首页 > 最新文献

Expert Opinion on Drug Discovery最新文献

英文 中文
The progress and challenges in modeling colorectal cancer and the impact on novel drug discovery. 结直肠癌建模的进展和挑战以及对新药研发的影响。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-16 DOI: 10.1080/17460441.2024.2404238
Natália Teixeira, Ana Baião, Sofia Dias, Bruno Sarmento

Introduction: Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide. This disease is complex and heterogeneous, influenced by a variety of genetic, epigenetic, and environmental factors that drive CRC initiation and progression. Despite advances in therapeutic strategies, the five-year survival rate for metastatic CRC is alarmingly low. Traditional two-dimensional (2D) cell culture systems have been the foundation of cancer research, but their inability to replicate the complex tumor microenvironment (TME) limits their effectiveness.

Areas covered: This paper explores the evolution of CRC models, starting with the limitations of traditional 2D cell culture systems and the significant advancements offered by 3D models. Additionally, it highlights 3D bioprinting and on-chip CRC models, which have enhanced the ability to mimic in vivo conditions.

Expert opinion: The transition to advanced 3D models represents a pivotal shift in CRC research, offering considerable improvements over the established 2D models. These models hold promise for the development of patient-specific models that better mimic in vivo conditions. However, the inherent complexity of CRC continues to pose challenges in developing models that can fully capture the disease's multifaceted nature. This complexity and high costs associated with these technologies, along with the need for standardized protocols, pose significant challenges to their widespread adoption.

导言:结直肠癌(CRC)仍然是全球癌症相关发病率和死亡率的主要原因之一。这种疾病复杂多变,受多种遗传、表观遗传和环境因素的影响,导致 CRC 的发生和发展。尽管治疗策略不断进步,但转移性 CRC 的五年存活率却低得惊人。传统的二维(2D)细胞培养系统一直是癌症研究的基础,但由于无法复制复杂的肿瘤微环境(TME),限制了其有效性:本文从传统二维细胞培养系统的局限性和三维模型带来的重大进展入手,探讨了 CRC 模型的演变。此外,本文还重点介绍了三维生物打印和芯片 CRC 模型,这些模型提高了模拟体内条件的能力:向先进的三维模型过渡代表了 CRC 研究的关键转变,与既有的二维模型相比有了很大改进。这些模型为开发能更好地模拟体内情况的患者特异性模型带来了希望。然而,由于 CRC 本身的复杂性,要开发出能完全捕捉该疾病多面性的模型仍面临挑战。这种复杂性和与这些技术相关的高昂成本,以及对标准化方案的需求,对这些技术的广泛应用构成了重大挑战。
{"title":"The progress and challenges in modeling colorectal cancer and the impact on novel drug discovery.","authors":"Natália Teixeira, Ana Baião, Sofia Dias, Bruno Sarmento","doi":"10.1080/17460441.2024.2404238","DOIUrl":"https://doi.org/10.1080/17460441.2024.2404238","url":null,"abstract":"<p><strong>Introduction: </strong>Colorectal cancer (CRC) remains one of the leading causes of cancer-related morbidity and mortality worldwide. This disease is complex and heterogeneous, influenced by a variety of genetic, epigenetic, and environmental factors that drive CRC initiation and progression. Despite advances in therapeutic strategies, the five-year survival rate for metastatic CRC is alarmingly low. Traditional two-dimensional (2D) cell culture systems have been the foundation of cancer research, but their inability to replicate the complex tumor microenvironment (TME) limits their effectiveness.</p><p><strong>Areas covered: </strong>This paper explores the evolution of CRC models, starting with the limitations of traditional 2D cell culture systems and the significant advancements offered by 3D models. Additionally, it highlights 3D bioprinting and on-chip CRC models, which have enhanced the ability to mimic in vivo conditions.</p><p><strong>Expert opinion: </strong>The transition to advanced 3D models represents a pivotal shift in CRC research, offering considerable improvements over the established 2D models. These models hold promise for the development of patient-specific models that better mimic in vivo conditions. However, the inherent complexity of CRC continues to pose challenges in developing models that can fully capture the disease's multifaceted nature. This complexity and high costs associated with these technologies, along with the need for standardized protocols, pose significant challenges to their widespread adoption.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1-10"},"PeriodicalIF":6.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142282781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What are the translational challenges associated with Chagas disease drug discovery? 与南美锥虫病药物研发相关的转化挑战有哪些?
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-13 DOI: 10.1080/17460441.2024.2402409
Inmaculada Ramírez-Macías,Paola García-Huertas,Clotilde Marín
{"title":"What are the translational challenges associated with Chagas disease drug discovery?","authors":"Inmaculada Ramírez-Macías,Paola García-Huertas,Clotilde Marín","doi":"10.1080/17460441.2024.2402409","DOIUrl":"https://doi.org/10.1080/17460441.2024.2402409","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":"30 1","pages":"1-4"},"PeriodicalIF":6.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the approaches used to repurpose drugs for neuroblastoma. 神经母细胞瘤药物再利用方法的进展。
IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-11 DOI: 10.1080/17460441.2024.2402413
Marta Miera-Maluenda,María Pérez-Torres,Adriana Mañas,Alba Rubio-San-Simón,Maria Butjosa-Espín,Paula Ruiz-Duran,Jose A Seoane,Lucas Moreno,Miguel F Segura
INTRODUCTIONNeuroblastoma (NB) remains a challenging pediatric malignancy with limited treatment options, particularly for high-risk cases. Drug repurposing offers a convenient and cost-effective strategy for treating rare diseases like NB. Using existing drugs with known safety profiles accelerates the availability of new treatments, reduces development costs, and mitigates risks, offering hope for improved patient outcomes in challenging conditions.AREAS COVEREDThis review provides an overview of the advances in approaches used to repurpose drugs for NB therapy. The authors discuss strategies employed in drug repurposing, including computational and experimental methods, and rational drug design, highlighting key examples of repurposed drugs with promising clinical results. Additionally, the authors examine the challenges and opportunities associated with drug repurposing in NB and discuss future directions and potential areas for further research.EXPERT OPINIONThe fact that only one new drug has been approved in the last 30 years for the treatment of neuroblastoma plus a significant proportion of high-risk NB patients that remain uncurable, evidences the need for new fast and cost-effective alternatives. Drug repurposing may accelerate the treatment development process while reducing expenses and risks. This approach can swiftly bring effective NB therapies to market, enhancing survival rates and patient quality of life.
简介神经母细胞瘤(NB)仍然是一种具有挑战性的儿科恶性肿瘤,其治疗方案有限,尤其是对于高风险病例。药物再利用为治疗像神经母细胞瘤这样的罕见病提供了一种方便且具有成本效益的策略。使用已知安全性的现有药物可以加快新疗法的上市速度、降低开发成本并减轻风险,从而为改善具有挑战性疾病的患者预后带来希望。作者讨论了药物再利用所采用的策略,包括计算和实验方法以及合理的药物设计,重点介绍了临床效果良好的再利用药物的主要实例。此外,作者还探讨了与神经母细胞瘤药物再利用相关的挑战和机遇,并讨论了进一步研究的未来方向和潜在领域。专家观点在过去的 30 年中,仅有一种新药被批准用于治疗神经母细胞瘤,而相当一部分高危神经母细胞瘤患者仍无法治愈,这证明需要新的快速且具有成本效益的替代药物。药物再利用可加快治疗开发进程,同时降低费用和风险。这种方法可以迅速将有效的 NB 疗法推向市场,提高存活率和患者的生活质量。
{"title":"Advances in the approaches used to repurpose drugs for neuroblastoma.","authors":"Marta Miera-Maluenda,María Pérez-Torres,Adriana Mañas,Alba Rubio-San-Simón,Maria Butjosa-Espín,Paula Ruiz-Duran,Jose A Seoane,Lucas Moreno,Miguel F Segura","doi":"10.1080/17460441.2024.2402413","DOIUrl":"https://doi.org/10.1080/17460441.2024.2402413","url":null,"abstract":"INTRODUCTIONNeuroblastoma (NB) remains a challenging pediatric malignancy with limited treatment options, particularly for high-risk cases. Drug repurposing offers a convenient and cost-effective strategy for treating rare diseases like NB. Using existing drugs with known safety profiles accelerates the availability of new treatments, reduces development costs, and mitigates risks, offering hope for improved patient outcomes in challenging conditions.AREAS COVEREDThis review provides an overview of the advances in approaches used to repurpose drugs for NB therapy. The authors discuss strategies employed in drug repurposing, including computational and experimental methods, and rational drug design, highlighting key examples of repurposed drugs with promising clinical results. Additionally, the authors examine the challenges and opportunities associated with drug repurposing in NB and discuss future directions and potential areas for further research.EXPERT OPINIONThe fact that only one new drug has been approved in the last 30 years for the treatment of neuroblastoma plus a significant proportion of high-risk NB patients that remain uncurable, evidences the need for new fast and cost-effective alternatives. Drug repurposing may accelerate the treatment development process while reducing expenses and risks. This approach can swiftly bring effective NB therapies to market, enhancing survival rates and patient quality of life.","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":"121 1","pages":"1-11"},"PeriodicalIF":6.3,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142221469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. 广谱冠状病毒抗病毒药物研发的经验教训。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-07-30 DOI: 10.1080/17460441.2024.2385598
Andrew A Bolinger, Jun Li, Xuping Xie, Hongmin Li, Jia Zhou

Introduction: Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality.

Areas covered: The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs.

Expert opinion: Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.

导言:高致病性冠状病毒(CoVs),如严重急性呼吸系统综合征冠状病毒(SARS-CoV)、中东呼吸系统综合征冠状病毒(MERS-CoV)以及导致 COVID-19 大流行的最新 SARS-CoV-2 在过去二十年中对人类构成了重大威胁。这些 CoV 引起了从无症状到严重窘迫综合征(ARDS)等多种临床表现,导致了高发病率和高死亡率:在 COVID-19 大流行的推动下,抗病毒药物研发取得了突飞猛进的发展,这使人们重新认识到开发有效治疗各种 CoV 的药物势在必行。本视角讨论了针对病毒非结构蛋白、结构蛋白、药物再利用和组合方法开发抗 CoV 抗病毒药物的策略和经验教训:从大流行病中汲取的教训表明,缺乏高效的广谱抗病毒药物会增加公共卫生系统面对高致病性 CoV 潜在攻击的脆弱性。如果没有有效和有针对性的治疗方法,新型 CoV 的快速和持续传播会带来毁灭性后果。优先有效开发广谱抗病毒药物对于增强公共卫生系统的复原力和减轻未来高致病性 CoV 的潜在影响至关重要。
{"title":"Lessons learnt from broad-spectrum coronavirus antiviral drug discovery.","authors":"Andrew A Bolinger, Jun Li, Xuping Xie, Hongmin Li, Jia Zhou","doi":"10.1080/17460441.2024.2385598","DOIUrl":"10.1080/17460441.2024.2385598","url":null,"abstract":"<p><strong>Introduction: </strong>Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality.</p><p><strong>Areas covered: </strong>The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs.</p><p><strong>Expert opinion: </strong>Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1023-1041"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery. 固定人工膜(IAM)色谱法在药物发现中应用的最新进展。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-07-03 DOI: 10.1080/17460441.2024.2374409
Fotios Tsopelas, Theodosia Vallianatou, Anna Tsantili-Kakoulidou

Introduction: Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements.

Areas covered: Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented.

Expert opinion: IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.

简介固定化人工膜(IAM)色谱法广泛应用于药物发现的许多方面。它采用含有磷脂的固定相,将模拟生物膜与快速测量相结合:讨论了 IAM 固定相、色谱条件和基本保留机制方面的进展。概述了 IAM 色谱法在模拟渗透性和药物-膜相互作用方面的潜力,以及它在估算药代动力学特性和毒性终点(包括生态毒性)方面的用途。介绍了为构建 IAM 保留因子预测模型所做的努力:IAM 色谱法是介于分离和结合之间的一种方法,其应用范围已从渗透性研究扩展到涉及组织结合的过程。大多数基于 IAM 的渗透性模型都是包含额外分子描述因子的混合模型,而对于药代动力学特性和与非靶点结合的估算,IAM 保留因子则与其他生物模拟特性相结合。不过,要将 IAM 纳入常规药物发现方案,应开发出可靠的 IAM 预测模型,并在相关软件中实施,以便将其用于虚拟筛选和新分子设计。相反,用不同的磷脂或混合单体制备新的 IAM 色谱柱则可提高灵活性,并有可能根据目标特性调整条件。
{"title":"Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery.","authors":"Fotios Tsopelas, Theodosia Vallianatou, Anna Tsantili-Kakoulidou","doi":"10.1080/17460441.2024.2374409","DOIUrl":"10.1080/17460441.2024.2374409","url":null,"abstract":"<p><strong>Introduction: </strong>Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements.</p><p><strong>Areas covered: </strong>Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented.</p><p><strong>Expert opinion: </strong>IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1087-1098"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitors and PROTACs of CDK2: challenges and opportunities. CDK2 的抑制剂和 PROTACs:挑战与机遇。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-07-12 DOI: 10.1080/17460441.2024.2376655
Yangjie Zeng, Xiaodong Ren, Pengyao Jin, Zhida Fan, Mengguang Liu, Yali Zhang, Linzhao Li, Ming Zhuo, Jubo Wang, Zhiyu Li, Min Wu

Introduction: Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors.

Area covered: This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments.

Expert opinion: Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.

导言:大量证据表明,CDK2-细胞周期蛋白 A/E 复合物的过度表达会破坏正常的细胞周期调控,导致癌细胞失控增殖。因此,CDK2 已成为一种很有前景的癌症治疗靶点。近年来,对 CDK2 催化位点和异位口袋结构的深入研究为开发更有效的临床候选 CDK2 抑制剂提供了显著的机会:本文回顾了已进入临床试验的最新 CDK2 抑制剂,并讨论了近年来最有前景的新型临床前 CDK2 抑制剂的设计和发现。此外,文章还总结了异位CDK2抑制剂和CDK2靶向PROTACs的开发情况。综述包括抑制剂和 PROTAC 的设计策略、结构-活性关系以及体外和体内生物学评估:尽管做了大量努力,但由于选择性差和临床观察到的毒性,CDK2 抑制剂尚未获得 FDA 批准上市。未来的研究必须优先优化 CDK2 抑制剂和 PROTACs 的选择性、药效和药代动力学。此外,探索将 CDK2 抑制剂与其他靶向药物相结合的联合疗法,或设计多靶点抑制剂,为推进癌症治疗策略带来了巨大希望。
{"title":"Inhibitors and PROTACs of CDK2: challenges and opportunities.","authors":"Yangjie Zeng, Xiaodong Ren, Pengyao Jin, Zhida Fan, Mengguang Liu, Yali Zhang, Linzhao Li, Ming Zhuo, Jubo Wang, Zhiyu Li, Min Wu","doi":"10.1080/17460441.2024.2376655","DOIUrl":"10.1080/17460441.2024.2376655","url":null,"abstract":"<p><strong>Introduction: </strong>Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors.</p><p><strong>Area covered: </strong>This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments.</p><p><strong>Expert opinion: </strong>Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1125-1148"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative drug discovery strategies in epilepsy: integrating next-generation syndrome-specific mouse models to address pharmacoresistance and epileptogenesis. 癫痫的创新药物发现策略:整合下一代综合征特异性小鼠模型,解决抗药性和癫痫发生问题。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-07-29 DOI: 10.1080/17460441.2024.2384455
Melissa Barker-Haliski, Nicole A Hawkins

Introduction: Although there are numerous treatment options already available for epilepsy, over 30% of patients remain resistant to these antiseizure medications (ASMs). Historically, ASM discovery has relied on the demonstration of efficacy through the use of 'traditional' acute in vivo seizure models (e.g. maximal electroshock, subcutaneous pentylenetetrazol, and kindling). However, advances in genetic sequencing technologies and remaining medical needs for people with treatment-resistant epilepsy or special patient populations have encouraged recent efforts to identify novel compounds in syndrome-specific models of epilepsy. Syndrome-specific models, including Scn1a variant models of Dravet syndrome and APP/PS1 mice associated with familial early-onset Alzheimer's disease, have already led to the discovery of two mechanistically novel treatments for developmental and epileptic encephalopathies (DEEs), namely cannabidiol and soticlestat, respectively.

Areas covered: In this review, the authors discuss how it is likely that next-generation drug discovery efforts for epilepsy will more comprehensively integrate syndrome-specific epilepsy models into early drug discovery providing the reader with their expert perspectives.

Expert opinion: The percentage of patients with pharmacoresistant epilepsy has remained unchanged despite over 30 marketed ASMs. Consequently, there is a high unmet need to reinvent and revise discovery strategies to more effectively address the remaining needs of patients with specific epilepsy syndromes, including drug-resistant epilepsy and DEEs.

简介:尽管目前已有多种治疗癫痫的方法,但仍有超过 30% 的患者对这些抗癫痫药物(ASMs)产生抗药性。抗癫痫药物的发现历来依赖于使用 "传统的 "急性体内癫痫发作模型(如最大电击、皮下注射戊四唑和点燃)来证明疗效。然而,基因测序技术的进步以及抗药性癫痫患者或特殊患者群体仍然存在的医疗需求,鼓励了最近在癫痫综合征特异性模型中发现新型化合物的努力。综合征特异性模型,包括与家族性早发性阿尔茨海默病相关的德拉韦综合征Scn1a变体模型和APP/PS1小鼠,已经发现了两种治疗发育性和癫痫性脑病(DEEs)的机制新药,即大麻二酚和索替司他:在这篇综述中,作者讨论了下一代癫痫药物发现工作将如何更全面地将特定综合征癫痫模型纳入早期药物发现,并向读者提供了他们的专家观点:尽管已有 30 多种 ASM 上市,但耐药癫痫患者的比例一直未变。因此,重塑和修订药物研发策略以更有效地满足特定癫痫综合征(包括耐药癫痫和DEEs)患者的剩余需求的需求尚未得到满足。
{"title":"Innovative drug discovery strategies in epilepsy: integrating next-generation syndrome-specific mouse models to address pharmacoresistance and epileptogenesis.","authors":"Melissa Barker-Haliski, Nicole A Hawkins","doi":"10.1080/17460441.2024.2384455","DOIUrl":"10.1080/17460441.2024.2384455","url":null,"abstract":"<p><strong>Introduction: </strong>Although there are numerous treatment options already available for epilepsy, over 30% of patients remain resistant to these antiseizure medications (ASMs). Historically, ASM discovery has relied on the demonstration of efficacy through the use of 'traditional' acute <i>in</i> <i>vivo</i> seizure models (e.g. maximal electroshock, subcutaneous pentylenetetrazol, and kindling). However, advances in genetic sequencing technologies and remaining medical needs for people with treatment-resistant epilepsy or special patient populations have encouraged recent efforts to identify novel compounds in syndrome-specific models of epilepsy. Syndrome-specific models, including <i>Scn1a</i> variant models of Dravet syndrome and APP/PS1 mice associated with familial early-onset Alzheimer's disease, have already led to the discovery of two mechanistically novel treatments for developmental and epileptic encephalopathies (DEEs), namely cannabidiol and soticlestat, respectively.</p><p><strong>Areas covered: </strong>In this review, the authors discuss how it is likely that next-generation drug discovery efforts for epilepsy will more comprehensively integrate syndrome-specific epilepsy models into early drug discovery providing the reader with their expert perspectives.</p><p><strong>Expert opinion: </strong>The percentage of patients with pharmacoresistant epilepsy has remained unchanged despite over 30 marketed ASMs. Consequently, there is a high unmet need to reinvent and revise discovery strategies to more effectively address the remaining needs of patients with specific epilepsy syndromes, including drug-resistant epilepsy and DEEs.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1099-1113"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The value of protein allostery in rational anticancer drug design: an update. 蛋白质异构在合理抗癌药物设计中的价值:最新进展。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-07-28 DOI: 10.1080/17460441.2024.2384467
Ruth Nussinov, Hyunbum Jang

Introduction: Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies.

Areas covered: The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject.

Expert opinion: To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.

简介异构药物很有优势。然而,它们仍然面临着各种障碍,包括确定能有效改变活性位点的异构位点。目前的策略主要集中在确定异构配体将与活性位点对接的远离活性位点的口袋,而没有考虑到活性位点究竟是如何改变的。有利的异构抑制剂会与活性位点附近的位点对接,并遵循自然规律,模仿各种异构调节策略:以下文章强调了异构在药物设计中的巨大意义,介绍了当前的异构策略,特别是提出了未来的发展方向。文章最后提出了作者对这一主题的专家观点:要想在异构抑制剂开发中选择一个富有成效的途径,我们应该向大自然学习。目前,有用的策略都遵循这一路线。例如,考虑一下在缓解自身抑制和利用异构降解剂时所利用的机制。模仿补偿性突变或拯救性突变也可能属于这一范畴,捕捉支架蛋白特征的分子粘合剂也是如此。捕捉自然并创造性地调整其模仿方式,可以继续创新异构药物的发现。
{"title":"The value of protein allostery in rational anticancer drug design: an update.","authors":"Ruth Nussinov, Hyunbum Jang","doi":"10.1080/17460441.2024.2384467","DOIUrl":"10.1080/17460441.2024.2384467","url":null,"abstract":"<p><strong>Introduction: </strong>Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies.</p><p><strong>Areas covered: </strong>The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject.</p><p><strong>Expert opinion: </strong>To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1071-1085"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11390313/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery. 多药理学预测:全面预测小分子选择性以降低药物研发风险的漫长之路。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-07-14 DOI: 10.1080/17460441.2024.2376643
Leticia Manen-Freixa, Albert A Antolin

Introduction: Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.

Areas covered: This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.

Expert opinion: Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.

简介:小分子药物通常与多个靶点结合,这种行为被称为多药理作用。预测多药理作用对药物发现至关重要,因为未知的非靶点会影响药物的安全性和有效性,从而严重影响药物发现的成功率。遗憾的是,评估选择性的实验方法存在很大的局限性,药物在临床上仍会因未预期的非靶点而失败。计算方法是预测多药理作用的一种具有成本效益的补充方法:本综述旨在全面概述多药理预测的现状,并讨论其优势和局限性,涵盖经典的化学信息学方法和生物信息学方法。作者回顾了现有的数据源,并密切关注其不同的覆盖范围。然后,作者根据所利用的数据类型,通过精选实例对主要算法进行了讨论:过去几十年来,多药理学预测取得了令人瞩目的进展,为确定许多非靶点做出了贡献。然而,数据的不完整性目前限制了大多数方法全面预测选择性。此外,我们在模型评估方面达成的一致意见有限,这对确定最佳算法提出了挑战--目前这些算法在未来的实际应用中表现一般。尽管存在这些局限性,但多学科大数据和人工智能的指数级增长为更好地进行多药理学预测和降低药物发现风险带来了巨大潜力。
{"title":"Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery.","authors":"Leticia Manen-Freixa, Albert A Antolin","doi":"10.1080/17460441.2024.2376643","DOIUrl":"10.1080/17460441.2024.2376643","url":null,"abstract":"<p><strong>Introduction: </strong>Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.</p><p><strong>Areas covered: </strong>This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.</p><p><strong>Expert opinion: </strong>Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1043-1069"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies. 多发性硬化症药物研发中与动物模型结合使用的补充策略:根据再髓鞘化策略的需要对候选药物进行临床前验证。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-01 Epub Date: 2024-07-22 DOI: 10.1080/17460441.2024.2382180
Imane Charmarke-Askar, Caroline Spenlé, Dominique Bagnard

Introduction: The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs.

Areas covered: In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation.

Expert opinion: None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.

导言:寻求新型多发性硬化症疗法的重点是促进髓鞘再形成和神经保护,这需要创新的药物设计范例和稳健的临床前验证方法,以确保高效的临床转化。新药作用机制的复杂性加强了对扎实的生物学验证的需求,试图解决所有可能的隐患和偏差,以获得高效安全的药物:在这篇综述中,作者介绍了不同的体外和体内模型,这些模型应被用于创建一种综合方法来进行新药的临床前验证,包括对作用机制的评估。其中包括二维、三维体外模型和动物模型,以确定在药物筛选和疗效验证的全过程中如何合理使用:专家意见:目前可用的检测方法中,没有一种能同时对抗炎药物、免疫调节剂或再髓鞘药物进行充分可靠的评估。因此,学术界、业界和监管机构的共同努力对于建立标准化方案、验证新方法以及将临床前研究结果转化为有临床意义的结果至关重要。
{"title":"Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies.","authors":"Imane Charmarke-Askar, Caroline Spenlé, Dominique Bagnard","doi":"10.1080/17460441.2024.2382180","DOIUrl":"10.1080/17460441.2024.2382180","url":null,"abstract":"<p><strong>Introduction: </strong>The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs.</p><p><strong>Areas covered: </strong>In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation.</p><p><strong>Expert opinion: </strong>None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":" ","pages":"1115-1124"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Expert Opinion on Drug Discovery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1