Pub Date : 2024-10-01Epub Date: 2024-08-20DOI: 10.1007/s00221-024-06908-6
David R Temple, Sarah Pepper, Brady C Hogoboom, Lanna N Klausing, Abhishek Datta, Cody Burkhart, Torin K Clark
Galvanic Vestibular Stimulation (GVS) has been proposed as an alternative display modality to relay information without increasing demands on the visual or auditory sensory modalities of the wearer or in environments where those modalities cannot be used (e.g., covert night operations). We further investigated this concept with four experiments designed to test: (1) thresholds at which subjects could distinguish between different GVS current amplitudes and polarities, (2) thresholds at which different bipolar (i.e., sinusoidal waveform with current oscillating between left and right directions) current frequencies were distinguishable among room temperature, hot, cold, and windy environments, (3) effects of unipolar (i.e., sinusoidal waveform with current occurring in only the left or right direction) currents on balance performance, and (4) dual-task performance among frequency and polarity modulated GVS conditions during a concordant visual search task. Subjects reliably distinguished between current amplitudes that varied from a pedestal of ± 0.6 mA by a median of 0.03 mA (range of 0.02-0.32 mA) and between unipolar currents at a median amplitude of 0.55 mA (range of 0.32-0.83 mA). GVS frequency thresholds were robust to the environment conditions tested, with no statistical differences found. Sway and balance errors were increased with unipolar currents. GVS thresholds were not impacted by the dual-task paradigm, but the visual search scores were slightly elevated when congruently performing a polarity thresholding task. Overall findings continue to support GVS use as a display modality, but some limitations are noted, such as the use of unipolar currents under scenarios where postural control is important.
{"title":"Exploring GVS as a display modality: signal amplitude and polarity, in various environments, impacts on posture, and with dual-tasking.","authors":"David R Temple, Sarah Pepper, Brady C Hogoboom, Lanna N Klausing, Abhishek Datta, Cody Burkhart, Torin K Clark","doi":"10.1007/s00221-024-06908-6","DOIUrl":"10.1007/s00221-024-06908-6","url":null,"abstract":"<p><p>Galvanic Vestibular Stimulation (GVS) has been proposed as an alternative display modality to relay information without increasing demands on the visual or auditory sensory modalities of the wearer or in environments where those modalities cannot be used (e.g., covert night operations). We further investigated this concept with four experiments designed to test: (1) thresholds at which subjects could distinguish between different GVS current amplitudes and polarities, (2) thresholds at which different bipolar (i.e., sinusoidal waveform with current oscillating between left and right directions) current frequencies were distinguishable among room temperature, hot, cold, and windy environments, (3) effects of unipolar (i.e., sinusoidal waveform with current occurring in only the left or right direction) currents on balance performance, and (4) dual-task performance among frequency and polarity modulated GVS conditions during a concordant visual search task. Subjects reliably distinguished between current amplitudes that varied from a pedestal of ± 0.6 mA by a median of 0.03 mA (range of 0.02-0.32 mA) and between unipolar currents at a median amplitude of 0.55 mA (range of 0.32-0.83 mA). GVS frequency thresholds were robust to the environment conditions tested, with no statistical differences found. Sway and balance errors were increased with unipolar currents. GVS thresholds were not impacted by the dual-task paradigm, but the visual search scores were slightly elevated when congruently performing a polarity thresholding task. Overall findings continue to support GVS use as a display modality, but some limitations are noted, such as the use of unipolar currents under scenarios where postural control is important.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2443-2455"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-07-31DOI: 10.1007/s00221-024-06902-y
Cole King, Tessa Maze, Bethany Plakke
Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.
子宫内接触丙戊酸(VPA)这种常见的抗癫痫药物是自闭症谱系障碍(ASD)的一个风险因素。自闭症谱系障碍患者的小脑通常会发生变化,包括体积变化、回路改变和浦肯野细胞群变化。自闭症谱系障碍还表现为内侧前额叶皮层(mPFC)的变化,其中的兴奋/抑制平衡通常会发生改变。这项研究让大鼠在妊娠期暴露于高剂量的VPA,并使用集合转换任务和高架加迷宫评估大鼠成年后的认知能力和焦虑样行为。研究人员评估了 mPFC 和小脑叶 VI 和 VII(Purkinje 细胞层)中抑制性副阀素表达(PV +)神经元的数量。VPA 男性小脑 VII 小叶 I 和 II 中的 PV + 数量增加。此外,VPA 男性还减少了前脑皮质中的副发光素表达神经元数量。研究还发现,暴露于 VPA 的大鼠,无论性别如何,其第 VI 小叶中表达副发光素的浦肯野细胞数量均有所增加。在雄性大鼠中,这与一组移位任务中的维内移位受损有关。Purkinje细胞过度增殖可能是导致先前观察到的第VI小叶体积增大的原因。这些研究结果表明,小脑-额叶回路中抑制信号的改变可能是导致ASD认知障碍的原因之一。
{"title":"Altered prefrontal and cerebellar parvalbumin neuron counts are associated with cognitive changes in male rats.","authors":"Cole King, Tessa Maze, Bethany Plakke","doi":"10.1007/s00221-024-06902-y","DOIUrl":"10.1007/s00221-024-06902-y","url":null,"abstract":"<p><p>Exposure to valproic acid (VPA), a common anti-seizure medication, in utero is a risk factor for autism spectrum disorder (ASD). People with ASD often display changes in the cerebellum, including volume changes, altered circuitry, and changes in Purkinje cell populations. ASD is also characterized by changes in the medial prefrontal cortex (mPFC), where excitatory/inhibitory balance is often altered. This study exposed rats to a high dose of VPA during gestation and assessed cognition and anxiety-like behaviors during young adulthood using a set-shifting task and the elevated plus maze. Inhibitory parvalbumin-expressing (PV +) neuron counts were assessed in the mPFC and cerebellar lobules VI and VII (Purkinje cell layers), which are known to modulate cognition. VPA males had increased PV + counts in crus I and II of lobule VII. VPA males also had decreased parvalbumin-expressing neuron counts in the mPFC. It was also found that VPA-exposed rats, regardless of sex, had increased parvalbumin-expressing Purkinje cell counts in lobule VI. In males, this was associated with impaired intra-dimensional shifting on a set-shifting task. Purkinje cell over proliferation may be contributing to the previously observed increase in volume of Lobule VI. These findings suggest that altered inhibitory signaling in cerebellar-frontal circuits may contribute to the cognitive deficits that occur within ASD.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2295-2308"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141859478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-07DOI: 10.1007/s00221-024-06904-w
Kelly A Robb, Stephen D Perry
Previous research exploring the effects of tactile feedback in standing balance protocols may have generated results that misrepresent the modulatory capabilities of cutaneous afference on generating motor output responses. The neurosensory mechanism of textured foot orthoses to maximize the activation of cutaneous mechanoreceptors is through repetitive foot sole skin indentation. Thus, the purpose of this experimental protocol was to investigate muscular activity amplitude changes during the stance phase of gait, specifically when walking on level ground and when stepping onto a raised wedge, and while wearing textured foot orthoses compared to orthoses without texture. Twenty-one healthy young adults were fit to a standardized neutral running shoe and completed five level and wedged walking trials wearing both orthoses. Kinematic, kinetic and electromyography (EMG) data were recorded from eight lower limb muscles. The results of this study revealed EMG suppression of lower leg musculature during stance when walking in textured foot orthoses, and this was most pronounced when lower leg musculature is typically most active. The addition of texture in foot orthoses design, spanning the entire length of the foot sole, appears to be a clear mechanism to modulate neurosensory feedback with intent to suppress EMG of shank musculature during gait.
{"title":"The suppression of lower leg electromyography when walking in textured foot orthoses.","authors":"Kelly A Robb, Stephen D Perry","doi":"10.1007/s00221-024-06904-w","DOIUrl":"10.1007/s00221-024-06904-w","url":null,"abstract":"<p><p>Previous research exploring the effects of tactile feedback in standing balance protocols may have generated results that misrepresent the modulatory capabilities of cutaneous afference on generating motor output responses. The neurosensory mechanism of textured foot orthoses to maximize the activation of cutaneous mechanoreceptors is through repetitive foot sole skin indentation. Thus, the purpose of this experimental protocol was to investigate muscular activity amplitude changes during the stance phase of gait, specifically when walking on level ground and when stepping onto a raised wedge, and while wearing textured foot orthoses compared to orthoses without texture. Twenty-one healthy young adults were fit to a standardized neutral running shoe and completed five level and wedged walking trials wearing both orthoses. Kinematic, kinetic and electromyography (EMG) data were recorded from eight lower limb muscles. The results of this study revealed EMG suppression of lower leg musculature during stance when walking in textured foot orthoses, and this was most pronounced when lower leg musculature is typically most active. The addition of texture in foot orthoses design, spanning the entire length of the foot sole, appears to be a clear mechanism to modulate neurosensory feedback with intent to suppress EMG of shank musculature during gait.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2367-2380"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141901477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Image content is prioritized in the visual system. Faces are a paradigmatic example, receiving preferential processing along the visual pathway compared to other visual stimuli. Moreover, face prioritization manifests also in behavior. People tend to look at faces more frequently and for longer periods, and saccadic reaction times can be faster when targeting a face as opposed to a phase-scrambled control. However, it is currently not clear at which stage image content affects oculomotor planning and execution. It can be hypothesized that image content directly influences oculomotor signal generation. Alternatively, the image content could exert its influence on oculomotor planning and execution at a later stage, after the image has been processed. Here we aim to disentangle these two alternative hypotheses by measuring the frequency of saccades toward a visual target when the latter is followed by a visual transient in the central visual field. Behaviorally, this paradigm leads to a reduction in saccade frequency that happens about 90 ms after any visual transient event, also known as saccadic "inhibition". In two experiments, we measured occurrence of saccades in visually guided saccades as well as microsaccades during fixation, using face and noise-matched visual stimuli. We observed that while the reduction in saccade occurrence was similar for both stimulus types, face stimuli lead to a prolonged reduction in eye movements. Moreover, saccade kinematics were altered by both stimulus types, showing an amplitude reduction without change in peak velocity for the earliest saccades. Taken together, our experiments imply that face stimuli primarily affect the later stages of the behavioral phenomenon of saccadic "inhibition". We propose that while some stimulus features are processed at an early stage and can quickly influence eye movements, a delayed signal conveying image content information is necessary to further inhibit/delay activity in the oculomotor system to trigger eye movements.
{"title":"Saccadic \"inhibition\" unveils the late influence of image content on oculomotor programming.","authors":"Rebecca Taylor, Antimo Buonocore, Alessio Fracasso","doi":"10.1007/s00221-024-06890-z","DOIUrl":"10.1007/s00221-024-06890-z","url":null,"abstract":"<p><p>Image content is prioritized in the visual system. Faces are a paradigmatic example, receiving preferential processing along the visual pathway compared to other visual stimuli. Moreover, face prioritization manifests also in behavior. People tend to look at faces more frequently and for longer periods, and saccadic reaction times can be faster when targeting a face as opposed to a phase-scrambled control. However, it is currently not clear at which stage image content affects oculomotor planning and execution. It can be hypothesized that image content directly influences oculomotor signal generation. Alternatively, the image content could exert its influence on oculomotor planning and execution at a later stage, after the image has been processed. Here we aim to disentangle these two alternative hypotheses by measuring the frequency of saccades toward a visual target when the latter is followed by a visual transient in the central visual field. Behaviorally, this paradigm leads to a reduction in saccade frequency that happens about 90 ms after any visual transient event, also known as saccadic \"inhibition\". In two experiments, we measured occurrence of saccades in visually guided saccades as well as microsaccades during fixation, using face and noise-matched visual stimuli. We observed that while the reduction in saccade occurrence was similar for both stimulus types, face stimuli lead to a prolonged reduction in eye movements. Moreover, saccade kinematics were altered by both stimulus types, showing an amplitude reduction without change in peak velocity for the earliest saccades. Taken together, our experiments imply that face stimuli primarily affect the later stages of the behavioral phenomenon of saccadic \"inhibition\". We propose that while some stimulus features are processed at an early stage and can quickly influence eye movements, a delayed signal conveying image content information is necessary to further inhibit/delay activity in the oculomotor system to trigger eye movements.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2281-2294"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422452/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141855264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-07DOI: 10.1007/s00221-024-06900-0
Jisung Yuk, Robert L Sainburg
Previous research suggests that the neural processes underlying specification of movement direction and amplitude are independently represented in the nervous system. However, our understanding of acquisition and consolidation processes in the direction and distance learning remains limited. We designed a virtual air hockey task, in which the puck direction is determined by the hand direction at impact, while the puck distance is determined by the amplitude of the velocity. In two versions of this task, participants were required to either specify the direction or the distance of the puck, while the alternate variable did not contribute to task success. Separate groups of right-handed participants were recruited for each task. Each participant was randomly assigned to one of two groups with a counter-balanced arm practice sequence (right to left, or left to right). We examined acquisition and, after 24 h, we examined two aspects of consolidation: 1) same hand performance to test the durability and 2) the opposite hand to test the effector-independent consolidation (interlimb transfer) of learning. The distance task showed symmetry between hands in the extent of acquisition as well as in both aspects of consolidation. In contrast, the direction task showed asymmetry in both acquisition and consolidation: the dominant right arm showed faster and greater acquisition and greater transfer from the opposite arm training. The asymmetric acquisition and consolidation processes shown in the direction task might be explained by lateralized control and mapping of direction, an interpretation consistent with previous findings on motor adaptation paradigms.
{"title":"Lateralization of acquisition and consolidation in direction but not amplitude of a motor skill task.","authors":"Jisung Yuk, Robert L Sainburg","doi":"10.1007/s00221-024-06900-0","DOIUrl":"10.1007/s00221-024-06900-0","url":null,"abstract":"<p><p>Previous research suggests that the neural processes underlying specification of movement direction and amplitude are independently represented in the nervous system. However, our understanding of acquisition and consolidation processes in the direction and distance learning remains limited. We designed a virtual air hockey task, in which the puck direction is determined by the hand direction at impact, while the puck distance is determined by the amplitude of the velocity. In two versions of this task, participants were required to either specify the direction or the distance of the puck, while the alternate variable did not contribute to task success. Separate groups of right-handed participants were recruited for each task. Each participant was randomly assigned to one of two groups with a counter-balanced arm practice sequence (right to left, or left to right). We examined acquisition and, after 24 h, we examined two aspects of consolidation: 1) same hand performance to test the durability and 2) the opposite hand to test the effector-independent consolidation (interlimb transfer) of learning. The distance task showed symmetry between hands in the extent of acquisition as well as in both aspects of consolidation. In contrast, the direction task showed asymmetry in both acquisition and consolidation: the dominant right arm showed faster and greater acquisition and greater transfer from the opposite arm training. The asymmetric acquisition and consolidation processes shown in the direction task might be explained by lateralized control and mapping of direction, an interpretation consistent with previous findings on motor adaptation paradigms.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2341-2356"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-12DOI: 10.1007/s00221-024-06894-9
Yuki Sato, Yuta Terasawa, Yohei Okada, Naruhito Hasui, Naomichi Mizuta, Sora Ohnishi, Daiki Fujita, Shu Morioka
Cerebellar transcranial direct current stimulation (ctDCS) modulates cerebellar cortical excitability in a polarity-dependent manner and affects inhibitory pathways from the cerebellum. The cerebellum modulates spinal reflex excitability via the vestibulospinal tract and other pathways projecting to the spinal motor neurons; however, the effects of ctDCS on the excitability of spinal motor neurons and vestibulospinal tract remain unclear. The experiment involved 13 healthy individuals. ctDCS (sham-ctDCS, anodal-ctDCS, and cathodal-ctDCS) was applied to the cerebellar vermis at 2 mA with an interval of at least 3 days between each condition. We measured the maximal M-wave (Mmax) and maximal H-reflex (Hmax) in the right soleus muscle to assess the excitability of spinal motor neurons. We applied galvanic vestibular stimulation (GVS) for 200 ms at 100 ms before tibial nerve stimulation to measure Hmax conditioned by GVS (GVS-Hmax) and calculated the change rate of Hmax by GVS as the excitability of vestibulospinal tract. We measured the Mmax, Hmax, and GVS-Hmax before, during, and after ctDCS in the sitting posture. No main effects of tDCS condition, main effects of time, or interaction effects were observed in Hmax/Mmax or the change rate of Hmax by GVS. It has been suggested that ctDCS does not affect the excitability of spinal motor neurons and vestibulospinal tract, as measured by neurophysiological methods, such as the H-reflex, in healthy individuals in a sitting posture. Effect of ctDCS on other descending pathways to spinal motor neurons, the neurological mechanism of tDCS and the cerebellar activity during the experiment may have contributed to these results. Therefore, we need to investigate the involvement of the cerebellum in Hmax/Mmax and the change rate of Hmax by GVS under different neuromodulation techniques and postural conditions.
{"title":"Effects of cerebellar transcranial direct current stimulation on the excitability of spinal motor neurons and vestibulospinal tract in healthy individuals.","authors":"Yuki Sato, Yuta Terasawa, Yohei Okada, Naruhito Hasui, Naomichi Mizuta, Sora Ohnishi, Daiki Fujita, Shu Morioka","doi":"10.1007/s00221-024-06894-9","DOIUrl":"10.1007/s00221-024-06894-9","url":null,"abstract":"<p><p>Cerebellar transcranial direct current stimulation (ctDCS) modulates cerebellar cortical excitability in a polarity-dependent manner and affects inhibitory pathways from the cerebellum. The cerebellum modulates spinal reflex excitability via the vestibulospinal tract and other pathways projecting to the spinal motor neurons; however, the effects of ctDCS on the excitability of spinal motor neurons and vestibulospinal tract remain unclear. The experiment involved 13 healthy individuals. ctDCS (sham-ctDCS, anodal-ctDCS, and cathodal-ctDCS) was applied to the cerebellar vermis at 2 mA with an interval of at least 3 days between each condition. We measured the maximal M-wave (Mmax) and maximal H-reflex (Hmax) in the right soleus muscle to assess the excitability of spinal motor neurons. We applied galvanic vestibular stimulation (GVS) for 200 ms at 100 ms before tibial nerve stimulation to measure Hmax conditioned by GVS (GVS-Hmax) and calculated the change rate of Hmax by GVS as the excitability of vestibulospinal tract. We measured the Mmax, Hmax, and GVS-Hmax before, during, and after ctDCS in the sitting posture. No main effects of tDCS condition, main effects of time, or interaction effects were observed in Hmax/Mmax or the change rate of Hmax by GVS. It has been suggested that ctDCS does not affect the excitability of spinal motor neurons and vestibulospinal tract, as measured by neurophysiological methods, such as the H-reflex, in healthy individuals in a sitting posture. Effect of ctDCS on other descending pathways to spinal motor neurons, the neurological mechanism of tDCS and the cerebellar activity during the experiment may have contributed to these results. Therefore, we need to investigate the involvement of the cerebellum in Hmax/Mmax and the change rate of Hmax by GVS under different neuromodulation techniques and postural conditions.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2381-2390"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-07DOI: 10.1007/s00221-024-06901-z
Shanie A L Jayasinghe, Robert L Sainburg, Fabrice R Sarlegna
Proprioception plays an important role in both feedforward and feedback processes underlying movement control. This has been shown with individuals who suffered a profound proprioceptive loss and use vision to partially compensate for the sensory loss. The purpose of this study was to specifically examine the role of proprioception in feedback motor responses to visual perturbations by examining voluntary arm movements in an individual with a rare case of selective peripheral deafferentation (GL). We compared her left and right hand movements with those of age-matched female control participants (70.0 years ± 0.2 SEM) during a reaching task. Participants were asked to move their unseen hand, represented by a cursor on the screen, quickly and accurately to reach a visual target. A visual perturbation could be pseudorandomly applied, at movement onset, to either the target position (target jump) or the cursor position (cursor jump). Results showed that despite the continuous visual feedback that was provided, GL produced larger errors in final position accuracy compared to control participants, with her left nondominant hand being more erroneous after a cursor jump. We also found that the proprioceptively-deafferented individual produced less spatially efficient movements than the control group. Overall, these results provide evidence of a heavier reliance on proprioceptive feedback for movements of the nondominant hand relative to the dominant hand, supporting the view of a lateralization of the feedback processes underlying motor control.
{"title":"Role of proprioception in corrective visually-guided movements: larger movement errors in both arms of a deafferented individual compared to control participants.","authors":"Shanie A L Jayasinghe, Robert L Sainburg, Fabrice R Sarlegna","doi":"10.1007/s00221-024-06901-z","DOIUrl":"10.1007/s00221-024-06901-z","url":null,"abstract":"<p><p>Proprioception plays an important role in both feedforward and feedback processes underlying movement control. This has been shown with individuals who suffered a profound proprioceptive loss and use vision to partially compensate for the sensory loss. The purpose of this study was to specifically examine the role of proprioception in feedback motor responses to visual perturbations by examining voluntary arm movements in an individual with a rare case of selective peripheral deafferentation (GL). We compared her left and right hand movements with those of age-matched female control participants (70.0 years ± 0.2 SEM) during a reaching task. Participants were asked to move their unseen hand, represented by a cursor on the screen, quickly and accurately to reach a visual target. A visual perturbation could be pseudorandomly applied, at movement onset, to either the target position (target jump) or the cursor position (cursor jump). Results showed that despite the continuous visual feedback that was provided, GL produced larger errors in final position accuracy compared to control participants, with her left nondominant hand being more erroneous after a cursor jump. We also found that the proprioceptively-deafferented individual produced less spatially efficient movements than the control group. Overall, these results provide evidence of a heavier reliance on proprioceptive feedback for movements of the nondominant hand relative to the dominant hand, supporting the view of a lateralization of the feedback processes underlying motor control.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2329-2340"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aimed to utilize the nonnegative matrix factorization (NNMF) algorithm for muscle synergy analysis, extracting synergy structures and muscle weightings and mining biomarkers reflecting changes in muscle fatigue from these synergy structures. A leg press exercise to induce fatigue was performed by 11 participants. Surface electromyography (sEMG) data from seven muscles, electrocardiography (ECG) data, Borg CR-10 scale scores, and the z-axis acceleration of the weight block were simultaneously collected. Three indices were derived from the synergy structures: activation phase difference, coactivation area, and coactivation time. The indicators were further validated for single-leg landing. Differences in heart rate (HR) and heart rate variability (HRV) were observed across different fatigue levels, with varying degrees of disparity. The median frequency (MDF) exhibited a consistent decline in the primary working muscle groups. Significant differences were noted in activation phase difference, coactivation area, and coactivation time before and after fatigue onset. Moreover, a significant correlation was found between the activation phase difference and the coactivation area with fatigue intensity. The further application of single-leg landing demonstrated the effectiveness of the coactivation area. These indices can serve as biomarkers reflecting simultaneous alterations in the central nervous system and muscle activity post-exertion.
{"title":"Robust fatigue markers obtained from muscle synergy analysis.","authors":"Chen Zhang, Zi-Jian Zhou, Lu-Yi Wang, Ling-Hua Ran, Hui-Min Hu, Xin Zhang, Hong-Qi Xu, Ji-Peng Shi","doi":"10.1007/s00221-024-06909-5","DOIUrl":"10.1007/s00221-024-06909-5","url":null,"abstract":"<p><p>This study aimed to utilize the nonnegative matrix factorization (NNMF) algorithm for muscle synergy analysis, extracting synergy structures and muscle weightings and mining biomarkers reflecting changes in muscle fatigue from these synergy structures. A leg press exercise to induce fatigue was performed by 11 participants. Surface electromyography (sEMG) data from seven muscles, electrocardiography (ECG) data, Borg CR-10 scale scores, and the z-axis acceleration of the weight block were simultaneously collected. Three indices were derived from the synergy structures: activation phase difference, coactivation area, and coactivation time. The indicators were further validated for single-leg landing. Differences in heart rate (HR) and heart rate variability (HRV) were observed across different fatigue levels, with varying degrees of disparity. The median frequency (MDF) exhibited a consistent decline in the primary working muscle groups. Significant differences were noted in activation phase difference, coactivation area, and coactivation time before and after fatigue onset. Moreover, a significant correlation was found between the activation phase difference and the coactivation area with fatigue intensity. The further application of single-leg landing demonstrated the effectiveness of the coactivation area. These indices can serve as biomarkers reflecting simultaneous alterations in the central nervous system and muscle activity post-exertion.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2391-2404"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-15DOI: 10.1007/s00221-024-06905-9
M I B Debenham, C B Bruce, C J McNeil, B H Dalton
Whole-body vestibular-evoked balance responses decrease following ~ 55 min of normobaric hypoxia. It is unclear how longer durations of hypoxia affect the vestibular control of balance at the muscle and whole-body levels. This study examined how four hours of normobaric hypoxia influenced the vestibular control of balance. Fifteen participants (4 females; 11 males) stood on a force plate with vision occluded and head rotated rightward while subjected to three blocks of binaural, bipolar stochastic electrical vestibular stimulation (EVS; 0-25 Hz, root mean square amplitude = 1.1 mA) consisting of two, 90-s trials. The relationship between EVS and anteroposterior (AP) forces or medial gastrocnemius (MG) electromyography (EMG) was estimated in the time and frequency domains at baseline (BL; 0.21 fraction of inspired oxygen-FIO2) and following two (H2) and four (H4) hours of normobaric hypoxia (0.11 FIO2). The EVS-MG EMG short-latency peak and peak-to-peak amplitudes were smaller than BL at H2 and H4, but the medium-latency peak amplitude was only lower at H4. The EVS-AP force medium-latency peak amplitude was lower than BL at H4, but the short-latency peak and peak-to-amplitudes were unchanged. The EVS-MG EMG coherence and gain were reduced compared to BL at H2 and H4 across multiple frequencies ≥ 7 Hz, whereas EVS-AP force coherence was blunted at H4 (≤ 4 Hz), but gain was unaffected. Overall, the central nervous system's response to vestibular-driven signals during quiet standing was decreased for up to four hours of normobaric hypoxia, and vestibular-evoked responses recorded within postural muscles may be more sensitive than the whole-body response.
{"title":"The effects of four hours of normobaric hypoxia on the vestibular control of balance.","authors":"M I B Debenham, C B Bruce, C J McNeil, B H Dalton","doi":"10.1007/s00221-024-06905-9","DOIUrl":"10.1007/s00221-024-06905-9","url":null,"abstract":"<p><p>Whole-body vestibular-evoked balance responses decrease following ~ 55 min of normobaric hypoxia. It is unclear how longer durations of hypoxia affect the vestibular control of balance at the muscle and whole-body levels. This study examined how four hours of normobaric hypoxia influenced the vestibular control of balance. Fifteen participants (4 females; 11 males) stood on a force plate with vision occluded and head rotated rightward while subjected to three blocks of binaural, bipolar stochastic electrical vestibular stimulation (EVS; 0-25 Hz, root mean square amplitude = 1.1 mA) consisting of two, 90-s trials. The relationship between EVS and anteroposterior (AP) forces or medial gastrocnemius (MG) electromyography (EMG) was estimated in the time and frequency domains at baseline (BL; 0.21 fraction of inspired oxygen-F<sub>I</sub>O<sub>2</sub>) and following two (H2) and four (H4) hours of normobaric hypoxia (0.11 F<sub>I</sub>O<sub>2</sub>). The EVS-MG EMG short-latency peak and peak-to-peak amplitudes were smaller than BL at H2 and H4, but the medium-latency peak amplitude was only lower at H4. The EVS-AP force medium-latency peak amplitude was lower than BL at H4, but the short-latency peak and peak-to-amplitudes were unchanged. The EVS-MG EMG coherence and gain were reduced compared to BL at H2 and H4 across multiple frequencies ≥ 7 Hz, whereas EVS-AP force coherence was blunted at H4 (≤ 4 Hz), but gain was unaffected. Overall, the central nervous system's response to vestibular-driven signals during quiet standing was decreased for up to four hours of normobaric hypoxia, and vestibular-evoked responses recorded within postural muscles may be more sensitive than the whole-body response.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2419-2432"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-23DOI: 10.1007/s00221-024-06911-x
Tianshu Gu, Wanchao Yao, Fuwang Wang, Rongrong Fu
Fatigue driving is one of the leading causes of traffic accidents, and the rapid and accurate detection of driver fatigue is of paramount importance for enhancing road safety. However, the application of deep learning models in fatigue driving detection has long been constrained by high computational costs and power consumption. To address this issue, this study proposes an approach that combines Self-Organizing Map (SOM) and Spiking Neural Networks (SNN) to develop a low-power model capable of accurately recognizing the driver's mental state. Initially, spatial features are extracted from electroencephalogram (EEG) signals using the SOM network. Subsequently, the extracted weight vectors are encoded and fed into the SNN for fatigue driving classification. The research results demonstrate that the proposed method effectively considers the spatiotemporal characteristics of EEG signals, achieving efficient fatigue detection. Simultaneously, this approach successfully reduces the model's power consumption. When compared to traditional artificial neural networks, our method reduces energy consumption by approximately 12.21-42.59%.
疲劳驾驶是交通事故的主要原因之一,快速、准确地检测驾驶员的疲劳状态对提高道路安全至关重要。然而,长期以来,深度学习模型在疲劳驾驶检测中的应用一直受到高计算成本和高能耗的制约。为解决这一问题,本研究提出了一种结合自组织图(SOM)和尖峰神经网络(SNN)的方法,以开发一种能够准确识别驾驶员精神状态的低功耗模型。首先,利用 SOM 网络从脑电图(EEG)信号中提取空间特征。随后,对提取的权重向量进行编码,并输入 SNN 进行疲劳驾驶分类。研究结果表明,所提出的方法有效地考虑了脑电信号的时空特征,实现了高效的疲劳检测。同时,这种方法还成功地降低了模型的功耗。与传统的人工神经网络相比,我们的方法降低了约 12.21-42.59% 的能耗。
{"title":"Research on low-power driving fatigue monitoring method based on spiking neural network.","authors":"Tianshu Gu, Wanchao Yao, Fuwang Wang, Rongrong Fu","doi":"10.1007/s00221-024-06911-x","DOIUrl":"10.1007/s00221-024-06911-x","url":null,"abstract":"<p><p>Fatigue driving is one of the leading causes of traffic accidents, and the rapid and accurate detection of driver fatigue is of paramount importance for enhancing road safety. However, the application of deep learning models in fatigue driving detection has long been constrained by high computational costs and power consumption. To address this issue, this study proposes an approach that combines Self-Organizing Map (SOM) and Spiking Neural Networks (SNN) to develop a low-power model capable of accurately recognizing the driver's mental state. Initially, spatial features are extracted from electroencephalogram (EEG) signals using the SOM network. Subsequently, the extracted weight vectors are encoded and fed into the SNN for fatigue driving classification. The research results demonstrate that the proposed method effectively considers the spatiotemporal characteristics of EEG signals, achieving efficient fatigue detection. Simultaneously, this approach successfully reduces the model's power consumption. When compared to traditional artificial neural networks, our method reduces energy consumption by approximately 12.21-42.59%.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"2457-2471"},"PeriodicalIF":1.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}