首页 > 最新文献

Expert Opinion on Drug Discovery最新文献

英文 中文
Targeting polo-like kinase 1: advancements and future directions in anti-cancer drug discovery. 靶向多聚样激酶 1:抗癌药物研发的进展与未来方向。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-29 DOI: 10.1080/17460441.2024.2385603
Monika Raab, Sven Becker, Mourad Sanhaji
{"title":"Targeting polo-like kinase 1: advancements and future directions in anti-cancer drug discovery.","authors":"Monika Raab, Sven Becker, Mourad Sanhaji","doi":"10.1080/17460441.2024.2385603","DOIUrl":"https://doi.org/10.1080/17460441.2024.2385603","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The value of protein allostery in rational anticancer drug design: an update. 蛋白质异构在合理抗癌药物设计中的价值:最新进展。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-28 DOI: 10.1080/17460441.2024.2384467
Ruth Nussinov, Hyunbum Jang

Introduction: Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies.

Areas covered: The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject.

Expert opinion: To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.

简介异构药物很有优势。然而,它们仍然面临着各种障碍,包括确定能有效改变活性位点的异构位点。目前的策略主要集中在确定异构配体将与活性位点对接的远离活性位点的口袋,而没有考虑到活性位点究竟是如何改变的。有利的异构抑制剂会与活性位点附近的位点对接,并遵循自然规律,模仿各种异构调节策略:以下文章强调了异构在药物设计中的巨大意义,介绍了当前的异构策略,特别是提出了未来的发展方向。文章最后提出了作者对这一主题的专家观点:要想在异构抑制剂开发中选择一个富有成效的途径,我们应该向大自然学习。目前,有用的策略都遵循这一路线。例如,考虑一下在缓解自身抑制和利用异构降解剂时所利用的机制。模仿补偿性突变或拯救性突变也可能属于这一范畴,捕捉支架蛋白特征的分子粘合剂也是如此。捕捉自然并创造性地调整其模仿方式,可以继续创新异构药物的发现。
{"title":"The value of protein allostery in rational anticancer drug design: an update.","authors":"Ruth Nussinov, Hyunbum Jang","doi":"10.1080/17460441.2024.2384467","DOIUrl":"https://doi.org/10.1080/17460441.2024.2384467","url":null,"abstract":"<p><strong>Introduction: </strong>Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies.</p><p><strong>Areas covered: </strong>The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject.</p><p><strong>Expert opinion: </strong>To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141787744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies. 多发性硬化症药物研发中与动物模型结合使用的补充策略:根据再髓鞘化策略的需要对候选药物进行临床前验证。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-22 DOI: 10.1080/17460441.2024.2382180
Imane Charmarke-Askar, Caroline Spenlé, Dominique Bagnard

Introduction: The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs.

Areas covered: In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation.

Expert opinion: None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.

导言:寻求新型多发性硬化症疗法的重点是促进髓鞘再形成和神经保护,这需要创新的药物设计范例和稳健的临床前验证方法,以确保高效的临床转化。新药作用机制的复杂性加强了对扎实的生物学验证的需求,试图解决所有可能的隐患和偏差,以获得高效安全的药物:在这篇综述中,作者介绍了不同的体外和体内模型,这些模型应被用于创建一种综合方法来进行新药的临床前验证,包括对作用机制的评估。其中包括二维、三维体外模型和动物模型,以确定在药物筛选和疗效验证的全过程中如何合理使用:专家意见:目前可用的检测方法中,没有一种能同时对抗炎药物、免疫调节剂或再髓鞘药物进行充分可靠的评估。因此,学术界、业界和监管机构的共同努力对于建立标准化方案、验证新方法以及将临床前研究结果转化为有临床意义的结果至关重要。
{"title":"Complementary strategies to be used in conjunction with animal models for multiple sclerosis drug discovery: adapting preclinical validation of drug candidates to the need of remyelinating strategies.","authors":"Imane Charmarke-Askar, Caroline Spenlé, Dominique Bagnard","doi":"10.1080/17460441.2024.2382180","DOIUrl":"https://doi.org/10.1080/17460441.2024.2382180","url":null,"abstract":"<p><strong>Introduction: </strong>The quest for novel MS therapies focuses on promoting remyelination and neuroprotection, necessitating innovative drug design paradigms and robust preclinical validation methods to ensure efficient clinical translation. The complexity of new drugs action mechanisms is strengthening the need for solid biological validation attempting to address all possible pitfalls and biases precluding access to efficient and safe drugs.</p><p><strong>Areas covered: </strong>In this review, the authors describe the different in vitro and in vivo models that should be used to create an integrated approach for preclinical validation of novel drugs, including the evaluation of the action mechanism. This encompasses 2D, 3D in vitro models and animal models presented in such a way to define the appropriate use in a global process of drug screening and hit validation.</p><p><strong>Expert opinion: </strong>None of the current available tests allow the concomitant evaluation of anti-inflammatory, immune regulators or remyelinating agents with sufficient reliability. Consequently, the collaborative efforts of academia, industry, and regulatory agencies are essential for establishing standardized protocols, validating novel methodologies, and translating preclinical findings into clinically meaningful outcomes.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What impact does tautomerism have on drug discovery and development? 同分异构对药物研发有何影响?
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-16 DOI: 10.1080/17460441.2024.2379873
Devendra K Dhaked, Marc C Nicklaus
{"title":"What impact does tautomerism have on drug discovery and development?","authors":"Devendra K Dhaked, Marc C Nicklaus","doi":"10.1080/17460441.2024.2379873","DOIUrl":"https://doi.org/10.1080/17460441.2024.2379873","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery. 多药理学预测:全面预测小分子选择性以降低药物研发风险的漫长之路。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-14 DOI: 10.1080/17460441.2024.2376643
Leticia Manen-Freixa, Albert A Antolin

Introduction: Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.

Areas covered: This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.

Expert opinion: Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.

简介:小分子药物通常与多个靶点结合,这种行为被称为多药理作用。预测多药理作用对药物发现至关重要,因为未知的非靶点会影响药物的安全性和有效性,从而严重影响药物发现的成功率。遗憾的是,评估选择性的实验方法存在很大的局限性,药物在临床上仍会因未预期的非靶点而失败。计算方法是预测多药理作用的一种具有成本效益的补充方法:本综述旨在全面概述多药理预测的现状,并讨论其优势和局限性,涵盖经典的化学信息学方法和生物信息学方法。作者回顾了现有的数据源,并密切关注其不同的覆盖范围。然后,作者根据所利用的数据类型,通过精选实例对主要算法进行了讨论:过去几十年来,多药理学预测取得了令人瞩目的进展,为确定许多非靶点做出了贡献。然而,数据的不完整性目前限制了大多数方法全面预测选择性。此外,我们在模型评估方面达成的一致意见有限,这对确定最佳算法提出了挑战--目前这些算法在未来的实际应用中表现一般。尽管存在这些局限性,但多学科大数据和人工智能的指数级增长为更好地进行多药理学预测和降低药物发现风险带来了巨大潜力。
{"title":"Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery.","authors":"Leticia Manen-Freixa, Albert A Antolin","doi":"10.1080/17460441.2024.2376643","DOIUrl":"https://doi.org/10.1080/17460441.2024.2376643","url":null,"abstract":"<p><strong>Introduction: </strong>Small molecules often bind to multiple targets, a behavior termed polypharmacology. Anticipating polypharmacology is essential for drug discovery since unknown off-targets can modulate safety and efficacy - profoundly affecting drug discovery success. Unfortunately, experimental methods to assess selectivity present significant limitations and drugs still fail in the clinic due to unanticipated off-targets. Computational methods are a cost-effective, complementary approach to predict polypharmacology.</p><p><strong>Areas covered: </strong>This review aims to provide a comprehensive overview of the state of polypharmacology prediction and discuss its strengths and limitations, covering both classical cheminformatics methods and bioinformatic approaches. The authors review available data sources, paying close attention to their different coverage. The authors then discuss major algorithms grouped by the types of data that they exploit using selected examples.</p><p><strong>Expert opinion: </strong>Polypharmacology prediction has made impressive progress over the last decades and contributed to identify many off-targets. However, data incompleteness currently limits most approaches to comprehensively predict selectivity. Moreover, our limited agreement on model assessment challenges the identification of the best algorithms - which at present show modest performance in prospective real-world applications. Despite these limitations, the exponential increase of multidisciplinary Big Data and AI hold much potential to better polypharmacology prediction and de-risk drug discovery.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitors and PROTACs of CDK2: challenges and opportunities. CDK2 的抑制剂和 PROTACs:挑战与机遇。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-12 DOI: 10.1080/17460441.2024.2376655
Yangjie Zeng, Xiaodong Ren, Pengyao Jin, Zhida Fan, Mengguang Liu, Yali Zhang, Linzhao Li, Ming Zhuo, Jubo Wang, Zhiyu Li, Min Wu

Introduction: Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors.

Area covered: This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments.

Expert opinion: Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.

导言:大量证据表明,CDK2-细胞周期蛋白 A/E 复合物的过度表达会破坏正常的细胞周期调控,导致癌细胞失控增殖。因此,CDK2 已成为一种很有前景的癌症治疗靶点。近年来,对 CDK2 催化位点和异位口袋结构的深入研究为开发更有效的临床候选 CDK2 抑制剂提供了显著的机会:本文回顾了已进入临床试验的最新 CDK2 抑制剂,并讨论了近年来最有前景的新型临床前 CDK2 抑制剂的设计和发现。此外,文章还总结了异位CDK2抑制剂和CDK2靶向PROTACs的开发情况。综述包括抑制剂和 PROTAC 的设计策略、结构-活性关系以及体外和体内生物学评估:尽管做了大量努力,但由于选择性差和临床观察到的毒性,CDK2 抑制剂尚未获得 FDA 批准上市。未来的研究必须优先优化 CDK2 抑制剂和 PROTACs 的选择性、药效和药代动力学。此外,探索将 CDK2 抑制剂与其他靶向药物相结合的联合疗法,或设计多靶点抑制剂,为推进癌症治疗策略带来了巨大希望。
{"title":"Inhibitors and PROTACs of CDK2: challenges and opportunities.","authors":"Yangjie Zeng, Xiaodong Ren, Pengyao Jin, Zhida Fan, Mengguang Liu, Yali Zhang, Linzhao Li, Ming Zhuo, Jubo Wang, Zhiyu Li, Min Wu","doi":"10.1080/17460441.2024.2376655","DOIUrl":"https://doi.org/10.1080/17460441.2024.2376655","url":null,"abstract":"<p><strong>Introduction: </strong>Abundant evidence suggests that the overexpression of CDK2-cyclin A/E complex disrupts normal cell cycle regulation, leading to uncontrolled proliferation of cancer cells. Thus, CDK2 has become a promising therapeutic target for cancer treatment. In recent years, insights into the structures of the CDK2 catalytic site and allosteric pockets have provided notable opportunities for developing more effective clinical candidates of CDK2 inhibitors.</p><p><strong>Area covered: </strong>This article reviews the latest CDK2 inhibitors that have entered clinical trials and discusses the design and discovery of the most promising new preclinical CDK2 inhibitors in recent years. Additionally, it summarizes the development of allosteric CDK2 inhibitors and CDK2-targeting PROTACs. The review encompasses strategies for inhibitor and PROTAC design, structure-activity relationships, as well as in vitro and in vivo biological assessments.</p><p><strong>Expert opinion: </strong>Despite considerable effort, no CDK2 inhibitor has yet received FDA approval for marketing due to poor selectivity and observed toxicity in clinical settings. Future research must prioritize the optimization of the selectivity, potency, and pharmacokinetics of CDK2 inhibitors and PROTACs. Moreover, exploring combination therapies incorporating CDK2 inhibitors with other targeted agents, or the design of multi-target inhibitors, presents significant promise for advancing cancer treatment strategies.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How to correctly develop q-RASAR models for predictive cheminformatics. 如何正确开发用于预测化学信息学的 q-RASAR 模型。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-05 DOI: 10.1080/17460441.2024.2376651
Arkaprava Banerjee, Kunal Roy
{"title":"How to correctly develop q-RASAR models for predictive cheminformatics.","authors":"Arkaprava Banerjee, Kunal Roy","doi":"10.1080/17460441.2024.2376651","DOIUrl":"https://doi.org/10.1080/17460441.2024.2376651","url":null,"abstract":"","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery. 固定人工膜(IAM)色谱法在药物发现中应用的最新进展。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-03 DOI: 10.1080/17460441.2024.2374409
Fotios Tsopelas, Theodosia Vallianatou, Anna Tsantili-Kakoulidou

Introduction: Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements.

Areas covered: Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented.

Expert opinion: IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.

简介固定化人工膜(IAM)色谱法广泛应用于药物发现的许多方面。它采用含有磷脂的固定相,将模拟生物膜与快速测量相结合:讨论了 IAM 固定相、色谱条件和基本保留机制方面的进展。概述了 IAM 色谱法在模拟渗透性和药物-膜相互作用方面的潜力,以及它在估算药代动力学特性和毒性终点(包括生态毒性)方面的用途。介绍了为构建 IAM 保留因子预测模型所做的努力:IAM 色谱法是介于分离和结合之间的一种方法,其应用范围已从渗透性研究扩展到涉及组织结合的过程。大多数基于 IAM 的渗透性模型都是包含额外分子描述因子的混合模型,而对于药代动力学特性和与非靶点结合的估算,IAM 保留因子则与其他生物模拟特性相结合。不过,要将 IAM 纳入常规药物发现方案,应开发出可靠的 IAM 预测模型,并在相关软件中实施,以便将其用于虚拟筛选和新分子设计。相反,用不同的磷脂或混合单体制备新的 IAM 色谱柱则可提高灵活性,并有可能根据目标特性调整条件。
{"title":"Recent developments in the application of immobilized artificial membrane (IAM) chromatography to drug discovery.","authors":"Fotios Tsopelas, Theodosia Vallianatou, Anna Tsantili-Kakoulidou","doi":"10.1080/17460441.2024.2374409","DOIUrl":"https://doi.org/10.1080/17460441.2024.2374409","url":null,"abstract":"<p><strong>Introduction: </strong>Immobilized artificial membrane (IAM) chromatography is widely used in many aspects of drug discovery. It employs stationary phases, which contain phospholipids combining simulation of biological membranes with rapid measurements.</p><p><strong>Areas covered: </strong>Advances in IAM stationary phases, chromatographic conditions and the underlying retention mechanism are discussed. The potential of IAM chromatography to model permeability and drug-membrane interactions as well as its use to estimate pharmacokinetic properties and toxicity endpoints including ecotoxicity, is outlined. Efforts to construct models for prediction IAM retention factors are presented.</p><p><strong>Expert opinion: </strong>IAM chromatography, as a border case between partitioning and binding, has broadened its application from permeability studies to encompass processes involving tissue binding. Most IAM-based permeability models are hybrid models incorporating additional molecular descriptors, while for the estimation of pharmacokinetic properties and binding to off targets, IAM retention is combined with other biomimetic properties. However, for its integration into routine drug discovery protocols, reliable IAM prediction models implemented in relevant software should be developed, to enable its use in virtual screening and the design of new molecules. Conversely, preparation of new IAM columns with different phospholipids or mixed monomers offers enhanced flexibility and the potential to tailor the conditions according to the target property.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using induced pluripotent stem cells for drug discovery in arrhythmias. 利用诱导多能干细胞发现治疗心律失常的药物。
IF 6 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-07-01 Epub Date: 2024-06-02 DOI: 10.1080/17460441.2024.2360420
Diogo Teles, Barry M Fine

Introduction: Arrhythmias are disturbances in the normal rhythm of the heart and account for significant cardiovascular morbidity and mortality worldwide. Historically, preclinical research has been anchored in animal models, though physiological differences between these models and humans have limited their clinical translation. The discovery of human induced pluripotent stem cells (iPSC) and subsequent differentiation into cardiomyocyte has led to the development of new in vitro models of arrhythmias with the hope of a new pathway for both exploration of pathogenic variants and novel therapeutic discovery.

Areas covered: The authors describe the latest two-dimensional in vitro models of arrhythmias, several examples of the use of these models in drug development, and the role of gene editing when modeling diseases. They conclude by discussing the use of three-dimensional models in the study of arrythmias and the integration of computational technologies and machine learning with experimental technologies.

Expert opinion: Human iPSC-derived cardiomyocytes models have significant potential to augment disease modeling, drug discovery, and toxicity studies in preclinical development. While there is initial success with modeling arrhythmias, the field is still in its nascency and requires advances in maturation, cellular diversity, and readouts to emulate arrhythmias more accurately.

导言:心律失常是正常心律的紊乱,是全球心血管疾病发病率和死亡率的重要原因。临床前研究历来以动物模型为基础,但这些模型与人类的生理差异限制了其临床转化。人类诱导多能干细胞(iPSC)的发现以及随后向心肌细胞的分化,导致了新的心律失常体外模型的发展,有望为探索致病变异和发现新疗法提供新的途径:作者介绍了最新的心律失常二维体外模型、将这些模型用于药物开发的几个实例以及基因编辑在疾病建模中的作用。最后,他们讨论了三维模型在心律失常研究中的应用,以及计算技术和机器学习与实验技术的整合:人类 iPSC 衍生的心肌细胞模型在临床前开发的疾病建模、药物发现和毒性研究方面具有巨大的潜力。虽然在心律失常建模方面取得了初步成功,但该领域仍处于起步阶段,需要在成熟度、细胞多样性和读数方面取得进展,才能更准确地模拟心律失常。
{"title":"Using induced pluripotent stem cells for drug discovery in arrhythmias.","authors":"Diogo Teles, Barry M Fine","doi":"10.1080/17460441.2024.2360420","DOIUrl":"10.1080/17460441.2024.2360420","url":null,"abstract":"<p><strong>Introduction: </strong>Arrhythmias are disturbances in the normal rhythm of the heart and account for significant cardiovascular morbidity and mortality worldwide. Historically, preclinical research has been anchored in animal models, though physiological differences between these models and humans have limited their clinical translation. The discovery of human induced pluripotent stem cells (iPSC) and subsequent differentiation into cardiomyocyte has led to the development of new <i>in vitro</i> models of arrhythmias with the hope of a new pathway for both exploration of pathogenic variants and novel therapeutic discovery.</p><p><strong>Areas covered: </strong>The authors describe the latest two-dimensional <i>in vitro</i> models of arrhythmias, several examples of the use of these models in drug development, and the role of gene editing when modeling diseases. They conclude by discussing the use of three-dimensional models in the study of arrythmias and the integration of computational technologies and machine learning with experimental technologies.</p><p><strong>Expert opinion: </strong>Human iPSC-derived cardiomyocytes models have significant potential to augment disease modeling, drug discovery, and toxicity studies in preclinical development. While there is initial success with modeling arrhythmias, the field is still in its nascency and requires advances in maturation, cellular diversity, and readouts to emulate arrhythmias more accurately.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227103/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies for the design of analogs of auranofin endowed with anticancer potential. 设计具有抗癌潜力的乌拉诺芬类似物的策略。
IF 6 2区 医学 Q1 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2024-07-01 Epub Date: 2024-05-27 DOI: 10.1080/17460441.2024.2355329
Valentina Vitali, Lara Massai, Luigi Messori

Introduction: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.

Areas covered: This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed.

Expert opinion: The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.

简介:奥拉诺芬(Auranofin,AF)是一种获得美国食品及药物管理局批准的成熟的抗关节炎金药,目前正通过药物再利用的方式对其各种治疗适应症进行重新评估。作为一种潜在的抗癌药物,AF 已显示出巨大的前景,并已获准用于几项癌症临床试验。人们对 AF 的重新关注引发了对呋喃唑酮类似物的设计、制备和生物学评价的广泛研究,这些类似物的药理特性可能比母体药物更好:本文综述了对 AF 支架进行化学修饰的策略。在过去的 20 年中,已经制备了几种呋喃唑酮类似物并对其进行了表征,将其应用于癌症治疗领域。文章提出并讨论了一些新出现的结构-功能关系:近年来,对呋喃唑酮支架进行化学修饰一直是研究的热点,通过这种策略制备并评估了多种呋喃唑酮类似物。碘金诺芬就是一个特别有前景的例子。有了一组 AF 衍生物的同源生物学数据,就可以提出一些初步的结构-功能关系,这可能有助于设计和合成用于癌症治疗的新的和更好的 AF 类似物。
{"title":"Strategies for the design of analogs of auranofin endowed with anticancer potential.","authors":"Valentina Vitali, Lara Massai, Luigi Messori","doi":"10.1080/17460441.2024.2355329","DOIUrl":"10.1080/17460441.2024.2355329","url":null,"abstract":"<p><strong>Introduction: </strong>Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.</p><p><strong>Areas covered: </strong>This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed.</p><p><strong>Expert opinion: </strong>The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.</p>","PeriodicalId":12267,"journal":{"name":"Expert Opinion on Drug Discovery","volume":null,"pages":null},"PeriodicalIF":6.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141156883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Expert Opinion on Drug Discovery
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1