病(PD)病理生理学中的一个关键事件,并成为改变疾病疗法的一个潜在靶点。植物提取物富含具有抗氧化特性的生物活性植物化学物质,在这方面已显示出潜力。然而,这些提取物在临床上的应用却受到了全身可用性差和新陈代谢快的阻碍。最近,我们的研究小组证实,通过一种新型纳米脂质体制剂--营养体(NN)--胃内输送纳斯科果渣提取物,可在亚急性 1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)脑损伤小鼠模型中逆转黑质多巴胺能神经元的退化。在本研究中,我们探讨了胃内 NN 治疗对 MPTP 治疗小鼠黑质(SNc)和尾状核(CPu)神经胶质细胞反应性的影响。为此,我们对暴露于 MPTP(20 毫克/千克/天,×4 天)的小鼠进行了神经胶质纤维酸性蛋白(GFAP)和电离钙结合适配器分子 1(IBA1)的免疫组化分析,以分别评估星形胶质细胞和微胶质细胞的反应性。此外,我们还研究了促炎性白细胞介素(IL)-1β和肿瘤坏死因子(TNF)-α与IBA1的共定位,以深入了解小胶质细胞的表型。免疫组化结果表明,给予 NN 能显著缓解亚急性 MPTP 治疗小鼠 CPu 和 SNc 中的星形胶质细胞和小胶质细胞病变,抗炎效果因区域而异。值得注意的是,CPu 对 NN 治疗的反应更加强烈,包括小胶质细胞 IL-1β 和 TNF-α 的产生明显减少。总之,这些发现强调了 NN 治疗的抗炎作用,并为之前在亚急性 MPTP PD 小鼠模型中观察到的神经保护作用提供了潜在机制。
{"title":"Extract from Nasco pomace loaded in nutriosomes exerts anti-inflammatory effects in the MPTP mouse model of Parkinson's disease","authors":"Pathik Parekh , Marcello Serra , Mohamad Allaw , Matteo Perra , Annalisa Pinna , Maria Manconi , Micaela Morelli","doi":"10.1016/j.expneurol.2024.114958","DOIUrl":"10.1016/j.expneurol.2024.114958","url":null,"abstract":"<div><div>Neuroinflammation has recently emerged as a key event in Parkinson's disease (PD) pathophysiology and as a potential target for disease-modifying therapies. Plant-derived extracts, rich in bioactive phytochemicals with antioxidant properties, have shown potential in this regard. Yet their clinical utility is hampered by poor systemic availability and rapid metabolism. Recently, our group demonstrated that intragastric delivery of Nasco pomace extract via nutriosomes (NN), a novel nanoliposome formulation, contrasts the degeneration of nigrostriatal dopaminergic neurons in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In the present study, we investigated the impact of intragastric NN treatment on the reactivity of glial cells in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu) of MPTP-treated mice. To this scope, in mice exposed to MPTP (20 mg/kg/day, × 4 days), we conducted immunohistochemistry analyses of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA1) to assess the responsiveness of astrocytes and microglial cells, respectively. Additionally, we studied the co-localization of the pro-inflammatory interleukin (IL)-1β and tumor necrosis factor (TNF)-α with IBA1 to obtain insights into microglial phenotype. Immunohistochemical results showed that NN administration significantly mitigated astrogliosis and microgliosis in the CPu and SNc of mice receiving subacute MPTP treatment, with region-specific variations in anti-inflammatory efficacy. Remarkably, the CPu showed a heightened response to NN treatment, including a pronounced decrease in microglial IL-1β and TNF-α production. Altogether, these findings underscore the anti-inflammatory effects of NN treatment and provide a potential mechanism underlying the neuroprotective effects previously observed in a subacute MPTP mouse model of PD.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"382 ","pages":"Article 114958"},"PeriodicalIF":4.6,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S001448862400284X/pdfft?md5=5df3210bf129aa24e796a3ecdd73e7f8&pid=1-s2.0-S001448862400284X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}