Pub Date : 2024-09-01Epub Date: 2024-07-16DOI: 10.1080/17460441.2024.2379873
Devendra K Dhaked, Marc C Nicklaus
{"title":"What impact does tautomerism have on drug discovery and development?","authors":"Devendra K Dhaked, Marc C Nicklaus","doi":"10.1080/17460441.2024.2379873","DOIUrl":"10.1080/17460441.2024.2379873","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1011-1016"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-07-04DOI: 10.1080/17460441.2024.2373165
Alan Talevi, Carolina Bellera
Introduction: Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored.
Areas covered: Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective.
Expert opinion: In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.
{"title":"An update on the novel methods for the discovery of antiseizure and antiepileptogenic medications: where are we in 2024?","authors":"Alan Talevi, Carolina Bellera","doi":"10.1080/17460441.2024.2373165","DOIUrl":"10.1080/17460441.2024.2373165","url":null,"abstract":"<p><strong>Introduction: </strong>Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored.</p><p><strong>Areas covered: </strong>Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective.</p><p><strong>Expert opinion: </strong>In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"975-990"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-26DOI: 10.1080/17460441.2024.2368744
Rebecca A Gallego, Martin P Edwards, T Patrick Montgomery
Introduction: Lipophilic efficiency (LipE) and lipophilic metabolic efficiency (LipMetE) are valuable tools that can be utilized as part of a multiparameter optimization process to advance a hit to a clinical quality compound.
Areas covered: This review covers recent, effective use cases of LipE and LipMetE that have been published in the literature over the past 5 years. These use cases resulted in the delivery of high-quality molecules that were brought forward to in vivo work and/or to clinical studies. The authors discuss best-practices for using LipE and LipMetE analysis, combined with lipophilicity-focused compound design strategies, to increase the speed and effectiveness of the hit to clinical quality compound optimization process.
Expert opinion: It has become well established that increasing LipE and LipMetE within a series of analogs facilitates the improvement of broad selectivity, clearance, solubility, and permeability and, through this optimization, also facilitates the achievement of desired pharmacokinetic properties, efficacy, and tolerability. Within this article, we discuss lipophilic efficiency-focused optimization as a tool to yield high-quality potential clinical candidates. It is suggested that LipE/LipMetE-focused optimization can facilitate and accelerate the drug-discovery process.
{"title":"An update on lipophilic efficiency as an important metric in drug design.","authors":"Rebecca A Gallego, Martin P Edwards, T Patrick Montgomery","doi":"10.1080/17460441.2024.2368744","DOIUrl":"10.1080/17460441.2024.2368744","url":null,"abstract":"<p><strong>Introduction: </strong>Lipophilic efficiency (LipE) and lipophilic metabolic efficiency (LipMetE) are valuable tools that can be utilized as part of a multiparameter optimization process to advance a hit to a clinical quality compound.</p><p><strong>Areas covered: </strong>This review covers recent, effective use cases of LipE and LipMetE that have been published in the literature over the past 5 years. These use cases resulted in the delivery of high-quality molecules that were brought forward to <i>in vivo</i> work and/or to clinical studies. The authors discuss best-practices for using LipE and LipMetE analysis, combined with lipophilicity-focused compound design strategies, to increase the speed and effectiveness of the hit to clinical quality compound optimization process.</p><p><strong>Expert opinion: </strong>It has become well established that increasing LipE and LipMetE within a series of analogs facilitates the improvement of broad selectivity, clearance, solubility, and permeability and, through this optimization, also facilitates the achievement of desired pharmacokinetic properties, efficacy, and tolerability. Within this article, we discuss lipophilic efficiency-focused optimization as a tool to yield high-quality potential clinical candidates. It is suggested that LipE/LipMetE-focused optimization can facilitate and accelerate the drug-discovery process.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"917-931"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-17DOI: 10.1080/17460441.2024.2368242
Sahar F Bannoura, Husain Yar Khan, Md Hafiz Uddin, Ramzi M Mohammad, Boris C Pasche, Asfar S Azmi
Introduction: Guanine nucleotide exchange factors (GEFs) regulate the activation of small GTPases (G proteins) of the Ras superfamily proteins controlling cellular functions. Ras superfamily proteins act as 'molecular switches' that are turned 'ON' by guanine exchange. There are five major groups of Ras family GTPases: Ras, Ran, Rho, Rab and Arf, with a variety of different GEFs regulating their GTP loading. GEFs have been implicated in various diseases including cancer. This makes GEFs attractive targets to modulate signaling networks controlled by small GTPases.
Areas covered: In this review, the roles and mechanisms of GEFs in malignancy are outlined. The mechanism of guanine exchange activity by GEFs on a small GTPase is illustrated. Then, some examples of GEFs that are significant in cancer are presented with a discussion on recent progress in therapeutic targeting efforts using a variety of approaches.
Expert opinion: Recently, GEFs have emerged as potential therapeutic targets for novel cancer drug development. Targeting small GTPases is challenging; thus, targeting their activation by GEFs is a promising strategy. Most GEF-targeted drugs are still in preclinical development. A deeper biological understanding of the underlying mechanisms of GEF activity and utilizing advanced technology are necessary to enhance drug discovery for GEFs in cancer.
{"title":"Targeting guanine nucleotide exchange factors for novel cancer drug discovery.","authors":"Sahar F Bannoura, Husain Yar Khan, Md Hafiz Uddin, Ramzi M Mohammad, Boris C Pasche, Asfar S Azmi","doi":"10.1080/17460441.2024.2368242","DOIUrl":"10.1080/17460441.2024.2368242","url":null,"abstract":"<p><strong>Introduction: </strong>Guanine nucleotide exchange factors (GEFs) regulate the activation of small GTPases (G proteins) of the Ras superfamily proteins controlling cellular functions. Ras superfamily proteins act as 'molecular switches' that are turned 'ON' by guanine exchange. There are five major groups of Ras family GTPases: Ras, Ran, Rho, Rab and Arf, with a variety of different GEFs regulating their GTP loading. GEFs have been implicated in various diseases including cancer. This makes GEFs attractive targets to modulate signaling networks controlled by small GTPases.</p><p><strong>Areas covered: </strong>In this review, the roles and mechanisms of GEFs in malignancy are outlined. The mechanism of guanine exchange activity by GEFs on a small GTPase is illustrated. Then, some examples of GEFs that are significant in cancer are presented with a discussion on recent progress in therapeutic targeting efforts using a variety of approaches.</p><p><strong>Expert opinion: </strong>Recently, GEFs have emerged as potential therapeutic targets for novel cancer drug development. Targeting small GTPases is challenging; thus, targeting their activation by GEFs is a promising strategy. Most GEF-targeted drugs are still in preclinical development. A deeper biological understanding of the underlying mechanisms of GEF activity and utilizing advanced technology are necessary to enhance drug discovery for GEFs in cancer.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"949-959"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380440/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141330729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-26DOI: 10.1080/17460441.2024.2370332
Yongji Zeng, A Craig Lockhart, Ramon U Jin
Introduction: Gastric cancer remains a formidable challenge in oncology with high mortality rates and few advancements in treatment. Claudin-18.2 (CLDN18.2) is a tight junction protein primarily expressed in the stomach and is frequently overexpressed in certain subsets of gastric cancers. Targeting CLDN18.2 with monoclonal antibodies, such as zolbetuximab (IMAB362), has shown promising efficacy results in combination with chemotherapy.
Areas covered: The molecular cell biology of CLDN18.2 is discussed along with studies demonstrating the utility of CLDN18.2 expression as a biomarker and therapeutic target. Important clinical studies are reviewed, including Phase III trials, SPOTLIGHT and GLOW, which demonstrate the efficacy of zolbetuximab in combination with chemotherapy in patients with CLDN18.2-positive advanced gastric cancer.
Expert opinion: CLDN18.2 is involved in gastric differentiation through maintenance of epithelial barrier function and coordination of signaling pathways, and its expression in gastric cancers reflects a 'gastric differentiation' program. Targeting Claudin-18.2 represents the first gastric cancer specific 'targeted' treatment. Further studies are needed to determine its role within current gastric cancer treatment sequencing, including HER2-targeted therapies and immunotherapies. Management strategies will also be needed to better mitigate zolbetuximab-related treatment side effects, including gastrointestinal (GI) toxicities.
{"title":"The preclinical discovery and development of zolbetuximab for the treatment of gastric cancer.","authors":"Yongji Zeng, A Craig Lockhart, Ramon U Jin","doi":"10.1080/17460441.2024.2370332","DOIUrl":"10.1080/17460441.2024.2370332","url":null,"abstract":"<p><strong>Introduction: </strong>Gastric cancer remains a formidable challenge in oncology with high mortality rates and few advancements in treatment. Claudin-18.2 (CLDN18.2) is a tight junction protein primarily expressed in the stomach and is frequently overexpressed in certain subsets of gastric cancers. Targeting CLDN18.2 with monoclonal antibodies, such as zolbetuximab (IMAB362), has shown promising efficacy results in combination with chemotherapy.</p><p><strong>Areas covered: </strong>The molecular cell biology of CLDN18.2 is discussed along with studies demonstrating the utility of CLDN18.2 expression as a biomarker and therapeutic target. Important clinical studies are reviewed, including Phase III trials, SPOTLIGHT and GLOW, which demonstrate the efficacy of zolbetuximab in combination with chemotherapy in patients with CLDN18.2-positive advanced gastric cancer.</p><p><strong>Expert opinion: </strong>CLDN18.2 is involved in gastric differentiation through maintenance of epithelial barrier function and coordination of signaling pathways, and its expression in gastric cancers reflects a 'gastric differentiation' program. Targeting Claudin-18.2 represents the first gastric cancer specific 'targeted' treatment. Further studies are needed to determine its role within current gastric cancer treatment sequencing, including HER2-targeted therapies and immunotherapies. Management strategies will also be needed to better mitigate zolbetuximab-related treatment side effects, including gastrointestinal (GI) toxicities.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"873-886"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-14DOI: 10.1080/17460441.2024.2367024
Sophia You, Glen McIntyre, Toby Passioura
Introduction: Cyclic peptides are an established class of pharmaceuticals, with the ability to bind to a broader range of protein targets than traditional small molecules while also being capable of oral availability and cell penetration. Historically, cyclic peptide drugs have been discovered almost exclusively through natural product mining approaches; however, the last two decades have seen the development of display screening approaches capable of rapidly identifying de novo (i.e. not natural product derived) cyclic peptide ligands to targets of interest.
Areas covered: In this review, the authors describe the current clinical landscape for cyclic peptide pharmaceuticals. This article focuses on the discovery approaches that have led to the development of different classes of molecules and how the development of newer technologies, particularly phage and mRNA display, has broadened the clinical applicability of such molecules.
Expert opinion: The field of de novo cyclic peptide drug discovery is reaching maturity, with the first drugs identified through display screening approaches reaching the market in recent years. Many more are in clinical trials; however, significant technical challenges remain. Technological improvements will be required over the coming years to facilitate the identification of membrane permeable cyclic peptides capable of oral availability and targeting intracellular proteins.
{"title":"The coming of age of cyclic peptide drugs: an update on discovery technologies.","authors":"Sophia You, Glen McIntyre, Toby Passioura","doi":"10.1080/17460441.2024.2367024","DOIUrl":"10.1080/17460441.2024.2367024","url":null,"abstract":"<p><strong>Introduction: </strong>Cyclic peptides are an established class of pharmaceuticals, with the ability to bind to a broader range of protein targets than traditional small molecules while also being capable of oral availability and cell penetration. Historically, cyclic peptide drugs have been discovered almost exclusively through natural product mining approaches; however, the last two decades have seen the development of display screening approaches capable of rapidly identifying <i>de novo</i> (i.e. not natural product derived) cyclic peptide ligands to targets of interest.</p><p><strong>Areas covered: </strong>In this review, the authors describe the current clinical landscape for cyclic peptide pharmaceuticals. This article focuses on the discovery approaches that have led to the development of different classes of molecules and how the development of newer technologies, particularly phage and mRNA display, has broadened the clinical applicability of such molecules.</p><p><strong>Expert opinion: </strong>The field of <i>de novo</i> cyclic peptide drug discovery is reaching maturity, with the first drugs identified through display screening approaches reaching the market in recent years. Many more are in clinical trials; however, significant technical challenges remain. Technological improvements will be required over the coming years to facilitate the identification of membrane permeable cyclic peptides capable of oral availability and targeting intracellular proteins.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"961-973"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-11DOI: 10.1080/17460441.2024.2365969
Laszlo Otvos
{"title":"The latest trends in peptide drug discovery and future challenges.","authors":"Laszlo Otvos","doi":"10.1080/17460441.2024.2365969","DOIUrl":"10.1080/17460441.2024.2365969","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"869-872"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-19DOI: 10.1080/17460441.2024.2368743
Vijay H Masand, Sami Al-Hussain, Abdullah Y Alzahrani, Aamal A Al-Mutairi, Arwa Sultan Alqahtani, Abdul Samad, Ahmed M Alafeefy, Rahul D Jawarkar, Magdi E A Zaki
Background: Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors.
Research design and methods: A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed.
Results: The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors.
Conclusions: The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.
{"title":"Unveiling dynamics of nitrogen content and selected nitrogen heterocycles in thrombin inhibitors: a <i>ceteris paribus</i> approach.","authors":"Vijay H Masand, Sami Al-Hussain, Abdullah Y Alzahrani, Aamal A Al-Mutairi, Arwa Sultan Alqahtani, Abdul Samad, Ahmed M Alafeefy, Rahul D Jawarkar, Magdi E A Zaki","doi":"10.1080/17460441.2024.2368743","DOIUrl":"10.1080/17460441.2024.2368743","url":null,"abstract":"<p><strong>Background: </strong>Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors.</p><p><strong>Research design and methods: </strong>A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed.</p><p><strong>Results: </strong>The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors.</p><p><strong>Conclusions: </strong>The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"991-1009"},"PeriodicalIF":6.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141426625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-27DOI: 10.1080/17460441.2024.2355329
Valentina Vitali, Lara Massai, Luigi Messori
Introduction: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.
Areas covered: This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed.
Expert opinion: The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.
简介:奥拉诺芬(Auranofin,AF)是一种获得美国食品及药物管理局批准的成熟的抗关节炎金药,目前正通过药物再利用的方式对其各种治疗适应症进行重新评估。作为一种潜在的抗癌药物,AF 已显示出巨大的前景,并已获准用于几项癌症临床试验。人们对 AF 的重新关注引发了对呋喃唑酮类似物的设计、制备和生物学评价的广泛研究,这些类似物的药理特性可能比母体药物更好:本文综述了对 AF 支架进行化学修饰的策略。在过去的 20 年中,已经制备了几种呋喃唑酮类似物并对其进行了表征,将其应用于癌症治疗领域。文章提出并讨论了一些新出现的结构-功能关系:近年来,对呋喃唑酮支架进行化学修饰一直是研究的热点,通过这种策略制备并评估了多种呋喃唑酮类似物。碘金诺芬就是一个特别有前景的例子。有了一组 AF 衍生物的同源生物学数据,就可以提出一些初步的结构-功能关系,这可能有助于设计和合成用于癌症治疗的新的和更好的 AF 类似物。
{"title":"Strategies for the design of analogs of auranofin endowed with anticancer potential.","authors":"Valentina Vitali, Lara Massai, Luigi Messori","doi":"10.1080/17460441.2024.2355329","DOIUrl":"10.1080/17460441.2024.2355329","url":null,"abstract":"<p><strong>Introduction: </strong>Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.</p><p><strong>Areas covered: </strong>This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed.</p><p><strong>Expert opinion: </strong>The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"855-867"},"PeriodicalIF":6.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-06-02DOI: 10.1080/17460441.2024.2360420
Diogo Teles, Barry M Fine
Introduction: Arrhythmias are disturbances in the normal rhythm of the heart and account for significant cardiovascular morbidity and mortality worldwide. Historically, preclinical research has been anchored in animal models, though physiological differences between these models and humans have limited their clinical translation. The discovery of human induced pluripotent stem cells (iPSC) and subsequent differentiation into cardiomyocyte has led to the development of new in vitro models of arrhythmias with the hope of a new pathway for both exploration of pathogenic variants and novel therapeutic discovery.
Areas covered: The authors describe the latest two-dimensional in vitro models of arrhythmias, several examples of the use of these models in drug development, and the role of gene editing when modeling diseases. They conclude by discussing the use of three-dimensional models in the study of arrythmias and the integration of computational technologies and machine learning with experimental technologies.
Expert opinion: Human iPSC-derived cardiomyocytes models have significant potential to augment disease modeling, drug discovery, and toxicity studies in preclinical development. While there is initial success with modeling arrhythmias, the field is still in its nascency and requires advances in maturation, cellular diversity, and readouts to emulate arrhythmias more accurately.
{"title":"Using induced pluripotent stem cells for drug discovery in arrhythmias.","authors":"Diogo Teles, Barry M Fine","doi":"10.1080/17460441.2024.2360420","DOIUrl":"10.1080/17460441.2024.2360420","url":null,"abstract":"<p><strong>Introduction: </strong>Arrhythmias are disturbances in the normal rhythm of the heart and account for significant cardiovascular morbidity and mortality worldwide. Historically, preclinical research has been anchored in animal models, though physiological differences between these models and humans have limited their clinical translation. The discovery of human induced pluripotent stem cells (iPSC) and subsequent differentiation into cardiomyocyte has led to the development of new <i>in vitro</i> models of arrhythmias with the hope of a new pathway for both exploration of pathogenic variants and novel therapeutic discovery.</p><p><strong>Areas covered: </strong>The authors describe the latest two-dimensional <i>in vitro</i> models of arrhythmias, several examples of the use of these models in drug development, and the role of gene editing when modeling diseases. They conclude by discussing the use of three-dimensional models in the study of arrythmias and the integration of computational technologies and machine learning with experimental technologies.</p><p><strong>Expert opinion: </strong>Human iPSC-derived cardiomyocytes models have significant potential to augment disease modeling, drug discovery, and toxicity studies in preclinical development. While there is initial success with modeling arrhythmias, the field is still in its nascency and requires advances in maturation, cellular diversity, and readouts to emulate arrhythmias more accurately.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"827-840"},"PeriodicalIF":6.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}