首页 > 最新文献

Experimental Neurobiology最新文献

英文 中文
Intracellular Loop in the Brain Isoforms of Anoctamin 2 Channels Regulates Calcium-dependent Activation. 脑内异辛胺2通道异构体的细胞内环调节钙依赖性激活。
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-06-30 DOI: 10.5607/en22045
Dongsu Lee, Hocheol Lim, Jungryun Lee, Go Eun Ha, Kyoung Tai No, Eunji Cheong

Anoctamin 2 (ANO2 or TMEM16B), a calcium-activated chloride channel (CaCC), performs diverse roles in neurons throughout the central nervous system. In hippocampal neurons, ANO2 narrows action potential width and reduces postsynaptic depolarization with high sensitivity to Ca2+ at relatively fast kinetics. In other brain regions, including the thalamus, ANO2 mediates activity-dependent spike frequency adaptations with low sensitivity to Ca2+ at relatively slow kinetics. How this same channel can respond to a wide range of Ca2+ levels remains unclear. We hypothesized that splice variants of ANO2 may contribute to its distinct Ca2+ sensitivity, and thus its diverse neuronal functions. We identified two ANO2 isoforms expressed in mouse brains and examined their electrophysiological properties: isoform 1 (encoded by splice variants with exons 1a, 2, 4, and 14) was expressed in the hippocampus, while isoform 2 (encoded by splice variants with exons 1a, 2, and 4) was broadly expressed throughout the brain, including in the cortex and thalamus, and had a slower calcium-dependent activation current than isoform 1. Computational modeling revealed that the secondary structure of the first intracellular loop of isoform 1 forms an entrance cavity to the calcium-binding site from the cytosol that is relatively larger than that in isoform 2. This difference provides structural evidence that isoform 2 is involved in accommodating spike frequency, while isoform 1 is involved in shaping the duration of an action potential and decreasing postsynaptic depolarization. Our study highlights the roles and molecular mechanisms of specific ANO2 splice variants in modulating neuronal functions.

Anoctamin 2 (ANO2或TMEM16B)是一种钙激活的氯离子通道(CaCC),在整个中枢神经系统的神经元中发挥着多种作用。在海马神经元中,ANO2缩小动作电位宽度,减少突触后去极化,对Ca2+具有较高的敏感性,动力学相对较快。在包括丘脑在内的其他大脑区域,ANO2介导活动依赖的尖峰频率适应,对Ca2+的敏感性较低,动力学相对较慢。这个相同的通道如何对大范围的Ca2+水平作出反应尚不清楚。我们假设ANO2的剪接变体可能有助于其独特的Ca2+敏感性,从而其不同的神经元功能。我们鉴定了在小鼠大脑中表达的两种ANO2异构体,并检查了它们的电生理特性:异构体1(由外显子1a、2、4和14的剪接变体编码)在海马中表达,而异构体2(由外显子1a、2和4的剪接变体编码)在整个大脑中广泛表达,包括在皮层和丘脑中,并且具有比异构体1更慢的钙依赖性激活电流。计算模型显示,同型异构体1的第一个胞内环的二级结构形成了一个相对于同型异构体2的更大的从细胞质到钙结合位点的入口腔。这种差异提供了结构上的证据,表明同种异构体2参与调节尖峰频率,而同种异构体1参与塑造动作电位的持续时间和减少突触后去极化。我们的研究强调了特定的ANO2剪接变体在调节神经元功能中的作用和分子机制。
{"title":"Intracellular Loop in the Brain Isoforms of Anoctamin 2 Channels Regulates Calcium-dependent Activation.","authors":"Dongsu Lee,&nbsp;Hocheol Lim,&nbsp;Jungryun Lee,&nbsp;Go Eun Ha,&nbsp;Kyoung Tai No,&nbsp;Eunji Cheong","doi":"10.5607/en22045","DOIUrl":"https://doi.org/10.5607/en22045","url":null,"abstract":"<p><p>Anoctamin 2 (ANO2 or TMEM16B), a calcium-activated chloride channel (CaCC), performs diverse roles in neurons throughout the central nervous system. In hippocampal neurons, ANO2 narrows action potential width and reduces postsynaptic depolarization with high sensitivity to Ca<sup>2+</sup> at relatively fast kinetics. In other brain regions, including the thalamus, ANO2 mediates activity-dependent spike frequency adaptations with low sensitivity to Ca<sup>2+</sup> at relatively slow kinetics. How this same channel can respond to a wide range of Ca<sup>2+</sup> levels remains unclear. We hypothesized that splice variants of ANO2 may contribute to its distinct Ca<sup>2+</sup> sensitivity, and thus its diverse neuronal functions. We identified two ANO2 isoforms expressed in mouse brains and examined their electrophysiological properties: isoform 1 (encoded by splice variants with exons 1a, 2, 4, and 14) was expressed in the hippocampus, while isoform 2 (encoded by splice variants with exons 1a, 2, and 4) was broadly expressed throughout the brain, including in the cortex and thalamus, and had a slower calcium-dependent activation current than isoform 1. Computational modeling revealed that the secondary structure of the first intracellular loop of isoform 1 forms an entrance cavity to the calcium-binding site from the cytosol that is relatively larger than that in isoform 2. This difference provides structural evidence that isoform 2 is involved in accommodating spike frequency, while isoform 1 is involved in shaping the duration of an action potential and decreasing postsynaptic depolarization. Our study highlights the roles and molecular mechanisms of specific ANO2 splice variants in modulating neuronal functions.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 3","pages":"133-146"},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1c/94/en-32-3-133.PMC10327929.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9758828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Glimpse into the Genome-wide DNA Methylation Changes in 6-hydroxydopamine-induced In Vitro Model of Parkinson's Disease. 6-羟多巴胺诱导帕金森病体外模型全基因组DNA甲基化变化的研究
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-06-30 DOI: 10.5607/en22035
Kasthuri Bai Magalingam, Sushela Devi Somanath, Ammu Kutty Radhakrishnan

A cell-based model of Parkinson's disease (PD) is a well-established in vitro experimental prototype to investigate the disease mechanism and therapeutic approach for a potential anti-PD drug. The SH-SY5Y human neuroblastoma cells and 6-OHDA combo is one of the many neurotoxininduced neuronal cell models employed in numerous neuroscience-related research for discovering neuroprotective drug compounds. Emerging studies have reported a significant correlation between PD and epigenetic alterations, particularly DNA methylation. However, the DNA methylation changes of PD-related CpG sites on the 6-OHDA-induced toxicity on human neuronal cells have not yet been reported. We performed a genome-wide association study (GWAS) using Infinium Epic beadchip array surveying 850000 CpG sites in differentiated human neuroblastoma cells exposed to 6-OHDA. We identified 236 differentially methylated probes (DMPs) or 163 differentially methylated regions (DMRs) in 6-OHDA treated differentiated neuroblastoma cells than the untreated reference group with p<0.01, Δbeta cut-off of 0.1. Among 236 DMPs, hypermethylated DMPs are 110 (47%), whereas 126 (53%) are hypomethylated. Our bioinformatic analysis revealed 3 DMRs that are significantly hypermethylated and associated with neurological disorders, namely AKT1, ITPR1 and GNG7. This preliminary study demonstrates the methylation status of PD-related CpGs in the 6-OHDA-induced toxicity in the differentiated neuroblastoma cells model.

基于细胞的帕金森病(PD)模型是一种完善的体外实验原型,用于研究疾病机制和潜在的抗PD药物的治疗方法。SH-SY5Y人神经母细胞瘤细胞和6-OHDA组合是众多神经科学相关研究中用于发现神经保护药物化合物的神经毒素诱导的神经细胞模型之一。新兴研究报道了PD与表观遗传改变之间的显著相关性,特别是DNA甲基化。然而,pd相关CpG位点的DNA甲基化变化对6-羟多巴胺诱导的人类神经细胞毒性的影响尚未见报道。我们使用Infinium Epic芯片阵列进行了一项全基因组关联研究(GWAS),测量了暴露于6-OHDA的分化人类神经母细胞瘤细胞中的850000个CpG位点。我们在6-OHDA处理的分化神经母细胞瘤细胞中发现了236个差异甲基化探针(dmp)或163个差异甲基化区域(DMRs)
{"title":"A Glimpse into the Genome-wide DNA Methylation Changes in 6-hydroxydopamine-induced <i>In Vitro</i> Model of Parkinson's Disease.","authors":"Kasthuri Bai Magalingam,&nbsp;Sushela Devi Somanath,&nbsp;Ammu Kutty Radhakrishnan","doi":"10.5607/en22035","DOIUrl":"https://doi.org/10.5607/en22035","url":null,"abstract":"<p><p>A cell-based model of Parkinson's disease (PD) is a well-established <i>in vitro</i> experimental prototype to investigate the disease mechanism and therapeutic approach for a potential anti-PD drug. The SH-SY5Y human neuroblastoma cells and 6-OHDA combo is one of the many neurotoxininduced neuronal cell models employed in numerous neuroscience-related research for discovering neuroprotective drug compounds. Emerging studies have reported a significant correlation between PD and epigenetic alterations, particularly DNA methylation. However, the DNA methylation changes of PD-related CpG sites on the 6-OHDA-induced toxicity on human neuronal cells have not yet been reported. We performed a genome-wide association study (GWAS) using Infinium Epic beadchip array surveying 850000 CpG sites in differentiated human neuroblastoma cells exposed to 6-OHDA. We identified 236 differentially methylated probes (DMPs) or 163 differentially methylated regions (DMRs) in 6-OHDA treated differentiated neuroblastoma cells than the untreated reference group with p<0.01, Δbeta cut-off of 0.1. Among 236 DMPs, hypermethylated DMPs are 110 (47%), whereas 126 (53%) are hypomethylated. Our bioinformatic analysis revealed 3 DMRs that are significantly hypermethylated and associated with neurological disorders, namely AKT1, ITPR1 and GNG7. This preliminary study demonstrates the methylation status of PD-related CpGs in the 6-OHDA-induced toxicity in the differentiated neuroblastoma cells model.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 3","pages":"119-132"},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/92/b0/en-32-3-119.PMC10327930.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9758829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling Long-term Spike Frequency Adaptation in SA-I Afferent Neurons Using an Izhikevich-based Biological Neuron Model. 基于izhikevich的生物神经元模型模拟SA-I传入神经元的长期峰值频率适应。
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-06-30 DOI: 10.5607/en23005
Jaehun Kim, Young In Choi, Jeong-Woo Sohn, Sung-Phil Kim, Sung Jun Jung

To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch.

为了开发一种能够检测持续机械触觉的仿生人工触觉传感系统,我们提出了一种新的生物神经元模型(BNM),用于慢适应I型(SA-I)传入神经元。提出的BNM是通过修改Izhikevich模型来引入长期尖峰频率自适应来设计的。调整参数使Izhikevich模型描述各种神经元放电模式。我们还为所提出的BNM寻找最佳参数值,以描述生物SA-I传入神经元在持续压力超过1秒时的放电模式。通过对啮齿动物SA-I传入神经元的离体实验,获得了SA-I传入神经元在0.1 mN ~ 300 mN 6种不同机械压力下的放电数据。在找到最佳参数后,我们使用所提出的BNM生成尖峰序列,并使用尖峰距离度量将产生的尖峰序列与生物SA-I传入神经元的尖峰序列进行比较。我们验证了所提出的BNM可以产生具有长期适应性的尖峰列车,这是其他传统模型无法实现的。我们的新模型可能为人工触觉传感技术提供必要的功能,以感知持续的机械触摸。
{"title":"Modeling Long-term Spike Frequency Adaptation in SA-I Afferent Neurons Using an Izhikevich-based Biological Neuron Model.","authors":"Jaehun Kim,&nbsp;Young In Choi,&nbsp;Jeong-Woo Sohn,&nbsp;Sung-Phil Kim,&nbsp;Sung Jun Jung","doi":"10.5607/en23005","DOIUrl":"https://doi.org/10.5607/en23005","url":null,"abstract":"<p><p>To develop a biomimetic artificial tactile sensing system capable of detecting sustained mechanical touch, we propose a novel biological neuron model (BNM) for slowly adapting type I (SA-I) afferent neurons. The proposed BNM is designed by modifying the Izhikevich model to incorporate long-term spike frequency adaptation. Adjusting the parameters renders the Izhikevich model describing various neuronal firing patterns. We also search for optimal parameter values for the proposed BNM to describe firing patterns of biological SA-I afferent neurons in response to sustained pressure longer than 1-second. We obtain the firing data of SA-I afferent neurons for six different mechanical pressure ranging from 0.1 mN to 300 mN from the ex-vivo experiment on SA-I afferent neurons in rodents. Upon finding the optimal parameters, we generate spike trains using the proposed BNM and compare the resulting spike trains to those of biological SA-I afferent neurons using the spike distance metrics. We verify that the proposed BNM can generate spike trains showing long-term adaptation, which is not achievable by other conventional models. Our new model may offer an essential function to artificial tactile sensing technology to perceive sustained mechanical touch.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 3","pages":"157-169"},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ef/94/en-32-3-157.PMC10327931.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9751953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Automated Cell Detection Method for TH-positive Dopaminergic Neurons in a Mouse Model of Parkinson's Disease Using Convolutional Neural Networks. 基于卷积神经网络的帕金森病小鼠模型th阳性多巴胺能神经元自动细胞检测方法
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-06-30 DOI: 10.5607/en23001
Doyun Kim, Myeong Seong Bak, Haney Park, In Seon Baek, Geehoon Chung, Jae Hyun Park, Sora Ahn, Seon-Young Park, Hyunsu Bae, Hi-Joon Park, Sun Kwang Kim

Quantification of tyrosine hydroxylase (TH)-positive neurons is essential for the preclinical study of Parkinson's disease (PD). However, manual analysis of immunohistochemical (IHC) images is labor-intensive and has less reproducibility due to the lack of objectivity. Therefore, several automated methods of IHC image analysis have been proposed, although they have limitations of low accuracy and difficulties in practical use. Here, we developed a convolutional neural network-based machine learning algorithm for TH+ cell counting. The developed analytical tool showed higher accuracy than the conventional methods and could be used under diverse experimental conditions of image staining intensity, brightness, and contrast. Our automated cell detection algorithm is available for free and has an intelligible graphical user interface for cell counting to assist practical applications. Overall, we expect that the proposed TH+ cell counting tool will promote preclinical PD research by saving time and enabling objective analysis of IHC images.

酪氨酸羟化酶(TH)阳性神经元的定量对帕金森病(PD)的临床前研究至关重要。然而,人工分析免疫组化(IHC)图像是劳动密集型的,并且由于缺乏客观性而具有较低的可重复性。因此,人们提出了几种自动化的IHC图像分析方法,尽管它们存在精度低和实际应用困难的局限性。在这里,我们开发了一种基于卷积神经网络的TH+细胞计数机器学习算法。所开发的分析工具比传统方法具有更高的准确度,可以在不同的图像染色强度、亮度和对比度的实验条件下使用。我们的自动细胞检测算法是免费的,并有一个可理解的图形用户界面,用于细胞计数,以协助实际应用。总的来说,我们期望提出的TH+细胞计数工具将通过节省时间和实现IHC图像的客观分析来促进临床前PD研究。
{"title":"An Automated Cell Detection Method for TH-positive Dopaminergic Neurons in a Mouse Model of Parkinson's Disease Using Convolutional Neural Networks.","authors":"Doyun Kim,&nbsp;Myeong Seong Bak,&nbsp;Haney Park,&nbsp;In Seon Baek,&nbsp;Geehoon Chung,&nbsp;Jae Hyun Park,&nbsp;Sora Ahn,&nbsp;Seon-Young Park,&nbsp;Hyunsu Bae,&nbsp;Hi-Joon Park,&nbsp;Sun Kwang Kim","doi":"10.5607/en23001","DOIUrl":"https://doi.org/10.5607/en23001","url":null,"abstract":"<p><p>Quantification of tyrosine hydroxylase (TH)-positive neurons is essential for the preclinical study of Parkinson's disease (PD). However, manual analysis of immunohistochemical (IHC) images is labor-intensive and has less reproducibility due to the lack of objectivity. Therefore, several automated methods of IHC image analysis have been proposed, although they have limitations of low accuracy and difficulties in practical use. Here, we developed a convolutional neural network-based machine learning algorithm for TH+ cell counting. The developed analytical tool showed higher accuracy than the conventional methods and could be used under diverse experimental conditions of image staining intensity, brightness, and contrast. Our automated cell detection algorithm is available for free and has an intelligible graphical user interface for cell counting to assist practical applications. Overall, we expect that the proposed TH+ cell counting tool will promote preclinical PD research by saving time and enabling objective analysis of IHC images.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 3","pages":"181-194"},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/51/7a/en-32-3-181.PMC10327927.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9761044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-assisted Quantitative Mapping of Intracortical Axonal Plasticity Following a Focal Cortical Stroke in Rodents. 机器学习辅助的啮齿动物局灶性脑卒中后皮层内轴突可塑性定量映射。
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-06-30 DOI: 10.5607/en23016
Hyung Soon Kim, Hyo Gyeong Seo, Jong Ho Jhee, Chang Hyun Park, Hyang Woon Lee, Bumhee Park, Byung Gon Kim

Stroke destroys neurons and their connections leading to focal neurological deficits. Although limited, many patients exhibit a certain degree of spontaneous functional recovery. Structural remodeling of the intracortical axonal connections is implicated in the reorganization of cortical motor representation maps, which is considered to be an underlying mechanism of the improvement in motor function. Therefore, an accurate assessment of intracortical axonal plasticity would be necessary to develop strategies to facilitate functional recovery following a stroke. The present study developed a machine learning-assisted image analysis tool based on multi-voxel pattern analysis in fMRI imaging. Intracortical axons originating from the rostral forelimb area (RFA) were anterogradely traced using biotinylated dextran amine (BDA) following a photothrombotic stroke in the mouse motor cortex. BDA-traced axons were visualized in tangentially sectioned cortical tissues, digitally marked, and converted to pixelated axon density maps. Application of the machine learning algorithm enabled sensitive comparison of the quantitative differences and the precise spatial mapping of the post-stroke axonal reorganization even in the regions with dense axonal projections. Using this method, we observed a substantial extent of the axonal sprouting from the RFA to the premotor cortex and the peri-infarct region caudal to the RFA. Therefore, the machine learningassisted quantitative axonal mapping developed in this study can be utilized to discover intracortical axonal plasticity that may mediate functional restoration following stroke.

中风破坏神经元及其连接,导致局灶性神经功能缺损。虽然有限,但许多患者表现出一定程度的自发功能恢复。皮层内轴突连接的结构重塑与皮层运动表征图的重组有关,这被认为是运动功能改善的潜在机制。因此,准确评估皮质内轴突可塑性对于制定促进中风后功能恢复的策略是必要的。本研究开发了一种基于功能磁共振成像中多体素模式分析的机器学习辅助图像分析工具。使用生物素化右旋糖酐胺(BDA)在小鼠运动皮质光血栓性中风后顺行追踪源自吻侧前肢区(RFA)的皮质内轴突。bda追踪的轴突在切线切片的皮质组织中可视化,进行数字标记,并转换为像素化轴突密度图。应用机器学习算法,即使在具有密集轴突投影的区域,也可以对中风后轴突重组的数量差异进行敏感的比较和精确的空间映射。使用这种方法,我们观察到从RFA到运动前皮层和RFA尾侧梗死周围区域的大量轴突萌芽。因此,本研究中开发的机器学习辅助定量轴突映射可以用来发现可能介导中风后功能恢复的皮质内轴突可塑性。
{"title":"Machine Learning-assisted Quantitative Mapping of Intracortical Axonal Plasticity Following a Focal Cortical Stroke in Rodents.","authors":"Hyung Soon Kim,&nbsp;Hyo Gyeong Seo,&nbsp;Jong Ho Jhee,&nbsp;Chang Hyun Park,&nbsp;Hyang Woon Lee,&nbsp;Bumhee Park,&nbsp;Byung Gon Kim","doi":"10.5607/en23016","DOIUrl":"https://doi.org/10.5607/en23016","url":null,"abstract":"<p><p>Stroke destroys neurons and their connections leading to focal neurological deficits. Although limited, many patients exhibit a certain degree of spontaneous functional recovery. Structural remodeling of the intracortical axonal connections is implicated in the reorganization of cortical motor representation maps, which is considered to be an underlying mechanism of the improvement in motor function. Therefore, an accurate assessment of intracortical axonal plasticity would be necessary to develop strategies to facilitate functional recovery following a stroke. The present study developed a machine learning-assisted image analysis tool based on multi-voxel pattern analysis in fMRI imaging. Intracortical axons originating from the rostral forelimb area (RFA) were anterogradely traced using biotinylated dextran amine (BDA) following a photothrombotic stroke in the mouse motor cortex. BDA-traced axons were visualized in tangentially sectioned cortical tissues, digitally marked, and converted to pixelated axon density maps. Application of the machine learning algorithm enabled sensitive comparison of the quantitative differences and the precise spatial mapping of the post-stroke axonal reorganization even in the regions with dense axonal projections. Using this method, we observed a substantial extent of the axonal sprouting from the RFA to the premotor cortex and the peri-infarct region caudal to the RFA. Therefore, the machine learningassisted quantitative axonal mapping developed in this study can be utilized to discover intracortical axonal plasticity that may mediate functional restoration following stroke.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 3","pages":"170-180"},"PeriodicalIF":2.4,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/bf/en-32-3-170.PMC10327932.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9766581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Critical Involvement of Glutamatergic Neurons in the Anterior Insular Cortex for Subdiaphragmatic Vagotomy-induced Analgesia. 脑岛前部皮层谷氨酸能神经元参与膈下迷走神经切断术诱导的镇痛。
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-04-30 DOI: 10.5607/en23002
Yea Jin Kim, Grace J Lee, Sang Wook Shim, Doyun Kim, Seog Bae Oh

Subdiaphragmatic vagotomy (SDV) is known to produce analgesic effect in various pain conditions including not only visceral pain but also somatic pain. We aimed to determine brain mechanisms by which SDV induces analgesic effect in somatic pain condition by using formalin-induced acute inflammatory pain model. We identified brain regions that mediate SDV-induced analgesic effect on acute inflammatory pain by analyzing c-Fos expression in the whole brain. We found that c-Fos expression was specifically increased in the anterior insular cortex (aIC) among subregions of the insular cortex in acute inflammatory pain, which was reversed by SDV. These results were not mimicked in female mice, indicating sexual-dimorphism in SDV-induced analgesia. SDV decreased c-Fos expressions more preferentially in glutamatergic neurons rather than GABAergic neurons in the aIC, and pharmacological activation of glutamatergic neurons with NMDA in the aIC inhibited SDV-induced analgesic effect. Furthermore, chemogenetic activation of glutamatergic neurons in the aIC reversed SDV-induced analgesia. Taken together, our results suggest that the decrease in the neuronal activity of glutamatergic neurons in the aIC mediates SDV-induced analgesic effect, potentially serving as an important therapeutic target to treat inflammatory pain.

膈下迷走神经切开术(SDV)不仅对内脏痛,而且对躯体痛都有镇痛作用。我们旨在通过福尔马林诱导的急性炎性疼痛模型,确定SDV在躯体疼痛状态下诱导镇痛作用的脑机制。通过分析全脑c-Fos表达,我们确定了介导sdv诱导的急性炎性疼痛镇痛作用的脑区域。我们发现,急性炎症性疼痛时,在岛皮质亚区中,c-Fos在前岛皮质(aIC)特异性表达增加,而SDV可逆转这一现象。这些结果在雌性小鼠中没有被模仿,表明在sdv诱导的镇痛中存在性别二态性。在aIC中,SDV更倾向于降低谷氨酸能神经元中c-Fos的表达,而不是降低gaba能神经元的表达,在aIC中,NMDA对谷氨酸能神经元的药理激活抑制了SDV诱导的镇痛作用。此外,aIC中谷氨酸能神经元的化学发生激活逆转了sdv诱导的镇痛。综上所述,我们的研究结果表明,aIC中谷氨酸能神经元活性的降低介导了sdv诱导的镇痛作用,可能作为治疗炎症性疼痛的重要治疗靶点。
{"title":"A Critical Involvement of Glutamatergic Neurons in the Anterior Insular Cortex for Subdiaphragmatic Vagotomy-induced Analgesia.","authors":"Yea Jin Kim,&nbsp;Grace J Lee,&nbsp;Sang Wook Shim,&nbsp;Doyun Kim,&nbsp;Seog Bae Oh","doi":"10.5607/en23002","DOIUrl":"https://doi.org/10.5607/en23002","url":null,"abstract":"<p><p>Subdiaphragmatic vagotomy (SDV) is known to produce analgesic effect in various pain conditions including not only visceral pain but also somatic pain. We aimed to determine brain mechanisms by which SDV induces analgesic effect in somatic pain condition by using formalin-induced acute inflammatory pain model. We identified brain regions that mediate SDV-induced analgesic effect on acute inflammatory pain by analyzing c-Fos expression in the whole brain. We found that c-Fos expression was specifically increased in the anterior insular cortex (aIC) among subregions of the insular cortex in acute inflammatory pain, which was reversed by SDV. These results were not mimicked in female mice, indicating sexual-dimorphism in SDV-induced analgesia. SDV decreased c-Fos expressions more preferentially in glutamatergic neurons rather than GABAergic neurons in the aIC, and pharmacological activation of glutamatergic neurons with NMDA in the aIC inhibited SDV-induced analgesic effect. Furthermore, chemogenetic activation of glutamatergic neurons in the aIC reversed SDV-induced analgesia. Taken together, our results suggest that the decrease in the neuronal activity of glutamatergic neurons in the aIC mediates SDV-induced analgesic effect, potentially serving as an important therapeutic target to treat inflammatory pain.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 2","pages":"68-82"},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f6/8d/en-32-2-68.PMC10175953.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9454178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intact Recognition Memory and Altered Hippocampal Glucocorticoid Receptor Signaling in Fkbp5-deficient Mice Following Acute Uncontrollable Stress. fkbp5缺陷小鼠在急性不可控应激后完整的识别记忆和海马糖皮质激素受体信号的改变
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-04-30 DOI: 10.5607/en23006
Yong-Jae Jeon, Bo-Ryoung Choi, Min-Sun Park, Yoon-Sun Jang, Sujung Yoon, In Kyoon Lyoo, Jung-Soo Han

The FK506 binding protein 5 (FKBP5) is a co-chaperone that regulates the activity of the glucocorticoid receptor (GR) and has been reported to mediate stress resilience. This study aimed to determine the effects of Fkbp5 deletion on acute stress-induced recognition memory impairment and hippocampal GR signaling. Wild-type and Fkbp5-knockout mice were subjected to acute uncontrollable stress induced by restraint and electrical tail shock. First, we assessed the cognitive status of mice using a novel object recognition task. Next, we measured plasma corticosterone, GR levels, and the levels of GR phosphorylation at serine 211 in the hippocampus. Wild-type mice exhibited stress-induced memory impairments, whereas Fkbp5-knockout mice did not. Plasma corticosterone and GR levels did not differ between the non-stressed wild-type and Fkbp5-knockout mice, but the levels of phosphorylated GR were lower in Fkbp5-knockout mice than in wild-type mice. Wild-type and Fkbp5-knockout mice showed increased nuclear GR levels following stress, indicating GR translocation. However, cytosolic phosphorylated GR levels were lower in the hippocampi of Fkbp5-knockout mice following stress than in those of wild-type mice. These results suggest that FKBP5 deficiency increases resilience to acute stress by altering GR signaling.

FK506结合蛋白5 (FKBP5)是一种调节糖皮质激素受体(GR)活性的共伴侣,已被报道介导应激恢复。本研究旨在确定Fkbp5缺失对急性应激性识别记忆障碍和海马GR信号传导的影响。野生型和fkbp5基因敲除小鼠受到约束和电尾电击引起的急性不可控应激。首先,我们使用一种新的物体识别任务来评估小鼠的认知状态。接下来,我们测量了血浆皮质酮、GR水平和海马区丝氨酸211处GR磷酸化水平。野生型小鼠表现出应激性记忆损伤,而fkbp5基因敲除小鼠则没有。血浆皮质酮和GR水平在非应激野生型和fkbp5基因敲除小鼠之间没有差异,但fkbp5基因敲除小鼠的磷酸化GR水平低于野生型小鼠。野生型和fkbp5基因敲除小鼠在应激后核GR水平升高,表明GR易位。然而,应激后fkbp5基因敲除小鼠海马的胞浆磷酸化GR水平低于野生型小鼠。这些结果表明,FKBP5缺乏通过改变GR信号通路增加对急性应激的恢复能力。
{"title":"Intact Recognition Memory and Altered Hippocampal Glucocorticoid Receptor Signaling in Fkbp5-deficient Mice Following Acute Uncontrollable Stress.","authors":"Yong-Jae Jeon,&nbsp;Bo-Ryoung Choi,&nbsp;Min-Sun Park,&nbsp;Yoon-Sun Jang,&nbsp;Sujung Yoon,&nbsp;In Kyoon Lyoo,&nbsp;Jung-Soo Han","doi":"10.5607/en23006","DOIUrl":"https://doi.org/10.5607/en23006","url":null,"abstract":"<p><p>The FK506 binding protein 5 (FKBP5) is a co-chaperone that regulates the activity of the glucocorticoid receptor (GR) and has been reported to mediate stress resilience. This study aimed to determine the effects of <i>Fkbp5</i> deletion on acute stress-induced recognition memory impairment and hippocampal GR signaling. Wild-type and <i>Fkbp5</i>-knockout mice were subjected to acute uncontrollable stress induced by restraint and electrical tail shock. First, we assessed the cognitive status of mice using a novel object recognition task. Next, we measured plasma corticosterone, GR levels, and the levels of GR phosphorylation at serine 211 in the hippocampus. Wild-type mice exhibited stress-induced memory impairments, whereas <i>Fkbp5</i>-knockout mice did not. Plasma corticosterone and GR levels did not differ between the non-stressed wild-type and <i>Fkbp5</i>-knockout mice, but the levels of phosphorylated GR were lower in <i>Fkbp5</i>-knockout mice than in wild-type mice. Wild-type and <i>Fkbp5</i>-knockout mice showed increased nuclear GR levels following stress, indicating GR translocation. However, cytosolic phosphorylated GR levels were lower in the hippocampi of <i>Fkbp5</i>-knockout mice following stress than in those of wild-type mice. These results suggest that FKBP5 deficiency increases resilience to acute stress by altering GR signaling.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 2","pages":"91-101"},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fd/5a/en-32-2-91.PMC10175958.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9454176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aberrant Resting-state Functional Connectivity in Complex Regional Pain Syndrome: A Network-based Statistics Analysis. 复杂局部疼痛综合征的异常静息状态功能连通性:基于网络的统计分析。
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-04-30 DOI: 10.5607/en23003
Haejin Hong, Chaewon Suh, Eun Namgung, Eunji Ha, Suji Lee, Rye Young Kim, Yumi Song, Sohyun Oh, In Kyoon Lyoo, Hyeonseok Jeong, Sujung Yoon

Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder. Pain catastrophizing, characterized by magnification, rumination, and helplessness, increases perceived pain intensity and mental distress in CRPS patients. As functional connectivity patterns in CRPS remain largely unknown, we aimed to investigate functional connectivity alterations in CRPS patients and their association with pain catastrophizing using a whole-brain analysis approach. Twenty-one patients with CRPS and 49 healthy controls were included in the study for clinical assessment and resting-state functional magnetic resonance imaging. Between-group differences in whole-brain functional connectivity were examined through a Network-based Statistics analysis. Associations between altered functional connectivity and the extent of pain catastrophizing were also assessed in CRPS patients. Relative to healthy controls, CRPS patients showed higher levels of functional connectivity in the bilateral somatosensory subnetworks (components 1~2), but lower functional connectivity within the prefronto-posterior cingulate (component 3), prefrontal (component 4), prefronto-parietal (component 5), and thalamo-anterior cingulate (component 6) subnetworks (p<0.05, family-wise error corrected). Higher levels of functional connectivity in components 1~2 (β=0.45, p=0.04) and lower levels of functional connectivity in components 3~6 (β=-0.49, p=0.047) were significantly correlated with higher levels of pain catastrophizing in CRPS patients. Higher functional connectivity in the somatosensory subnetworks implicating exaggerated pain perception and lower functional connectivity in the prefronto-parieto-cingulo-thalamic subnetworks indicating impaired cognitive-affective pain processing may underlie pain catastrophizing in CRPS.

复杂区域疼痛综合征(CRPS)是一种慢性神经性疼痛障碍。疼痛灾难化以放大、反刍和无助为特征,增加了CRPS患者的感知疼痛强度和精神痛苦。由于CRPS的功能连接模式在很大程度上仍然未知,我们的目的是利用全脑分析方法研究CRPS患者的功能连接改变及其与疼痛灾难化的关系。选取21例CRPS患者和49例健康对照进行临床评估和静息状态功能磁共振成像。通过基于网络的统计分析来检查全脑功能连接的组间差异。在CRPS患者中,功能连接改变与疼痛灾难化程度之间的关联也被评估。与健康对照相比,CRPS患者在双侧体感觉亚网络(成分1~2)中表现出更高水平的功能连通性,但在前额-后扣带(成分3)、前额叶(成分4)、前额叶-顶叶(成分5)和丘脑-前扣带(成分6)亚网络中表现出较低的功能连通性
{"title":"Aberrant Resting-state Functional Connectivity in Complex Regional Pain Syndrome: A Network-based Statistics Analysis.","authors":"Haejin Hong,&nbsp;Chaewon Suh,&nbsp;Eun Namgung,&nbsp;Eunji Ha,&nbsp;Suji Lee,&nbsp;Rye Young Kim,&nbsp;Yumi Song,&nbsp;Sohyun Oh,&nbsp;In Kyoon Lyoo,&nbsp;Hyeonseok Jeong,&nbsp;Sujung Yoon","doi":"10.5607/en23003","DOIUrl":"https://doi.org/10.5607/en23003","url":null,"abstract":"<p><p>Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder. Pain catastrophizing, characterized by magnification, rumination, and helplessness, increases perceived pain intensity and mental distress in CRPS patients. As functional connectivity patterns in CRPS remain largely unknown, we aimed to investigate functional connectivity alterations in CRPS patients and their association with pain catastrophizing using a whole-brain analysis approach. Twenty-one patients with CRPS and 49 healthy controls were included in the study for clinical assessment and resting-state functional magnetic resonance imaging. Between-group differences in whole-brain functional connectivity were examined through a Network-based Statistics analysis. Associations between altered functional connectivity and the extent of pain catastrophizing were also assessed in CRPS patients. Relative to healthy controls, CRPS patients showed higher levels of functional connectivity in the bilateral somatosensory subnetworks (components 1~2), but lower functional connectivity within the prefronto-posterior cingulate (component 3), prefrontal (component 4), prefronto-parietal (component 5), and thalamo-anterior cingulate (component 6) subnetworks (p<0.05, family-wise error corrected). Higher levels of functional connectivity in components 1~2 (β=0.45, p=0.04) and lower levels of functional connectivity in components 3~6 (β=-0.49, p=0.047) were significantly correlated with higher levels of pain catastrophizing in CRPS patients. Higher functional connectivity in the somatosensory subnetworks implicating exaggerated pain perception and lower functional connectivity in the prefronto-parieto-cingulo-thalamic subnetworks indicating impaired cognitive-affective pain processing may underlie pain catastrophizing in CRPS.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 2","pages":"110-118"},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/25/b8/en-32-2-110.PMC10175954.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9454177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Caenorhabditis elegans Connectomes of both Sexes as Image Classifiers. 秀丽隐杆线虫两性的连接体作为图像分类器。
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-04-30 DOI: 10.5607/en23004
Changjoo Park, Jinseop S Kim

Connectome, the complete wiring diagram of the nervous system of an organism, is the biological substrate of the mind. While biological neural networks are crucial to the understanding of neural computation mechanisms, recent artificial neural networks (ANNs) have been developed independently from the study of real neural networks. Computational scientists are searching for various ANN architectures to improve machine learning since the architectures are associated with the accuracy of ANNs. A recent study used the hermaphrodite Caenorhabditis elegans (C. elegans) connectome for image classification tasks, where the edge directions were changed to construct a directed acyclic graph (DAG). In this study, we used the whole-animal connectomes of C. elegans hermaphrodite and male to construct a DAG that preserves the chief information flow in the connectomes and trained them for image classification of MNIST and fashion-MNIST datasets. The connectome-inspired neural networks exhibited over 99.5% and 92.6% of accuracy for MNIST and fashion-MNIST datasets, respectively, which increased from the previous study. Together, we conclude that realistic biological neural networks provide the basis of a plausible ANN architecture. This study suggests that biological networks can provide new inspiration to improve artificial intelligences (AIs).

连接组是生物体神经系统的完整接线图,是思维的生物基质。虽然生物神经网络对于理解神经计算机制至关重要,但近年来人工神经网络(ann)的发展已经独立于真实神经网络的研究。计算科学家正在寻找各种人工神经网络架构来改进机器学习,因为这些架构与人工神经网络的准确性有关。最近的一项研究使用了雌雄同体秀丽隐杆线虫(C. elegans)的连接体进行图像分类任务,其中边缘方向被改变以构建一个有向无环图(DAG)。在本研究中,我们使用线虫雌雄同体和雄性的全动物连接体构建了一个DAG,该DAG保留了连接体中的主要信息流,并训练它们用于MNIST和fashion-MNIST数据集的图像分类。连接体启发的神经网络在MNIST和fashion-MNIST数据集上的准确率分别超过99.5%和92.6%,比之前的研究有所提高。总之,我们得出结论,现实的生物神经网络为合理的人工神经网络架构提供了基础。这项研究表明,生物网络可以为改进人工智能(ai)提供新的灵感。
{"title":"<i>Caenorhabditis elegans</i> Connectomes of both Sexes as Image Classifiers.","authors":"Changjoo Park,&nbsp;Jinseop S Kim","doi":"10.5607/en23004","DOIUrl":"https://doi.org/10.5607/en23004","url":null,"abstract":"<p><p>Connectome, the complete wiring diagram of the nervous system of an organism, is the biological substrate of the mind. While biological neural networks are crucial to the understanding of neural computation mechanisms, recent artificial neural networks (ANNs) have been developed independently from the study of real neural networks. Computational scientists are searching for various ANN architectures to improve machine learning since the architectures are associated with the accuracy of ANNs. A recent study used the hermaphrodite <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) connectome for image classification tasks, where the edge directions were changed to construct a directed acyclic graph (DAG). In this study, we used the whole-animal connectomes of <i>C. elegans</i> hermaphrodite and male to construct a DAG that preserves the chief information flow in the connectomes and trained them for image classification of MNIST and fashion-MNIST datasets. The connectome-inspired neural networks exhibited over 99.5% and 92.6% of accuracy for MNIST and fashion-MNIST datasets, respectively, which increased from the previous study. Together, we conclude that realistic biological neural networks provide the basis of a plausible ANN architecture. This study suggests that biological networks can provide new inspiration to improve artificial intelligences (AIs).</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 2","pages":"102-109"},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/6a/en-32-2-102.PMC10175957.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9507141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mGluR1 Regulates the Interspike Interval Threshold for Dendritic Ca2+ Transients in the Cerebellar Purkinje Cells. mGluR1调控小脑浦肯野细胞树突状Ca2+瞬变的峰间间隔阈值。
IF 2.4 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2023-04-30 DOI: 10.5607/en22040
Dong Cheol Jang, Changhyeon Ryu, Geehoon Chung, Sun Kwang Kim, Sang Jeong Kim

Ca2++ transients can be observed in the distal dendrites of Purkinje cells (PCs) despite their lack of action potential backpropagation. These Ca2++ events in distal dendrites require specific patterns of PC firing, such as complex spikes (CS) or simple spikes (SS) of burst mode. Unlike CS, which can act directly on voltage-gated calcium channels in the dendrites through climbing fiber inputs, the condition that can produce the Ca2++ events in distal dendrites with burst mode SS is poorly understood. Here, we propose the interspike interval threshold (ISIT) for Ca2++ transients in the distal dendrites of PC. We found that to induce the Ca2++ transients in distal dendrites the frequency of spike firing of PC should reach 250 Hz (3 ms ISI). Metabotropic glutamate receptor 1 (mGluR1) activation significantly relieved the ISIT and established cellular conditions in which spike firing with 50 Hz (19 ms ISI) could induce Ca2++ transients in the distal dendrites. In contrast, blocking T-type Ca2++ channels or depleting the endoplasmic reticulum Ca2++ store resulted in a stricter condition in which spike firing with 333 Hz (2 ms ISI) was required. Our findings demonstrate that the PC has strict ISIT for dendritic Ca2++ transients, and this ISIT can be relieved by mGluR1 activation. This strict restriction of ISIT could contribute to the reduction of the signal-to-noise ratio in terms of collecting information by preventing excessive dendritic Ca2++ transients through the spontaneous activity of PC.

尽管缺乏动作电位反向传播,但在浦肯野细胞(PCs)的远端树突中可以观察到Ca2++瞬态。这些Ca2++事件在远端树突需要特定模式的PC放电,如突发模式的复杂尖峰(CS)或简单尖峰(SS)。与CS不同的是,CS可以通过攀爬纤维输入直接作用于树突中的电压门控钙通道,而对于突发模式SS在远端树突中产生Ca2++事件的条件却知之甚少。在这里,我们提出峰间间隔阈值(ISIT) Ca2++瞬态在远端树突PC。我们发现,要在远端树突中诱导Ca2++瞬变,PC的脉冲放电频率应达到250 Hz (3 ms ISI)。代谢性谷氨酸受体1 (mGluR1)的激活显著缓解了ISIT,并建立了50 Hz (19 ms ISI)脉冲放电诱导远端树突Ca2+瞬态的细胞条件。相反,阻断t型Ca2++通道或耗尽内质网Ca2++存储导致更严格的条件,需要333 Hz (2 ms ISI)的脉冲放电。我们的研究结果表明,PC对树突Ca2++瞬态具有严格的ISIT,并且这种ISIT可以通过mGluR1激活来缓解。这种对ISIT的严格限制可以通过PC的自发活性来防止过多的树突Ca2++瞬态,从而有助于降低收集信息的信噪比。
{"title":"mGluR1 Regulates the Interspike Interval Threshold for Dendritic Ca<sup>2+</sup> Transients in the Cerebellar Purkinje Cells.","authors":"Dong Cheol Jang,&nbsp;Changhyeon Ryu,&nbsp;Geehoon Chung,&nbsp;Sun Kwang Kim,&nbsp;Sang Jeong Kim","doi":"10.5607/en22040","DOIUrl":"https://doi.org/10.5607/en22040","url":null,"abstract":"<p><p>Ca<sup>2+</sup>+ transients can be observed in the distal dendrites of Purkinje cells (PCs) despite their lack of action potential backpropagation. These Ca<sup>2+</sup>+ events in distal dendrites require specific patterns of PC firing, such as complex spikes (CS) or simple spikes (SS) of burst mode. Unlike CS, which can act directly on voltage-gated calcium channels in the dendrites through climbing fiber inputs, the condition that can produce the Ca<sup>2+</sup>+ events in distal dendrites with burst mode SS is poorly understood. Here, we propose the interspike interval threshold (ISIT) for Ca<sup>2+</sup>+ transients in the distal dendrites of PC. We found that to induce the Ca<sup>2+</sup>+ transients in distal dendrites the frequency of spike firing of PC should reach 250 Hz (3 ms ISI). Metabotropic glutamate receptor 1 (mGluR1) activation significantly relieved the ISIT and established cellular conditions in which spike firing with 50 Hz (19 ms ISI) could induce Ca<sup>2+</sup>+ transients in the distal dendrites. In contrast, blocking T-type Ca<sup>2+</sup>+ channels or depleting the endoplasmic reticulum Ca<sup>2+</sup>+ store resulted in a stricter condition in which spike firing with 333 Hz (2 ms ISI) was required. Our findings demonstrate that the PC has strict ISIT for dendritic Ca<sup>2+</sup>+ transients, and this ISIT can be relieved by mGluR1 activation. This strict restriction of ISIT could contribute to the reduction of the signal-to-noise ratio in terms of collecting information by preventing excessive dendritic Ca<sup>2+</sup>+ transients through the spontaneous activity of PC.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"32 2","pages":"83-90"},"PeriodicalIF":2.4,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3e/98/en-32-2-83.PMC10175955.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9507143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experimental Neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1